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Introduction

The IMSL

Libraries

The IMSL Libraries consist of two separate, but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

MATH/LIBRARY general applied mathematics and special functions
STAT/LIBRARY dtatistics

The IMSL MATH/LIBRARY User’'s Manuabs two parts: MATH/LIBRARY and
MATH/LIBRARY Specia Functions.

Most of the routines are available in both single and double precision versions.
The same user interface is found on the many hardware versions that span the
range from persona computer to supercomputer. Note that some IMSL routines
are not distributed for FORTRAN compiler environments that do not support
double precision complex data. The names of the IMSL routines that return or
accept the type double complex begin with the Ié&&rand, occasionally,BC.”

Getting Started

The IMSL STAT/LIBRARY is a collection of FORTRAN subroutines and
functions useful in research and statistical analysis. Each routine is designed and
documented to be used in research activities as well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN (or

possibly some other language) to call the STAT/LIBRARY routine. Each routine
conforms to established conventions in programming and documentation. We

give first priority in development to efficient algorithms, clear documentation,

and accurate results. The uniform design of the routines makes it easy to use more
than one routine in a given application. Also, you will find that the design
consistency enables you to apply your experience with one STAT/LIBRARY
routine to all other IMSL routines that you use.

IMSL STAT/LIBRARY
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Finding the Right Routine

The STAT/LIBRARY isorganized into chapters; each chapter contains routines
with similar computational or analytical capabilities. To locate the right routine
for agiven problem, you may use either the table of contents located in each
chapter introduction, or one of the indexes at the end of this manual. GAMS
index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, and
J.L. Springmann 1990, Guide to Available Mathematical Software, National
Institute of Standards and Technology NISTIR 90-4237). Use the GAM S index to
locate which STAT/ LIBRARY routines pertain to a particular topic or problem.

Often the quickest way to use the STAT/LIBRARY isto find an example similar
to your problem and then to mimic the example. Each routine document has at
least one example demonstrating its application. The example for a routine may
be created simply for illustration, it may be from atextbook (with reference to the
source) or it may be from the statistical literature, in which case IMSL routine
CGDATA retrieves the data set.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one
demonstrated example of each routine, including sample input and results. Y ou
will find al information pertaining to the IMSL STAT/LIBRARY in this manual.
Moreover, al information pertaining to a particular routine isin one place within
achapter.

Each chapter begins with an introduction followed by atable of contents that lists
the routines included in the chapter. Documentation of the routines consists of the
following information.

e IMSL Routine Name
*  Purpose: a statement of the purpose of the routine

*  Usage: the form for referencing the subprogram with arguments listed. There are
two usage forms:
—CALL sub(ar gunent - | i st) for subroutines
—fun(argunent - | i st) for functions

« Arguments: a description of the arguments in the order of their occurrence. Input
arguments usually occur first, followed by input/output arguments, with output
arguments described last. For functions, the function symbolic name is described
after the argument descriptions.

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through
this argument; cannot be a constant or an expression.
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Input or Output Select appropriate option to define the argument as either input
or output. See individual routines for further instructions.

Output Noinitialization is necessary; cannot be a constant or an expression. The
routine returns output through this argument.

e Remarks: details pertaining to code usage and workspace allocation

»  Algorithm: adescription of the algorithm and references to detailed information.
In many cases, other IMSL routines with similar or complementary functions are
noted.

¢ Programming notes. an optional section that contains programming details not
covered elsewhere

* Example: at least one application of this routine showing input and required
dimension and type statements

¢ Qutput: results from the example(s)
» References: periodicals and books with details of agorithm development

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available

in both a single precision and a double precision version, with names of the two
versions sharing a common root. The name of the double precision version begins
with a “D.” The single precision version is generally just the mnemonic root, but
sometimes a lettes” or “A” is used as a prefix. For example, the following pairs
are names of routines in the two different precisi@@RVC/DCORVC (the root is
“CORVC,” for “correlations, variances, and covariancesNORDF/DNORDF (the

root is “NORDF,” for “normal distribution function”), an&ADD/DADD (the root is
“ADD").

Except when expressly stated otherwise, the names of the variables in the
argument lists follow the FORTRAN default type for integer and floating point.
In other words, a variable whose name begins with one of the lettalsdugh

“N" is of typel NTEGER, and otherwise is of ty@REAL or DOUBLE PRECI S| ON,
depending on the precision of the routine.

An array with more than one dimension that is used as a FORTRAN argument
can have an assumed-size declarator for the last dimension only. In the
STAT/LIBRARY routines, this information is passed by a variable with the
prefix “LD’ and with the array name as the root. For example, the argumb&nt
contains the leading dimension of arfay

Where appropriate, the same variable name is used consistently throughout a
chapter in the STAT/LIBRARY. For example, in the routines for random number
generationNR denotes the number of random numbers to be generated cand

| Rdenotes the array that stores the numbers.

When writing programs accessing the STAT/LIBRARY, the user should choose
FORTRAN names that do not conflict with names of IMSL subroutines,
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functions, or named common blocks. The careful user can avoid any conflicts
with IMSL namesif, in choosing names, the following rules are observed:

« Do not choose a name that appearsin the Alphabetical Summary of Routines, at
the end of the User’s Manual

* Do not choose a name consisting of more than three characters with anumeral in
the second or third position.

For further details, see the section on “Reserved Names” in the Reference
Material.

Programming Conventions

In general, the STAT/LIBRARY codes are written so that computations are not
affected by underflow, provided the system (hardware or software) places a zero
value in the register. In this case, system error messages indicating underflow
should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensioning.

In many cases, the documentation for a routine points out common pitfalls that
can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat
them accordingly. This error-handling capability provides automatic protection
for the user without requiring the user to make any specific provisions for the
treatment of error conditions. See the section on “User Errors” in the Reference
Material for further details.

Error Handling

The routines in the IMSL STAT/LIBRARY attempt to detect and report errors

and invalid input. Errors are classified and are assigned a code number. By
default, errors of moderate or worse severity result in messages being
automatically printed by the routine. Moreover, errors of worse severity cause
program execution to stop. The severity level as well as the general nature of the
error is designated by an “error type” with numbers from 0 to 5. An error type 0 is
no error; types 1 through 5 are progressively more severe. In most cases, you
need not be concerned with our method of handling errors. For those interested, a
complete description of the error-handling system is given in the Reference
Material, which also describes how you can change the default actions and access
the error code numbers.
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Work Arrays

A few routinesin the STAT/LIBRARY require work arrays. On most systems, the
workspace alocation is handled transparently, but on some systems, workspace is
obtained from alarge array in a COMMON block. On these systems, when you have
avery large problem, the default workspace may be too small. The routine will
print a message telling you the statements to insert in your program in order to
provide the needed space (using the common block WORKSP for integer or real
numbers, or the common block WKSPCH for characters). The routine will then
automatically halt execution. See “Automatic Workspace Allocation” in the
Reference Material for details on common block names and default sizes.

For each routine that uses workspace, a second routine is available that allows
you to provide the workspace explicitly. For example, the rowtBhd&G

(IMSL MATH/LIBRARY) uses workspace and automatically allocates the
required amount, if available. The routin2LRG does the same aSLRG, but

has a work array in its argument list, which the user must declare to be of
appropriate size. The “Automatic Workspace Allocation” section in the
Reference Material contains further details on this subject.

Printing Results

Several routines in the IMSL STAT/LIBRARY have an option for printing
results. These routines have an argume?R| NT, to control the printing. In any
routine that allows printing, ifPRI NT = 0, then no printing is done (except
possibly error messages). Some routines allow various amounts of printing; one
value ofl PRI NT might result in printing only summary statistics, while another
value might cause more detailed statistics or intermediate results to be printed.
Other routines in the STAT/LIBRARY do not print any of the results. In all
routines, of course, the output is returned in FORTRAN variables, so if the
routine does not do printing, or if you $étRI NT 0, you can print the results
yourself. The STAT/LIBRARY contains some special routines just for printing
arrays. For exampl&®RRRN andWRRRL are two convenient routines for printing
matrices. See Chapter 19, “Utilities,” for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL roudiveCH, which

retrieves the FORTRAN device unit number for printing the results. Because this
routine obtains device unit numbers, it can be used to redirect the input or output.
The section on “Machine- Dependent Constants” in the Reference Material
contains a description of the routioeACH.

Missing Values

Many of the routines in the IMSL STAT/LIBRARY allow the data to contain
missing values. These routines recognize as a missing value the special value
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referred to as ‘not a number,” or NaN. The actual value is different on different
computers, but it can be obtained by reference to the IMSL routines or

DMACH, described in the “Machine-Dependent Constants” section of the
Reference Material. In routines that allow missing values, two common
arguments areM SS andNRM SS. The definitions of these arguments vary
somewhat depending on the specific routine. However, in a data structure where
the rows represent observations and the columns represent vaNRMESS is

the number of rows containing missing valuesMdas is the total number of
missing values.

The way that missing values are treated depends on the individual routine, and is
described in the documentation for the routine.

Routines that Accumulate Results over Several

Calls

Often in statistical analyses, not all of the data are available in computer memory
at once. Many of the routines in the STAT/LIBRARY accept a part of the data,
accumulate some statistics, and continue accepting data and accumulating
statistics until all of the data have been processed. The routines that allow the data
to be processed a little at a time have an argument calbE ‘For the simple

cases, these DOroutines” are easy to use; for more complicated cases, you need
to be aware of some things that are discussed in the “Automatic Workspace
Allocation” section of the Reference Material.

This introduction has acquainted you with a few general characteristics of IMSL
STAT/LIBRARY. If you are using the STAT/LIBRARY at a computer center,

the computer center consultant will provide the details necessary to use the IMSL
routines on your computer sys tem. Also, additional general information for all
users is available in the Reference Material at the end of this manual.

viii * Introduction
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Chapter 1: Basic Statistics

Routines

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

Frequency Tabulations

One-way frequency table ... OWFRQ
Two-way frequency table..........cccci TWFRQ
Frequencies in multivariate data ...........ccccoocvveeiiiiiiiiiiee e FREQ

Univariate Summary Statistics
Moments and inferences for normal distribution................... UVSTA

Ranks and Order Statistics

NUMeErical ranKiNng .......ccuvveiiiiiiiiiii e RANKS

Letter value SUMMANY .........oeveviveiieeiiiiieiiieieiereresererenenenenennnns LETTR

Order StatiSHICS ..vveeee i ORDST

Empirical quantileS.............oevvvviiiiiiiiiiiiiiieieeeeeeeeeeee e EQTIL

Parametric Estimates and Tests (See also Univariate Summary
Statistics)

Two-sample ttests and FLestS.....cccovvvvvviiviiieiiiiieiiieeeeeee, TWOMV

Estimate the parameter in a binomial distribution................. BINES

Estimate the parameter in a Poisson distribution.................. POIES

Estimation in censored normal data...........cccccceviiiviinnenen. NRCES

Grouped Data

Statistics for grouped data ..........cooceveiiiiieiiii e GRPES
Continuous Data in a Table

Compute cell means and sums of squares.......................... CSTAT
Median polish of a two-way table.............ccccceiviiiiinnnn MEDPL

16

24
29
31
35

37
44
46
48

51

54
59

Usage Notes

Frequency Tabulations

The routines for frequency tabulations accept raw datain the form of vectors or
matrices and produce counts. Two of these routines assume generally that the
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data are continuous and tally the observations into groups based on grouping
information that the user supplies. Another routine for frequency tabulations
assumes basically that the data are discrete and counts the number of observations
with each value. Other analyses of discrete data or count data can be performed
using IMSL routines in Chapter 5, “Categorical and Discrete Data Analysis.”

Univariate Summary Statistics

The routineUVSTA (page 16) computes the sample mean, variance, minimum,
maximum, and other basic statistics for each variable in a data set. It also
computes confidence intervals for the mean and variance if the sample is assumed
to be from a normal distribution.

Ranks and Order Statistics

The routines for ranks and order statistics accept data from a single sample stored
in a vector. Ranks, order statistics, and sample quantiles form the basis for many
nonparametric and robust statistical techniques (see Conover 1980 and Hoaglin et
al. 1983). Letter values, computed by the routiBETR (page 29), are a special

set of order statistics particularly useful in exploratory data analysis (see Hoaglin
1983).

Parametric Estimates and Tests

The routines described in this section compute statistics for simple inferences
about the parameters in normal, binomial, and Poisson distributions. General
discussions of estimation techniques for these distributions can be found in
Johnson and Kotz (1969, 1970a, 1970b). The roufir&r A (page 16), for

univariate summary statistics, also computes statistics for simple inferences about
the parameters in a single normal distribution.

Grouped Data

The routineGRPES (page 51) computes several basic statistics, such as arithmetic
means, geometric means, harmonic means, and moments about the arithmetic
mean for grouped data. The second, third, and fourth moments are computed both
with and without Sheppard’s corrections.

Continuous Data in a Table

The routineCSTAT (page 54) accepts data sets with both classification variables
and response variables. The classification variables define cells in a table.

Within each cell, means and sums of squares are computed for the response
variables. Further analysis of the response variables, in particular, assessment of
the effects of the classification variables, may be performed using the routines
described in Chapter 4 on analysis of variance. An alternative for two-way tables
is median polish, which is more resistant to outliers, but which is more
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exploratory. That is, no test is performed to confirm statistically that row and/or
column effects are present. The routine MEDPL (page 59) in this section performs
median polish. (See Tukey, 1977; Velleman and Hoaglin, 1981; and Emerson and
Hoaglin, 1983.) For count data (frequencies), the routines described in Chapter 5,
“Categorical and Discrete Data Analysis,” are appropriate for determining the
amount of association among the rows and columns.

OWFRQ/DOWFRQ (Single/Double precision)

Tally observations into a one-way frequency table.

Usage
CALL ONFRQ (NOBS, X, K, 10PT, XLO XH , CLHW DIV, TABLE)

Arguments

NOBS — Number of observations. (Input)

X — Vector of lengtiNOBS containing the data. (Input)
K — Number of intervals. (Input)

IOPT — Tallying option. (Input)

| OPT  Action

0 Intervals of equal length, determined from the data, are usedM_it
andXMAX be the minimum and maximum valueXjmespectively.
Then, TABLE(1) is the tally of observations less than or equaiMoN +
(XmMaX — XM N)/K, TABLE(2) is the tally of observations greater than
XM N+ (XMAX — XM N) /K and less than or equalXm N+ 2* (XMAX —
XM N) /K, and so onTABLE(K) is the tally of observations greater than
XMAX — (XMAX — XM N)/K.

1 Intervals of equal length are used just as in the caserat= 0, except
the upper and lower bounds are taken as the user supplied vaxiables
andXxHl , instead of the actual minimum and maximum in the data.
Therefore, the first and the last intervals are semi-infinite in lekgth.
must be greater than 2.

2 K — 1 cutpoints are input ibl V. The tally inTABLE(1) is the number of
observations less than or equabto/(1). Forl greater than 1 and less
thank, the tally inTABLE(] ) is the number of observations greater than
DI V(I = 1) and less than or equalbV(l ). The tally inTABLE(K) is the
number of observations greater tanv(K — 1). K must be greater than
1.

3 Class marks are input i vV and a constant class half-width is input in
CLHW The total of the elements TABLE may be less thaiOBS. The

IMSL STAT/LIBRARY
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tally in TABLE(I ) isthe number of observations between
DI V(1) = CLHWand DI V(I ) + CLHW

XLO — If 1 OPT = 1,XLOis the lower bound at which to begin forming the class
intervals. (Input)
XLOis used only if OPT = 1.

XHI — If 1 OPT = 1, XHl is the upper bound to use in forming the class intervals.
(Input)
XH is used only if OPT = 1.

CLHW — If | OPT = 3, CLHWis the half-width of the class intervals. (Input)
CLHWis not used if OPT is not equal to 3.

DIV — Vector of varying length and contents depending@®r. (Input if
| OPT=2 or 3; output iff OPT=0 or 1.)
The contents obl Vv are in ascending order.

| OPT  Contents

0 DI Vis of lengthK containing interval midpointsD(V is output.)

1 DI V is of lengthK containing interval midpoints. Since the first and last
intervals are semi-infinite in lengthl, V(1) containsxLO minus half the
interval length, an® V(K) containsxH plus half the interval length.

(DI V is output.)
2 DI Vis a vector of lengtK — 1 containing cutpointg.Dl V is input.)
3 DI V is of lengthK containing classmarksDI(V is input.)

TABLE — Vector of lengttK containing the counts. (Output)

Algorithm

The routineOWFRQ groups numerical data into categories, which can be defined
in any of four different ways as chosenllgyT. If | OPT = 0, K intervals of equal
length are formed between the minimum and maximum values in the data, and
then the data are tallied in these intervals. The midpoints of the intervals are
output n DI V.

If 1 OPT = 1,K - 2 intervals of equal length are formed betwied andxH , and
then the data are tallied in these intervals. In this option, there is one group that
consists of data less th#hOand one group of data greater thé . This option

is similar tol OPT = 0, except with this option, the midpoints of the classes are
under control of the user. The midpoints of the intervals are outpuMnThe

first and last values dfi Vv, respectively, contailLO minus half the class width
andxHl plus half the class width.

Forl OPT = 2 or 3, the intervals need not be equally spacddr = 2, the

intervals need not be equal in length. In this case, the intervals are defined by
their boundaries, the “cutpoints”, which are inpubirv. The number of

cutpoints is one less than the number of intervals. The first cutpoint defines the
upper bound of the first interval, and the last cutpoint defines the lower bound of
the last interval.
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If | OPT= 3, theintervals are all of length twice CLHW and they are centered on
the class marksinput in DI V. This option can be used to exclude portions of the
data.

The examples use all of these options with the same data set.

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin
(1981). They are the measurements (in inches) of precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years. In the first example, we
set | OPT = 0. This option may be appropriate if we do not know the range of the
data. Notice that the midpoints of the classintervals, output in DI V, are not

“pretty” numbers.

INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)
C
INTEGER | OPT, NOUT
REAL CLHW DI V(K), TABLE(K), X(NOBS), XHI, XLO
EXTERNAL  OAFRQ  UMACH
C
DATA X/ 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
C
CALL UMACH (2, NOUT)
|OPT = 0
C
CALL ONFRQ (NOBS, X, K, |OPT, XLO, XH, CLHW DIV, TABLE)

VWRI TE (NQUT, 99999) DIV, TABLE
99999 FORMAT (' Midpoints: ’, 10F5.2,/,” Counts:’, 10F5.0)
END

Output
Midpoints: 0.54 0.98 1.43 1.87 2.31 2.76 3.20 3.64 4.09 4.53
Counts: 4. 8 5. 5 3. 1. 3. 0. 0. 1.

Example 2

In this example, we set IOPT = 1 and choose XLOand XHI so that the intervals
will be 0.0to 0.5, 0.5 to 1.0, and so on. This means that the midpoints of the class

intervals, output in DIV, will be 0.25, 0.75, and so on.

INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)

INTEGER IOPT, NOUT
REAL  CLHW, DIV(K), TABLE(K), X(NOBS), XHI, XLO
EXTERNAL OWFRQ, UMACH

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20,3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87,1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2.05/
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CALL UMACH (2, NOUT)
lOPT = 1
XLO = 0.5
XH = 4.5

C
CALL OWFRQ (NOBS, X, K, IOPT, XLO, XH , CLHW DIV, TABLE)
VWRI TE (NOUT, 99999) DIV, TABLE
99999 FORMAT (' Midpoints: ’, 10F5.2,/,” Counts:’, 10F5.0)
END

Output
Midpoints: 0.250.75 1.251.75 2.25 2.75 3.25 3.75 4.25 4.75
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1.

Example 3

In this example, we input class boundariesin DIV. We choose the same intervals
asin the example above: 0.0t0 0.5, 0.5t0 1.0, and so on. DIV begins with the
first cutpoint between classes.

INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)

INTEGER IOPT, NOUT
REAL  CLHW, DIV(K-1), TABLE(K), X(NOBS), XHI, XLO
EXTERNAL OWFRQ, UMACH

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20,3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81,2.81,1.87,1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2.05/
DATADIV/0.5,1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5/

C
CALL UMACH (2, NOUT)
IOPT =2

C
CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)
WRITE (NOUT,99999) DIV, TABLE

99999 FORMAT (' Cutpoints: ’,9F5.1,/," Counts:’, 10F5.0)
END

Output
Cutpoints: 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 45
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1

Example 4

In this example, we set IOPT = 3, and set the valuesin DIV and CLHWso that the
intervals will be the same asin the previous two examples.

INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)

INTEGER IOPT, NOUT
REAL  CLHW, DIV(K), TABLE(K), X(NOBS), XHI, XLO
EXTERNAL OWFRQ, UMACH
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DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
DATA DIV/0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25,
& 4.75/

C
CALL UMACH (2, NOUT)
| OPT = 3
CLHW = 0. 25

C

CALL OWFFRQ (NOBS, X, K, IOPT, XLO, XH , CLHW DIV, TABLE)
VWRI TE (NOUT, 99999) DIV, TABLE
99999 FORMAT (’ Class marks: ’, 10F5.2, /,’ Counts: ', 10F5.0)

END

Output

Class marks: 0.250.751.251.75 2.25 2.75 3.25 3.75 4.25 4.75
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1.

TWFRQ/DTWFRQ (Single/Double precision)

Tally observationsinto a two-way frequency table

Usage

CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI,
CLHWX, CLHWY, DIVX, DIVY, TABLE, LDTABL)

Arguments

NOBS — Number of observations. (Input)

X — Vector of lengtiNOBS containing the data for one variable. (Input)

Y — Vector of lengtiNOBS containing the data for the other variable. (Input)
KX — Number of intervals for the variable (Input)

KY — Number of intervals for the variab¥e (Input)

|OPT — Tallying option. (Input)

| OPT  Action

0 Intervals of equal lengths for each variable, determined from the data,
are used. LexM N andXMAX be the minimum and maximum valueXjn
respectively, with similar meanings fav N andyMAX. Then, TABLE(Z,

1) is the tally of observations with tixevalue less than or equalXm N
+ (XMAX — XM N)/KX, and they value less than or equalYm N+ (YMAX
- YM N)/KY. The other table entries are determined similarly.
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1 Intervals of equal lengths are used just asin the case of | OPT = 0, except
the upper and lower bounds are taken as the user-supplied variables XLO,
XHI , YLO, and YHI instead of the actual minimaand maximain the data.
Therefore, the first and the last intervals for both variables are semi-
infinite in length. KX and KY must be greater than 2.

2 KX — 1 cutpoints are input in DI VX, and KY — 1 cutpoints are input in
DI VY. Thetally in TABLE(Z, 1) isthe number of observations for which
the X value isless than or equal to DI VX(1), and the Y valueisless than
or equal to DI VY(1). For | greater than 1 and less than KX and J greater
than 1 and less than KY, the tally in TABLE(I , J) is the number of
observations with X greater than DI VX(I - 1) and less than or equal to
DI VX(I ) and with Y greater than DI VY(J — 1) and less than or equal to
DI VY(J). Thetaly in TABLE(KX, KY) isthe number of observations for
which the X valueis greater than DI VX(KX — 1) and the Y valueis greater
than DI VY(KY - 1). KX and KY must be greater than 1.

3 Class marks are input in DI VX and DI VY and a constant class half-width
areinput in CLHWK and CLHWY. The total of the elementsin TABLE may
be less than NOBS. Thetally in TABLE(I , J) isthe number of
observations with X value between DI VX(1 ) — CLHWK and DI VX(1 ) +
CLHWX, and with Y value between DI VY(J) — CLHWY and DI VY(J) +
CLHWY.

XLO — If 1 OPT = 1,XLOis the lower bound at which to begin forming the class
intervals forX. (Input)
XLOis only used if OPT = 1.

YLO — If  OPT = 1,YLOis the lower bound at which to begin forming the class
intervals fory. (Input)
YLOIis only used if OPT = 1.

XHI — If 1 OPT = 1, XHl is the upper bound to use in forming the class intervals
for X. (Input)
XH is only used if OPT = 1.

YHI — If I OPT = 1, is the upper bound to use in forming the class intervals for
Y. (Input)
YH is only used ifl OPT = 1.

CLHWX — If | OPT = 3,CLHWX is the half-width of the class intervals for
(Input)

CLHWX is only used if OPT = 3.

CLHWY —If | OPT = 3,CLHW is the half-width of the class intervals far
(Input)

CLHWY is only used if OPT = 3.

DIVX — Vector of varying length and contents depending@®r. (Input if
| OPT= 2 or 3; output if OPT =0 or 1)

The contents obl VX are in ascending order.
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| OPT Contents

0 DI Visof length KX containing interval midpoints for the X variable.
(D vXisoutput.)
1 DI Visof length KX containing interval midpoints for the X variable.

Since the first and last intervals are semi-infinite in length, DI VX(1)
contains XLO — half the interval length, and DI V(KX) contains XHI + half
theinterval length. (DI VXisoutput.)
2 DI VX isavector of length KX — 1 containing cutpoints. (DI VX isinput.)
3 DI VX is of length KX containing classmarks. (DI VX isinput.)

DIVY — Vector of varying length and contents depending@®r. (Input if
| OPT= 2 or 3; output if OPT =0 or 1)
The contents ol VY are in ascending order. SeievX.

TABLE — KX by KY matrix containing the counts. (Output)

LDTABL — Leading dimension OfABLE exactly as specified in the dimension
statement in the calling program. (Input)

Algorithm

The routineTWFRQ groups bivariate numerical data into categories, which can be
defined in any of four different ways as chosem O§T. This routine is very

similar to routineDAFRQ (page 3) for univariate data.llbPT= 0, KX intervals of
equal length are formed for the first variableXjrbetween the minimum and
maximum values iX and similarlyKY intervals are formed for the second

variable (inY). The data are then tallied in these intervals. The midpoints of the
intervals for the first variable are outputDhvX and those of the secondbhvy.

If 1 OPT = 1,K — 2 intervals of equal length are formed betwged andXH for

the data irX and likewise foly. The data are then tallied in these intervals. In this
option, there is one group that consists of data lessdit@aand one group of

data greater thaxHl . This option is similar td OPT = 0, except in this case, the
midpoints of the classes are under control of the user. The midpoints of the
intervals are output iBl VX andDI VY.

Forl OPT = 2 or 3, the intervals need not be equally spaceddrf =2, the

intervals need not be equal in length. In this case, the intervals are defined by
their boundaries, the “cutpoints”, which are inpubirvX andDl VY. The number

of cutpoints is one less than the number of intervals. The first cutpoint defines the
upper bound of the first interval, and the last cutpoint defines the lower bound of
the last interval.

If 1 OPT = 3, the intervals are all of length twiCeHWK for X and twiceCLHWY for

Y, and they are centered on the class marks initik andDI VY. This option

can be used to exclude portions of the data. The examples use all of these options
with the same data set.
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Example 1

The datafor X in these examples are the same as those used in the routine for one-

way frequency tabulation, ONFRQ (page 3). The datafor Y were created by adding

small integersto the datain X. In the first example, we set | OPT = 0. Thisoption

may be appropriate if we do not know the range of the data. Notice that the

midpoints of the class intervals, output in DI VX and DI VY, are not “pretty”

numbers. Routin@RRRN (page 1248) is used to print the frequencies. This
printing routine puts column and row numbers above and to the left of the matrix
being printed. For example, the “4” in the second row and second column of the
output is the first number that represents a frequency. That frequency is the
number of occurrences of pairs of observations in which both values are in the
lowest groups.

| NTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

C
INTEGER | OPT, NOUT
REAL CLHWK, CLHWY, DI VX(KX), DI VY(KY), TABLE(LDTABL, KY),
& X(NOBS), XH, XLO, Y(NOBS), YH, YLO
EXTERNAL  TWFRQ UMACH, WRRRN

C
DATA X/ 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
& 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
& 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
& 5. 05/

C
CALL UMACH (2, NOUT)
|OPT = 0

C

CALL TWFRQ (NOBS, X, Y, KX, KY, |IOPT, XLO, YLO XH, YH , CLHWX
& CLHWY, DI VX, DI VY, TABLE, LDTABL)
WRI TE (NOUT, 99999) DI VX, DI VY
99999 FORMAT (' Midpoints for X (Rows): ', 5F5.2,/," Midpoints’
& , 'for Y (Columns): ’, 6F5.2)
CALL WRRRN ('Frequencies’, KX, KY, TABLE, LDTABL, 0)
END

Output
Midpoints for X (Rows): 0.76 1.

65 2.533.42 4.31
Midpoints for Y (Columns): 1.88 2.

52

69 3.51 4.335.14 5.96
Frequencies

1 2 3 4 5 6

4.000 2.000 4.000 2.000 0.000 0.000

0.000 4.000 3.000 2.000 1.000 0.000

0.000 0.000 1.000 2.000 0.000 1.000

0.000 0.000 0.000 0.000 1.000 2.000

0.000 0.000 0.000 0.000 0.000 1.000

GORrWNBE
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Example 2

In this example, we set | OPT = 1 and choose XLO, XHI , YLO, and YHI so that the
intervalswill beOto 1, 1to 2, and so on for X, and 1to 2, 2to 3, and so on for .

This means that the midpoints of the classintervals, output in DI VX and DI VY,

will be 0.5, 1.5, 2.5, and so on. The “5” in the third row and fourth column of the
printed output below, (i.e., the second row and the third column of the
frequencieS ABLE) represents five pairs of observations withxthalue between
1.0 and 2.0 and thevalue between 3.0 and 4.0.

| NTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

INTEGER | OPT, NOUT

REAL CLHWK, CLHWY, DI VX(KX), DI VY(KY), TABLE(LDTABL, KY),
& X(NOBS), XH, XLO, Y(NOBS), YH, YLO

EXTERNAL  TWFRQ UMACH, WRRRN

DATA X/ 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0. 90,
& 2. 05/

DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,

& 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
& 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
& 5. 05/

CALL UMACH (2, NOUT)

|OPT = 1

XLO = 1.0

XH = 4.0

YLO = 2.0

YH =6.0

CALL TWFRQ (NOBS, X, Y, KX, KY, 10PT, XLO, YLO, XH, YH, CLHWX

&

CLHWY, DI VX, DIVY, TABLE, LDTABL)

VRI TE (NQUT, 99999) DI VX, DI VY

99999 FORMAT (" Midpoints for X (Rows): ', 5F5.2,/," Midpoints’
& , 'for Y (Columns): ’, 6F5.2)

CALL WRRRN ('Frequencies’, KX, KY, TABLE, LDTABL, 0)

END

Output

Midpoints for X (Rows):  0.50 1.50 2.50 3.50 4.50
Midpoints for Y (Columns): 1.50 2.50 3.50 4.50 5.50 6.50

GORrWNE

Frequencies

1 2

3 4 5 6

3.000 2.000 4.000 0.000 0.000 0.000
0.000 5.000 5.000 2.000 0.000 0.000
0.000 0.000 1.000 3.000 2.000 0.000
0.000 0.000 0.000 0.000 0.000 2.000
0.000 0.000 0.000 0.000 1.000 0.000
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Example 3

In this example, we input class boundaries in DI VX and DI VY. We choose the
sameintervals asin the example above: 0to 1, 1 to 2, and so on. DI VX and DI VY
begins with the first cutpoint between classes.

| NTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

C
INTEGER | OPT, NOUT
REAL CLHWK, CLHW, DIVX(4), DIVY(5), TABLE(LDTABL,KY),
& X(NOBS), XH, XLO, Y(NOBS), YH, YLO
EXTERNAL  TWFRQ UMACH, WRRRN
C
DATA X/ 0.77, 1.74, 0.81, 1.20, 1.95 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
DATA Y/1.77, 3.74, 3.81, 2.20, 3.95 4.20, 1.47, 3.43, 6.37,
& 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
& 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
& 5. 05/
DATA DIVX/ 1.0, 2.0, 3.0, 4.0/
DATA DI VY/2.0, 3.0, 4.0, 5.0, 6.0/
C
CALL UMACH (2, NOUT)
| OPT = 2
C

CALL TWFRQ (NOBS, X, Y, KX, KY, I0OPT, XLO YLO XH, YH, CLHW,
& CLHWY, DI VX, DIVY, TABLE, LDTABL)
VWRI TE (NQUT, 99999) DI VX, DIVY
99999 FORMAT (’ Cutpoints for X (Rows): ', 4F5.2,/,’ Cutpoints’
& , 'for Y (Columns): ’, 5F5.2)
CALL WRRRN ('Frequencies’, KX, KY, TABLE, LDTABL, 0)
END

Output
Cutpoints for X (Rows):  1.00 2.00 3.00 4.00
Cutpoints for Y (Columns): 2.00 3.00 4.00 5.00 6.00

Frequencies
1 2 3 4 5 6
3.000 2.000 4.000 0.000 0.000 0.000
0.000 5.000 5.000 2.000 0.000 0.000
. 0.000 1.000 3.000 2.000 0.000
0.000 0.000 0.000 0.000 0.000 2.000
0.000 0.000 0.000 0.000 1.000 0.000

GO WNPE
o
o
o
o

Example 4

In this example, we set IOPT = 3, and set the valuesin DIVX, DIVY, CLHWXand
CLHWYs0 that the intervals will be the same as in the previous two examples.
INTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

INTEGER IOPT, NOUT
REAL CLHWX, CLHWY, DIVX(KX), DIVY(KY), TABLE(LDTABL,KY),
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& X(NOBS), XH, XLO Y(NOBS), YH, YLO
EXTERNAL  TWFRQ UMACH, WRRRN

C
DATA X/ 0.77, 1.74, 0.81, 1.20, 1.95 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
DATA Y/1.77, 3.74, 3.81, 2.20, 3.95 4.20, 1.47, 3.43, 6.37,
& 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
& 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
& 5. 05/
DATA DIVX/0.5, 1.5, 2.5, 3.5, 4.5/
DATA DIVY/1.5, 2.5, 3.5, 4.5, 5.5, 6.5/
C
CALL UMACH (2, NOUT)
IOPT =3
CLHWK = 0.5
CLHW = 0.5
C

CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO XH, YH, CLHWX,
& CLHWy, DI VX, DIVY, TABLE, LDTABL)
VWRI TE (NOUT, 99999) DI VX, DI VY
99999 FORMAT (' Class marks for X (Rows): ', 5F5.2,/,’ Class’,
& 'marks for Y (Columns): ', 6F5.2)
CALL WRRRN ('Frequencies’, KX, KY, TABLE, LDTABL, 0)
END

Output
Class marks for X (Rows):  0.50 1.50 2.50 3.50 4.50
Class marks for Y (Columns): 1.50 2.50 3.50 4.50 5.50 6.50

Frequencies
1 2 3 4 5 6
3.000 2.000 4.000 0.000 0.000 0.000
0.000 5.000 5.000 2.000 0.000 0.000
0.000 0.000 1.000 3.000 2.000 0.000
0.000 0.000 0.000 0.000 0.000 2.000
0.000 0.000 0.000 0.000 1.000 0.000

GO WNPE

FREQ/DFREQ (Single/Double precision)

Tally multivariate observations into a multiway frequency table

Usage
CALL FREQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL,

MAXTAB, MAXCL, NCLVAL, CLVAL, TABLE)
Arguments
IDO — Processing option. (Input)

| DO Action
1 This is the first (or the only) invocation BREQ for this data set.
Initialization and updating for the dataXrare performed.
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2 Thisis an additional invocation of FREQ, and updating for the datain X
is performed.

NOBS — Number of observations. (Input)
NCOL — Number of columns iX. (Input)
X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IFRQ — Frequency option. (Input)
I FRQ= 0 means that all frequencies are 1.0. For poditRR®), column number
| FRQ of X contains the frequencies.

NCLVAR — Number of classification variables. (Input)
NCLVAR must be greater than one.

INDCL — Index vector of lengtNCLVAR containing the column numbersXn
that are the classification variables. (Input)

MAXTAB — An upper bound for the total number of cells in the frequency table.
(Input)

This is the product of the number of distinct values taken by all of the
classification variables since the table includes the empty cells.

MAXCL — An upper bound for the sum of the number of distinct values taken by
all of the classification variables. (Input)

NCLVAL — Vector of lengtitNCLVAR containing, in its-th element, the number
of levels or categories of thah classification variable. (Output,libO=1;
Input/Output, ifl DO= 2.)

Each variable must have more than one level.

CLVAL — Vector of lengtiNCLVAL (1) + NCLVAL(2) + ... + NCLVAL(NCLVAR)
containing the values of the classification variables. (OutplubOFf 1;
input/output, ifl DO= 2.)

Since in general the length @ VAL will not be known in advanc®RXCL is an
upper bound for this length. The filCLVAL (1) elements o€LVAL contain the
values for the first classification variable. The ng&tVAL(2) contain the values
for the second variable. The |a&l VAL(NCLVAR) positions contain the values
for the last classification variable.

TABLE — Vector of lengtiNCLVAL (1) * NCLVAL(2) * ... * NCLVAL(NCLVAR)
containing the frequencies in the cells of the table to be fit. (OutpwmQif 1;
input/output, ifl DO= 2)

Since, in general, the length ABLE will not be known in advanc&RXTAB is
an upper bound for this length. Empty cells are includgd\BLE, and each
element ofTABLE is nonnegative. The cells BABLE are sequenced so that the
first variable cycles from 1 thCLVAL(1) one time, the second variable cycles
from 1 toNCLVAL(2) NCLVAL(1) times, and so on, up to tNeLVAR-th variable,
which cycles from 1 tdICLVAL(NCLVAR) most rapidly KCLVAL(1) * NCLVAL(2)
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* ... * NCLVAL(NCLVAR — 1) times). That is to say, the second element of TABLE
isthe count for the first value for each classification variable except the last one
and the second value of the last classification variable (assuming that variable
takes more than one distinct value).

Comments

1. Automatic workspace usage is

FREQ 2* NCLVAR units, or
DFREQ 3* NCLVARUnNits.

Workspace may be explicitly provided, if desired, by use of
F2EQDF2EQ. Thereferenceis

CALL F2EQ (1 DO, NOBS, NCOL, X, LDX, |FRQ NCLVAR
I NDCL, MAXTAB, MAXCL, NCLVAL, CLVAL,
TABLE, | WK, WK)

The additional arguments are as follows:

IWK — Workspace of lengtNCLVAR.

WK — Workspace of lengtRCLVAR.

2. Informational errors
Type Code
4 1 MAXCL is too small. Increase the lengthGhivAL.
4 2 MAXTAB is too small. Increase the lengthTaBLE.
Algorithm

The routineFREQ determines the distinct values in multivariate data and
computes frequencies for the data. The routine accepts the data in thexinatrix
but performs computations only for the variables (columnx)specified in

I NDCL. In general, the variables for which frequencies should be computed are
discrete; that is, they should take on a relatively small number of different values.
Variables that are continuous can be grouped first.

The routineOWFRQ (page 3) omMWFRQ (page 7) can be used to group variables

and determine the frequencies of groups. The roGREe fills the vectorCLVAL

with the unique values of the variables and tallies the number of unique values of
each variable in the vectbiICLVAL. Each combination of one value from each
variable forms a cell in a multiway table. The frequencies of these cells are
entered iNTABLE so that the first variable cycles through its values exactly once
and the last variable cycles through its values most rapidly. Some cells may not
correspond to any observation in the data; that is, “missing cells” are included and
have 0’s iNTABLE.

The length of the vectol@ VAL andTABLE depend on the data. The parameters
MAXCL andMAXTAB are used as checks that the arrays sizes are not exceeded.

IMSL STAT/LIBRARY
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Example

The data for this example are taken from the examples used in routine TWFRQ
(page 7), but modified so that the values of all points within agiven interval of
Example 2 for TWFRQ are exactly equal to the class mark for that interval. The
results from this example, therefore, are the same as for Example 2 for TWFRQ,
except that TABLE is avector. (The elements of the vector are sequenced as the
columns of the matrix.)

| NTEGER LDX, MAXCL, MAXTAB, NCLVAR, NCOL
PARAMETER (LDX=30, MAXCL=15, MAXTAB=40, NCLVAR=2, NCOL=2)

C
INTEGER |, IDO IFRQ |NDCL(NCLVAR), NCLVAL(NCLVAR), NOBS,
& NOUT, NVAL1, NVAL2
REAL CLVAL( MAXCL), TABLE(MAXTAB), X(LDX, NCOL)
EXTERNAL  FREQ UNVACH

C
DATA X/ 0.50, 1.50, 0.50, 1.50, 1.50, 1.50, 0.50, 1.50, 3.50,
& 2.50, 2.50, 3.50, 1.50, 2.50, 0.50, 1.50, 1.50, 0.50,
& 0.50, 0.50, 2.50, 1.50, 1.50, 1.50, 4.50, 2.50, 0.50,
& 1.50, 0.50, 2.50,
& 1.50, 3.50, 3.50, 2.50, 3.50, 4.50, 1.50, 3.50, 6.50,
& 3.50, 4.50, 6.50, 2.50, 4.50, 3.50, 2.50, 3.50, 3.50,
& 1.50, 2.50, 5.50, 2.50, 3.50, 4.50, 5.50, 4.50, 3.50,
& 2.50, 2.50, 5.50/

C
CALL UMACH (2, NOUT)
| DO =1
NOBS = 30
| FRQ =0
INDCL(1) = 1
INDCL(2) = 2

CALL FREQ (I DO, NOBS, NCOL, X, LDX, |IFRQ NCLVAR, |NDCL, MAXTAB,
& MAXCL, NCLVAL, CLVAL, TABLE)
NVAL1 = NCLVAL(1)
NVAL2 = NCLVAL(2)
VWRI TE (NOUT, 99999) (CLVAL(J), J=NVAL1+1, NVAL1+NVAL2),
& (CLVAL(1), (TABLE((I-1)*NVAL2+J),J=1, NVAL2), | =1, NVAL1)
99999 FORMAT ("  Frequencies for All Combinations of Values’, /,
& 8X,6F7.2,/,5(F7.2,6F7.0,/))
END

Output
Frequencies for All Combinations of Values
1.50 2.50 3.50 4.50 5.50 6.50

050 3. 2. 4. 0. 0. O
150 0. 5 5 2. 0. O
250 0. 0. 1. 3. 2 0.
350 0. 0. 0. 0. 0 2
450 0. 0. 0. 0. 1. o0

UVSTA/DUVSTA (Single/Double precision)

Compute basic univariate statistics.
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Usage

CALL UVSTA (1DO, NROW NVAR, X, LDX, |FRQ |W, MOPT,
CONPRM CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)

Arguments
IDO — Processing option. (Input)
IDO  Action

0 This is the only invocation afVSTA for this data set, and all the data are
input at once.

1 This is the first invocation, and additional calls&sTA will be made.
Initialization and updating for the dataXrare performed. The means
are output correctly, but the other quantities outp&TiAT are
intermediate quantities.

2 This is an intermediate invocation WfSTA, and updating for the data in
X is performed.

3 This is the final invocation of this routine.NROwis not zero, updating
is performed. The wrap-up computations $OAT are performed.

NROW — The absolute value ofR0wis the number of rows of data currently
inputinX. (Input)

NROWMay be positive, zero, or negative. NegatiR®wmeans that theNROW
rows of data are to be deleted from some aspects of the analysis, and this should
be done only if DOis 2 or 3 and the wrap-up computations$oAT have not
been performed. When a negative value is inputiRawy it is assumed that each
of the—NROWrows ofX has been input (with positidROW in a previous
invocation ofUvSTA. Use of negative values BROWshould be made with care
and with the understanding that some quantiti€&IAT cannot be updated
properly in this case. In particular, the minima, maxima, and ranges are not
updated because of deletion. It is also possible that a constant variable in the
remaining data will not be recognized as such.

NVAR — Number of variables (not including the weight or frequency variable, if
used). (Input)

X — [NROW by NVAR + m matrix containing the data, whereis 0, 1, or 2
depending on whether any column(sXaforrespond to weights and/or
frequencies. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IFRQ — Frequency option. (Input)

I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number
I FRQ of X contains the frequencies.

IMSL STAT/LIBRARY
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IWT — Weighting option. (Input)
I WI = 0 means that all weights are 1.0. For positi€, columnl WI of X
contains the weights.

MOPT — Missing value option. (Input)
NaN (not a number from routif@ACH(6)) is interpreted as the missing value
code and any value kequal to NaN is excluded from the computations.

MOPT  Action

0 The exclusion is listwise. (The entire rowxois excluded if any of the
values of the row is equal to the missing value code.)

1 The exclusion is elementwise. (Statistics for variables with nonmissing

values are updated.)

CONPRM — Confidence level for two-sided interval estimate of the means
(assuming normality), in percent. (Input)

If CONPRM< 0, no confidence interval for the mean is computed; otherwise, a
CONPRM percent confidence interval is computed, in which Cas&®RMmust be
between 0.0 and 100.00NPRMis often 90.0, 95.0, or 99.0. For a one-sided
confidence interval with confidence lev@ECL, setCONPRM= 100.0- 2.0*
(100.0— ONECL).

CONPRV — Confidence level for two-sided interval estimate of the variances
(assuming normality), in percent. (Input)

The confidence intervals are symmetric in probability (rather than in length). See
also the description GfONPRM

IPRINT — Printing option. (Input)

I PRI NT Action

0 No printing is performed.

1 Statistics iIrSTAT are printed if DO= 0 or 3.

2 Intermediate means, sums of squares about the mean, minima, maxima,

and counts are printed wheBO= 1 or 2, and all statistics BTAT are
printed when DO= 0 or 3.

STAT — 15 byNVAR matrix containing in each row statistics on all of the
variables. (Output, ifDO= 0 or 1; input/output, ifDO= 2 or 3.)

The columns oSTAT correspond to the columns Xfexcept for the columns of
X containing weights or frequencies. (The columns beyond the weights or
frequencies column are shifted to the left.)

STAT(l, *)

contains means

contains variances

contains standard deviations

contains coefficients of skewness
contains coefficients of excess (kurtosis)
contains minima

contains maxima

contains ranges

O~NO U WNE —
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9 contains coefficients of variation, when they are defined. If the
coefficient of variation is not defined for a given variable, STAT(9, *)
contains a zero in the corresponding position.

10 contains numbers (counts) of nonmissing observations

11 is used only when CONPRM s positive, and, in this case, contains the
lower confidence limit for the mean (assuming normality)

12 is used only when CONPRMis positive, and, in this case, contains the
upper confidence limit for the mean (assuming normality)

13 is used only when CONPRYV is positive, and, in this case, contains the
lower confidence limit for the variance (assuming normality).

14 is used only when CONPRYV is positive, and, in this case, contains the
upper confidence limit for the variance (assuming normality).

15 isused only when weighting is used (I WI' is nonnegative), and, in this

case, contains the sums of the weights.

LDSTAT — Leading dimension BTAT exactly as specified in the dimension
statement in the calling program. (Input)

NRMI SS — Number of rows of data encountered in callsM8TA that contain
any missing values. (Output)ibO= 0 or 1; input/output, ifDO= 2 or 3.)
Rows with a frequency of zero are not counted.

Comments

Automatic workspace usage is

if 1 PRINT #2
UVSTA 2 * NVAR units, or
DUVSTA 4* NVAR UNits;

if | PRINT =2
UVSTA 7 * NVAR units, or
DUVSTA 14* NVAR units.

Workspace may be explicitly provided, if desired, by use2&TA/DU2STA. The
reference is
CALL W2STA (IDO, NROW NVAR, X, LDX, |FRQ |Wr, MOPT,

CONPRM CONPRV, | PRINT, STAT, LDSTAT, NRM SS,

VK)

The additional argument is

WK — Real work vector of length specified abow&.should not be changed
between calls t@2STA.

Algorithm

For the data in each columnXfexcept the columns containing frequencies or
weights,UVSTA computes the sample mean, variance, minimum, maximum, and
other basic statistics. It also computes confidence intervals for the mean and
variance if the sample is assumed to be from a normal population.

IMSL STAT/LIBRARY
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Missing values, that is, values equal to NaN (not a number, the value returned by
routine AMACH(6)), are excluded from the computations. If MOPT is positive, the
exclusionislistwise; that is, the entire observation is excluded and no
computations are performed even for the variables with valid values. If
frequencies or weights are specified, any observation whose frequency or weight
ismissing is excluded from the computations.

Freguencies are interpreted as multiple occurrences of the other valuesin the
observations. That is, arow of X with afrequency variable having avalue of 2 has
the same effect as two rows with frequencies of 1. Thetotal of the frequenciesis
used in computing all of the statistics based on moments (mean, variance,
skewness, and kurtosis). Weights are not viewed as replication factors. The sum
of the weightsis used only in computing the mean (of course, then the weighted
mean is used in computing the central moments). Both weights and frequencies
can be zero, but neither can be negative. In general, a zero frequency means that
the row isto be eliminated from the analysis; no further processing, counting of
missing values, or error checking is done on the row. Although it is not required
that frequencies be integers, the logic of their treatment implicitly assumes that
they are. Weights, on the other hand, are allowed to be continuous. A weight of
zero resultsin the row being counted, and updates are made of statistics and of
the number of missing values. A missing value for the frequency or amissing
value for the weight when the frequency is nonzero results in the row being
deleted from the analysis; but even in that case, if oneisnonmissing, it isan error
for that nonmissing weight or frequency to be negative.

The definitions of some of the statistics are given below in terms of asingle
variable x. The i-th datum isx;, with corresponding frequency f; and weight w;. If
either frequencies or weights are not specified, f; and/or w; are identically one.
The summation in each caseis over the set of valid observations, based on the
setting of MOPT and the presence of missing values in the data.

Number of nonmissing observations, STAT(10, *)
n= z fi

Mean, STAT(1, *)

- > fiwix
" Zfiwi

Variance, STAT(2, *)
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Skewness, STAT(4, *)
Y fiw (x5 -%,)°/n
[ fiw (x5 =%,)? /n]¥?
Excess or Kurtosis, STAT(5, *)
Y fiw (% —%,)*/n
[S fiwi(x = %)% /n]?

Minimum, STAT(6, *)

Xmin = min(xi)
Maximum, STAT(7, *)
Xmax = Max(X;)
Range, STAT(8, *)
Xmax ~ Xmin
Coefficient of Variation, STAT(9, *)

_i for X, # 0

XW
The arguments | DO and NROWallow data to be input afew at atime and even to

be deleted after having been included in the analysis. The minima, maxima, and
ranges are not updated when observations are deleted.

Example 1

This example uses data from Draper and Smith (1981). There are 5 variables and
13 observations.

| NTEGER LDSTAT, LDX, NVAR
PARAMETER (LDSTAT=15, LDX=13, NVAR=5)

C
| NTECER IDO, IFRQ IPRINT, IW, MOPT, NR, NRM SS, NROW NV
REAL CONPRM CONPRV, STAT( LDSTAT, NVAR), X( LDX, NVAR)
EXTERNAL  GDATA, UVSTA
C Get data for exanple.
CALL GDATA (5, 0, NR NV, X, LDX, NVAR)
C Al data are input at once.
IDO =0
NROW = NR
C No unequal frequencies or weights
C are used.
IFRQ =0
IWr =0
C Get 95% confidence limts.
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CONPRM = 95.0
CONPRV = 95.0
C Del ete any row containing a nissing
C val ue.
MOPT = 0O
C Print results.
IPRINT = 1
CALL WVSTA (1 DO, NROW NVAR, X, LDX, IFRQ |W, MOPT, CONPRM
& CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)
END
Output
Univariate Statistics from UYSTA
Vari abl e Mean Vari ance Std. Dev. Skewness Kurtosis
1 7.4615 34. 6026 5. 8824 0. 68768 0.07472
2 48. 1538 242.1410 15. 5609 -0.04726 -1.32257
3 11. 7692 41. 0256 6. 4051 0. 61064 -1.07916
4 30. 0000 280. 1667 16. 7382 0. 32960 -1.01406
5 95. 4231 226. 3136 15. 0437 -0.19486 -1.34244
Vari abl e M ni num Maxi num Range Coef. Var. Count
1 1. 0000 21. 0000 20. 0000 0.7884 13. 0000
2 26. 0000 71. 0000 45. 0000 0. 3231 13. 0000
3 4.0000 23. 0000 19. 0000 0. 5442 13. 0000
4 6. 0000 60. 0000 54. 0000 0. 5579 13. 0000
5 72.5000 115. 9000 43. 4000 0. 1577 13. 0000
Variable Lower CLM Upper CLM Lower CLV Upper CLV
1 3.9068 11. 0162 17. 7930 94. 2894
2 38. 7505 57. 5572 124.5113 659. 8163
3 7.8987 15. 6398 21. 0958 111. 7918
4 19. 8852 40. 1148 144. 0645 763. 4335
5 86. 3322 104. 5139 116. 3726 616. 6877
Example 2
In this example, we use some simple data to illustrate the use of frequencies,
missing values, and the parameters1 DO and NROW In the data below, “NaN”
represents a missing value.
f X y
2 3.0 5.0
1 9.0 2.0
3 1.0 NaN
We bring in the data one observation at a time in this example. Also, we bring in
one false datum and then delete it on a subsequent cabTa.
| NTEGER LDSTAT, NVAR
PARAMETER (LDSTAT=15, NVAR=2)
C
| NTEGER IDO, IFRQ [ PRINT, W, LDX, MOPT, NRM SS, NROW
REAL AMACH, CONPRM CONPRV, STAT(LDSTAT, NVAR), X1(1, NVAR+1)
EXTERNAL AMACH, UVSTA
C Al'l data are input one observation
C at atinme in the vector X1.
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@] (eXe!
or

| PRINT =

O O 00
:
1l
[EnY

IDO =
X1(1, 1)
X1(1, 2)
X1(1, 3)
CALL UVST

&

mnia e

IDO =

X1(1, 1)
X1(1, 2)
X1(1, 3)
CALL UvST
&

mn N

X1(1, 1)
X1(1, 2)
X1(1,3) =
CALL UvST
&

000

NROW =
X1(1, 1)
X1(1, 2)
X1(1, 3)

Frequencies are in the first
position. No weights are used.
Get 95% confidence limts.
95.0
95.0
El enentwi se del etion of m ssing
val ues.
Print results, internediate as well.
2
Bring in the first observation.
2.0
3.0
5.0
A (1DO NRON NVAR, X1, LDX, IFRQ |Wr, MOPT, CONPRM

CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)
Bring in the second observation.

'\’.“0!“
coo

A (IDO NROW NVAR, X1, LDX, |IFRQ |W, MOPT, CONPRM
CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)
Bring in a fal se observation.
3.0
6.0
3.0
A (I DO, NROWN NVAR, X1, LDX, IFRQ [|W, MOPT, CONPRM
CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)
Del ete the fal se observation.
This may make the m mina, nmaxima,
and range incorrect.
1

3.0
6.0
3.0

CALL U\/STA(IDO, NROW NVAR, X1, LDX, IFRQ [IW, MOPT, CONPRM

&
NROW = 1

IDO =3
X1(1, 1)
X1(1, 2)
X1(1, 3)

CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)
Bring in the final observation.
3.0

1.0
AVACH( 6)

CALL UWVSTA (1 DO, NROW NVAR, X1, LDX, |IFRQ |W, MOPT, CONPRM

&
END

Vari abl e
1
2

CONPRV, | PRI NT, STAT, LDSTAT, NRM SS)

Output
Internmedi ate Statistics from UVSTA
Mean Sum Sgs. M ni mum Maxi nmum Count
3. 0000 0. 0000 3. 0000 3. 0000 2. 0000
5. 0000 0. 0000 5. 0000 5. 0000 2. 0000
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Vari abl e
1
2

Vari abl e
1
2

Vari abl e
1
2

Vari abl e
1
2

Vari abl e
1
2

Vari abl e
1
2

Internmedi ate Statistics from UVSTA

Mean Sum Sgs. M ni num Maxi mum Count

5. 0000 24. 0000 3. 0000 9. 0000 3. 0000

4. 0000 6. 0000 2.0000 5. 0000 3. 0000

Intermediate Statistics from UVSTA

Mean Sum Sgs. M ni mum Maxi mum Count

5. 5000 25. 5000 3. 0000 9. 0000 6. 0000

3. 5000 7.5000 2.0000 5. 0000 6. 0000

Intermediate Statistics from UVSTA

Mean Sum Sgs. M ni mum Maxi mum Count

5. 0000 24. 0000 3. 0000 9. 0000 3. 0000

4. 0000 6. 0000 2.0000 5. 0000 3. 0000

Univariate Statistics from U/STA

Mean Vari ance Std. Dev. Skewness Kurtosis

3. 0000 9. 6000 3. 0984 1.4142 0. 5000

4. 0000 3. 0000 1.7321 -0.7071 -1.5000

M ni mum Maxi mum Range Coef. Var. Count

1. 0000 9. 0000 8. 0000 1.0328 6. 0000

2.0000 5. 0000 3. 0000 0. 4330 3. 0000
Lower CLM Upper CLM Lower CLV Upper CLV
-0. 2516 6. 2516 3. 7405 57.7470
-0. 3027 8. 3027 0. 8133 118. 4935

RANKS/DRANKS (Single/Double precision)

Compute the ranks, normal scores, or exponential scores for a vector of
observations.

Usage
CALL RANKS (NOBS, X, FUzZz, ITIE, |SCORE, SCORE)

Arguments
NOBS — Number of observations. (Input)

X — Vector of lengthNOBS containing the observations to be ranked. (Input)

FUZZ — Value used to determine ties. (Input)
If X(1) = X(3)| is less than or equal Kzz, thenX(l ) andX(J) are said to be
tied.

ITIE — Option for determining the method used to assign a score to tied
observations. (Input)

ITIE Method

0 The average of the scores of the tied observations is used.
1 The highest score in the group of ties is used.

2 The lowest score in the group of ties is used.
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3 The tied observations are to be randomly untied using an IMSL random
number generator.

| SCORE — Option for specifying the type of values returne@@RE. (Input)

| SCORE Type

Ranks

Blom version of normal scores

Tukey version of normal scores

Van der Waerdan version of normal scores

Expected value of normal order statistics (For tied observations, the
average of the expected normal scores are used.)

5 Savage scores (the expected value of exponential order statistics)

A WNEFO

SCORE — Vector of lengtiNOBS containing the rank or a transformation of that
rank of each observation. (Output)
X andSCORE may occupy the same memory.

Comments
1. Automatic workspace usage is

RANKS NOBS units, or
DRANKS NOBS units.

Workspace may be explicitly provided, if desired, by use
R2NKS/DR2NKS. The reference is

CALL R2NKS (NOBS, X, FUZZ, ITIE, |SCORE, SCORE, |VK)
The additional argument is
IWK — Integer work vector of lengtkoBs.

2. The routineRNSET (page 1166) can be used to initialize the seed of the
random number generator used to break ties. If the seed is not initialized
by RNSET; different runs of the same program can yield different results
if there are tied observations andl E = 3.

Algorithm

The routineRANKS determines the ranks, or various transformations of the ranks
of the data irX. Ties in the data can be resolved in four different ways, as
specified inl Tl E.

ISCORE = 0: Ranks

For this option, the values output$GORE are the ordinary ranks of the dataxin
If X(1) has the smallest value among those amd there is no other elemenin
with this value, theSCORE( 1) = 1. If both X(1) andX(J) have the same
smallest value, then

if I TTE=0, SCORE(1 ) = SCORE(J) = 1.5
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ifITTE=1, SCORE(I ) = SCORE(J) = 2.0

ifITIE=2, SCORE(I ) = SCORE(J) = 1.0

ifITTE=3, SCORE(I ) = 1.0 and SCORE(J) = 2.0
or SCORE(l ) = 2.0 and SCORE(J) = 1.0.

When the ties are resolved by use of routine RNUNF (page 1172) to generate

random numbers, different results may occur when running the same program at
different times unless the “seed” of the random number generator is set explicitly
by use of the routinBNSET (page 1166). Ordinarily, there is no need to call the
routine to set the seed, even if there are ties in the data.

ISCORE = 1: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of
order statistics from a normal distribution. The simplest approximations are
obtained by evaluating the inverse cumulative normal distribution function
(routine ANORI N, page 1124) at the ranks scaled into the open interval (0, 1). In
the Blom version (see Blom 1958), the scaling transformation for the £ark

r; < n, wheren is the sample siz&iOBS) is (r; — 3/8)/(n + 1/4). The Blom normal
score corresponding to the observation with narik

q)-l(ri _3/8j
n+1/4

whered(lis the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if
X(1') equalsx(J) (within FUzZ) and their value is thieth smallest in the data set,
the Blom normal scores are determined for ranksasfdk + 1, and then these
normal scores are averaged or selected in the manner specifigtey

(Whether the transformations are made first or ties are resolved first makes no
difference except when averaging is done.)

ISCORE = 2: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
is (r; — 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation

with rankr; is
q)-l(ri _1/3j
n+1/3

Ties are handled in the same way as discussed above for the Blom normal scores.
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| NTEGER

ISCORE = 3: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling
transformation for the rank r;isr;/(n + 1). The Van der Waerden normal score

corresponding to the observation with rank r;is

n+1
Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 4: Expected Value of Normal Order Statistics

For this option, the values output in SCORE are the expected values of the normal
order statistics from a sample of size NOBS. If the valuein X(I ) isthe k-th
smallest, then the value output in SCORE(1 ) is E(Z,), where E(Q]is the expectation
operator and Z;, isthe k-th order statistic in a sample of size NOBS from a standard
normal distribution. Such expected values are computed by the routine ENOS
(page 1314). Ties are handled in the same way as discussed above for the Blom
normal scores.

ISCORE = 5: Savage Scores

For this option, the values output in SCORE are the expected values of the
exponential order statistics from a sample of size NOBS. These values are called
Savage scores because of their use in atest discussed by Savage (1956) (see
Lehman 1975). If the valuein X(1 ) isthe k-th smallest, then the value output in
SCORE(I ) is E(Y;), where Y, is the k-th order statistic in a sample of size NOBS
from a standard exponential distribution. The expected value of the k-th order
statistic from an exponential sample of sizen (NOBS) is

R Y R

n n-1 n-k+1
Tiesare handled in the same way as discussed above for the Blom normal scores.

The example uses all of these options with the same data set, which contains some
ties. Theties are handled different ways in this example.

Example

The data for this example, from Hinkley (1977), are the same used in several
examplesin this chapter. There are 30 observations. Note that the fourth and sixth
observations are tied and that the third and twentieth are tied.

NOBS

PARAVETER  ( NOBS=30)

| NTEGER
REAL

| SCORE, | SEED, ITIE, NOUT
FUZZ, SCORE(NOBS), X(NOBS)
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EXTERNAL RANKS, RNSET, UVACH

C
DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
C
CALL UMACH (2, NauT)
C Ranks.
| SCORE = 0
C Aver age ties.
ITTE=0
FUzZZz = 0.0
C

CALL RANKS (NOBS, X, FUZZ, ITIE, |SCORE, SCORE)
WRI TE (NOUT, 99994) SCORE
99994 FORMAT (' Ranks’, /, (1X,10F7.1))

C Blom normal scores.
ISCORE =1

C Take largest ranks for ties.
ITE=1
FUZZ =0.0

C

CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
WRITE (NOUT,99995) SCORE
99995 FORMAT (/,” Blom normal scores’, /, (1X,10F7.3))

C Tukey normal scores.
ISCORE =2

C Take smallest ranks for ties.
ITIE=2
FUZZ =0.0

C

CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
WRITE (NOUT,99996) SCORE
99996 FORMAT (/,” Tukey normal scores’, /, (1X,10F7.3))
C Van der Waerden scores.
ISCORE =3
C Randomly resolve ties.
ISEED = 123457
CALL RNSET (ISEED)
ITIE=3
FUzZZ =0.0
C
CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
WRITE (NOUT,99997) SCORE
99997 FORMAT (/,’ Van der Waerden scores’, /, (1X,10F7.3))

C Expected value of normal O. S.
ISCORE =4

C Average ties.
ITE=0
FUzZz =0.0

C

CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
WRITE (NOUT,99998) SCORE

99998 FORMAT (/,’ Expected values of normal order statistics’, /,
& (1X,10F7.3))

C Savage scores.
ISCORE =5

C Average ties.
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ITIE
FUzZ

0
0.0

C
CALL RANKS (NOBS, X, FUzZz, ITIE, |SCORE, SCORE)
VRI TE ( NOUT, 99999) SCORE
99999 FORMAT (/,’ Expected values of exponential order statistics’,
& 1, (1X,10F7.2))
END

Output
Ranks
50 180 6.5 115 21.0 115 20 15.0 29.0 24.0
27.0 28.0 16.0 23.0 3.0 17.0 130 1.0 40 6.5
26.0 19.0 10.0 14.0 30.0 25.0 9.0 20.0 8.0 22.0

Blom normal scores

1.024 0.209 -0.776 -0.294 0.473 -0.294 -1.610 -0.041 1.610 0.776
1.176 1.361 0.041 0.668 -1.361 0.125-0.209 -2.040 -1.176 -0.776
1.024 0.294 -0.473 -0.125 2.040 0.893 -0.568 0.382 -0.668 0.568

Tukey normal scores

-1.020 0.208 -0.890 -0.381 0.471 -0.381-1.599 -0.041 1.599 0.773
1.171 1.354 0.041 0.666 -1.354 0.124 -0.208 -2.015-1.171 -0.890
1.020 0.293-0.471-0.124 2.015 0.890-0.566 0.381 -0.666 0.566

Van der Waerden scores

-0.989 0.204 -0.753 -0.287 0.460-0.372 -1.518 -0.040 1.518 0.753
1.131 1.300 0.040 0.649 -1.300 0.122 -0.204 -1.849 -1.131 -0.865
0.989 0.287 -0.460 -0.122 1.849 0.865 -0.552 0.372 -0.649 0.552

Expected values of normal order statistics

-1.026 0.209 -0.836 -0.338 0.473 -0.338 -1.616 -0.041 1.616 0.777
1.179 1.365 0.041 0.669 -1.365 0.125 -0.209 -2.043 -1.179 -0.836
1.026 0.294-0.473 -0.125 2.043 0.894 -0.568 0.382 -0.669 0.568

Expected values of exponential order statistics

018 0.89 0.24 047 117 0.47 0.07 0.68 2.99 1.54
216 249 0.74 140 0.10 0.81 0.56 0.03 0.14 0.24
1.91 098 040 0.61 3.99 1.71 0.35 1.07 0.30 1.28

LETTR/DLETTR (Single/Double precision)

Produce aletter value summary.

Usage
CALL LETTR (NOBS, X, NUM, SUMRY, NMISS)

Arguments

NOBS — Number of observations. (Input)

X — Vector of length NOBS containing the data.  (Input)
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NUM — Number of summary values. (Input)
NUMmust be an odd integer greater than or equal to 3. A common value for NUMis
5.

SUMRY — Vector of lengtiNUMcontaining the summary letter values. (Output)
If NUMis 5, for exampleSUMRY contains the minimum, the lower hinge (quartile),
the median, the upper hinge, and the maximum, in that order.

NMISS — Number of missing values. (Output)

Comments
1. Automatic workspace usage is

LETTR NOBS units, or
DLETTR 2 * NOBS units.

If Xis sorted in ascending order, no workspace is used. Workspace may
be explicitly provided, if desired, by uselfTTR/DL2TTR. The
reference is

CALL L2TTR (NOBS, X, NUM SUMRY, NM SS, WK)
The additional argument is
WK — Work vector of lengtiNOBS.

2. Informational errors
Type Code
3 3 The results are likely not to be meaningftlUiflis
larger than the number of valid observations,
(NOBS — NM SS).
4 4 The number of valid observatioN®BS — NM SS) is

not greater than zero.

Algorithm

The routineLETTR computes the median\”), the minimum, the maximum, and
other depths or “letter values”—hinge$i(), eighths (‘E”), sixteenths (D”),

etc.—as specified byum If NUM= 9, for example, the values SUVRY

correspond to mirD, E, H, M, H, E, D, and max, in that order. The use of letter
values in summarizing a set of data is due to Tukey. Examples and discussion of
the use of letter values are given by Tukey (1977, Chapter 2) and by Velleman
and Hoaglin (1981, Chapter 2).

Example

In this examplel ETTRis used to compute a letter value summary of the
measurements (in inches) of precipitation in Minneapolis/St. Paul during the
month of March for 30 consecutive years. These data were studied by Hinkley
(1977) and by Velleman and Hoaglin (1981), page$530

| NTEGER I, NMSS, NOBS, NOUT, NUM
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REAL SUMRY(11), X(30)
EXTERNAL  LETTR, UMACH

C
DATA X/ 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2.05/
C
CALL UMACH (2, NaouT)
NOBS = 30
NUM = 11
C
CALL LETTR (NOBS, X, NUM SUMRY, NM SS)
VWRI TE ( NOUT, 99998) SUMRY(6), (SUWRY(6-1), SUMRY(6+1),1=1,5)
99998 FORMAT (’ Letter Values’, /,’ Lower Upper’,
& /" M " F6.3,/,” H ', F6.3, 6X, F6.3,/,

& " E ’,F6.3,6X,F6.3,/," D ’,F6.3, 6X, F6.3, /,
& ' C ', F6.3,6X, F6.3,/,”m/M’, F6.3, 6X, F6.3)
WRITE (NOUT,99999) NMISS

99999 FORMAT (* There are’, 12, ’ missing values.”)
END

Output
Letter Values
Lower Upper

M 1.470

H 0.900 2.100
E 0.680 2.905
D 0.495 3.230
C 0.395 4.060

m/M 0.320 4.750
There are 0 missing values.

ORDST/DORDST (Single/Double precision)

Determine order statistics.

Usage
CALL ORDST (NOBS, X, NOS, IOPT, I0S, OS, NMISS)
Arguments

NOBS — Number of observations. (Input)
NOBS must be greater than or equal to one.

X — Vector of lengthNOBS containing the data. (Input)
NOS — Number of order statistics. (Input)

NOS must be greater than or equal to one and less than or ediz@So

|OPT — Option to choose the order statistics to be calculated.

| OPT  Action
0 Calculate theélos order statistics listed inCs.
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1 Calculate the first NOS order statistics.
2 Calculate the last NOS order statistics.

IOS— If 1 OPT = 0,1 GS is a vector of lengtNCS containing the ranks of the

order statistics. (Input)

The elements dfOS must be greater than or equal to one and less than or equal
to NOBS. If | OPT = 1 or 2,1 GSiis unreferenced and can be defined as a vector of
length 1.

OS — Vector of lengtiNGs containing the order statistics. (Output)
NMISS — Number of missing values. (Output)

Comments
1. Automatic workspace usage is

ORDST NOBS units, or
DORDST 2 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
2DST/ DO2DST. The reference is
CALL O2DST (NOBS, X, NOS, IOPT, 108, OS, NMSS, VK)

The additional argument is as follows:
WK — Work vector of lengtiNOBS.

2. Informational errors
Type Code
3 1 All of the observations are missing values. The
elements o6s have been set to NaN (not a number).
3 2 NOS order statistics have been requested, but there are

only NOBS — NM SS valid observations. Order
statistics greater tha¥OBS — NM SS have been set to
NaN (not a number).

3 3 Each value of0s must be greater than 0 and less than
or equal to the number of valid observations. The
values 0ofCs that are not defined have been set to NaN.

3. Missing values (NaN) are excluded from the analysis. Order statistics
are based on theOBS —NMISS nonmissing elements of X.

Algorithm

The routine ORDSTdetermines order statistics from the datain X and returns
them in the vector OS The routine ORDSTfirst checks to seeif X is sorted, in
which case the order statistics are merely picked from X. If X is not sorted,
ORDSTdoes either a complete or partial sort, depending on how many order
statistics are requested. Since either the largest few order statistics or the
smallest few are often of interest, the option parameter IOPT allows the user to

32« Chapter 1: Basic Statistics IMSL STAT/LIBRARY



| NTEGER
PARAMETER

| NTEGER

REAL

EXTERNAL

DATA X/ 0. 77,

&
&
&

CALL
CALL

obtain the largest or the smallest order statistics easily; otherwise (when| OPT is
set to 0), the user specifiesin the vector | S exactly which order statistics are to
bereturned. If | OSisused, the order statistics returned in Os are in the same
order astheindicatorsin | CS.

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin
(1981). They are the measurements (in inches) of precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years. In the first example, the
first five order statistics from a sample of size 30 are obtained. Since | OPT is set
to1, 1 OSisnot used.

| OPT, NOBS, NOS
(1 OPT=1, NOBS=30, NCS=5)

10S(1), NMSS, NOUT
OS(NOS), X( NOBS)
ORDST, UMACH, WRRRN

1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
1.35, 4.75, 2.48, 0.96, 1.89, 0.90,

1.74, 0.81,
1.51,
1.18,

2.20, 3.00, 3.09,
0.81, 2.81, 1.87,
2.05/

UMACH (2, NOUT)

ORDST (NOBS, X, NCS, IOPT, 10S, OS5, NM SS)

CALL WRRRN ('First five order statistics:’, 1, NOS, OS, 1, 0)
WRITE (NOUT,99999) NMISS

99999 FORMAT (* There are’, 12, ’ missing values.”)
END

Output
First five order statistics:
1 2 3 4 5
0.3200 0.4700 0.5200 0.5900 0.7700
There are 0 missing values.

Example 2

INTEGER

In the second example, the last five order statistics from a sample of size 30 are
obtained. This example uses the same data asin the first example, but thistime
the first two observations have been set to a missing value indicator (AMACKB)).
Note that since there are two missing values in the data set, the indices of the last
five order statistics are numbers 24, 25, 26, 27, and 28. In this example, NMISS
will be returned with avalue of 2. Theindex of the last order statistic can be
determined by NOBS- NMISS.

IOPT, NOBS, NOS

PARAMETER (IOPT=2, NOBS=30, NOS=5)

INTEGER 10S(1), NMISS, NOUT
REAL  AMACH, OS(NOS), X(NOBS)
EXTERNAL AMACH, ORDST, UMACH, WRRRN
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DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/

CALL UMACH (2, NauT)

X(1) = AMACH(6)

X(2) = AVACH(6)

CALL ORDST (NOBS, X, NOs, |IOPT, 10s, OS, NM SS)
CALL WRRRN ('Last five order statistics:’, 1, NOS, OS, 1, 0)
WRITE (NOUT,99999) NMISS

99999 FORMAT (* There are’, 12, ’ missing values.”)

END

Output
Last five order statistics:
1 2 3 4 5
2.810 3.000 3.090 3.370 4.750
There are 2 missing values.

Example 3

In this example, we illustrate the use of 10S to specify exactly which order
statistics are to be computed. We request what would be the last five order
statistics from a sample of size 30, that is, order statistics 26, 27, 28, 29, and 30.
Asin example two, the data set has two missing values. Order statistics 29 and 30
are not defined, but since they are specifically requested, awarning messageis
issued and OScontains two missing values on return.

INTEGER IOPT, NOBS, NOS
PARAMETER (IOPT=0, NOBS=30, NOS=5)

INTEGER 10S(NOS), NMISS, NOUT
REAL  AMACH, OS(NOS), X(NOBS)
EXTERNAL AMACH, ORDST, UMACH, WRRRN

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20,3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81,2.81,1.87,1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2.05/

DATA 10S/26, 27, 28, 29, 30/

CALL UMACH (2, NOUT)
X(1) = AMACH(6)
X(2) = AMACH(6)
CALL ORDST (NOBS, X, NOS, IOPT, I0S, OS, NMISS)
CALL WRRRN (’Last five order statistics:’, 1, NOS, OS, 1, 0)
WRITE (NOUT,99999) NMISS

99999 FORMAT (" There are’, 12, ' missing values.”)

END
Output
*»** \WARNING ERROR 3 from ORDST. Each value of IOS must be greater than 0
rkx and less than or equal to the number of valid observations,
Fkk NOBS-NMISS, which is 28. 10S contains 2 values outside of
rxx this range. The corresponding values of OS have been set to
vk NaN (not a number).
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Last five order statistics:

1 2 3 4 5
3. 090 3.370 4,750 NaN NaN
There are 2 m ssing val ues.

EQTIL/DEQTIL (Single/Double precision)

Compute empirical quantiles.

Usage
CALL EQTIL (NOBS, X, NQPROP, QPROP, Q XLO XH, NM SS)

Arguments

NOBS — Number of observations. (Input)
NOBS must be greater than or equal to one.

X — Vector of lengtiNOBS containing the data. (Input)

NQPROP — Number of quantiles. (Input)
NQPROP must be greater than or equal to one.

QPROP — Vector of lengtiNQPROP containing the quantile proportions.
(Input)
The elements afPROP must lie in the interval (0, 1).

Q — Vector of lengtiNQPROP containing the empirical quantiles. (Output)
Q(i) corresponds to the empirical quantile at propor@ROP(i). The quantiles
are determined by linear interpolation between adjacent ordered sample values.

XLO — Vector of lengtiNQPROP containing the largest elementoless than or
equal to the desired quantile. (Output)

XHI — Vector of lengtiNQPRCOP containing the smallest elementofreater
than or equal to the desired quantile. (Output)

NMISS — Number of missing values. (Output)

Comments

1. Automatic workspace is allocated onlifs not sorted on input. The
amount allocated is

EQTI L NOBS units, or
DEQTI L 2* NOBS units.

Workspace may be explicitly provided, if desired, by use of
E2TI L/DE2TI L. The reference is

CALL E2TIL (NOBS, X, NQPROP, QPROP, Q XLO, XHI,
NM SS, \K)

The additional argument is
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WK — Workspace of lengtROBS containing the sorted data. (Output)

If X is sorted in ascending order with all missing values at the exd of
thenX andwK may share the same storage location.

2. Informational error
Type Code
3 1 All of the observations are missing values. The

elements of) XLO, andXH have been set to NaN
(not a number).

3. Missing values (NaN) are excluded from the analysis. Empirical
quantiles are based on theBS — NM SS nonmissing elements Bf

Algorithm

The routineEQTI L determines the empirical quantiles, as indicated in the vector
QPRCP, from the data iX. The routineEQTI L first checks to see X is sorted; if

X is not sorted, the routine does either a complete or partial sort, depending on
how many order statistics are required to compute the quantiles requested.

The routineEQTI L returns the empirical quantiles and, for each quantile, the two
order statistics from the sample that are at least as large and at least as small as
the quantile. For a sample of sizethe quantile corresponding to the proportion

p is defined as

QP) = (L1-1)x; +fX;41)

wherej = [p(n + 1)Jf = p(n + 1) - ], andx is thej-th order statistic, if
1<j <n; otherwise, the empirical quantile is the smallest or largest order statistic.

Example

In this example, five empirical quantiles from a sample of size 30 are obtained.
Notice that the 0.5 quantile corresponds to the sample median. The data are from
Hinkley (1977) and Velleman and Hoaglin (1981). They are the measurements (in
inches) of precipitation in Minneapolis/St. Paul during the month of March for 30
consecutive years.

I NTEGER  NOBS, NQPROP
PARAVETER ( NOBS=30, NQPROP=5)

C
INTEGER |, NMSS, NOUT
REAL QPROP(NQPROP) , X(NOBS), XEMP(NQPROP), XHI ( NQPROP),
& XLO( NQPROP)
EXTERNAL  EQTI L, UVACH
C

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2.05/

DATA QPROP/ 0. 01, 0.50, 0.90, 0.95, 0.99/
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CALL UMACH (2, NOUT)
CALL EQTIL (NOBS, X, NQPROP, QPROP, XEWP, XLO, XHI, NM SS)
VR TE ( NOUT, 99997)

99997 FORMAT ('
& " Quantile

Smaller Empirical Larger, /,
Datum  Quantile  Datum’)

DO 10 I=1, NQPROP
WRITE (NOUT,99998) QPROP(I), XLO(l), XEMP(I), XHI(l)

10 CONTINUE

99998 FORMAT (4X, F4.2, 8X, F4.2, 8X, F4.2, 8X, F4.2)
WRITE (NOUT,99999) NMISS
99999 FORMAT (/,’ There are ’, 12, " missing values.’)

END

Output

Smaller Empirical Larger

Quantile  Datum

Quantile Datum

0.01 0.32 0.32 0.32

0.50 1.43

1.47 151

0.90 3.00 3.08 3.09
0.95 3.37 3.99 4.75
0.99 4.75 4.75 4.75

There are 0 missing values.

TWOMV/DTWOMYV (Single/Double precision)

Compute statistics for mean and variance inferences using samples from two
normal populations.

Usage

CALL TWOMYV (IDO, NROWX, X, NROWY, Y, CONPRM, CONPRYV,
IPRINT, STAT)

Arguments

IDO — Processing option. (Input)

| DO
0

Action

This is the only invocation afwow for this data set, and all the data are
input at once.

This is the first invocation, and additional callsrteOw will be made.
Initialization and updating are performed. The means are output
correctly, but most of the other quantities outpl8TAT are
intermediate quantities.

This is an intermediate invocation AW, and updating for the data in
X andy is performed.

This is the final invocation of this routine. Updating for the dataand
Y and wrap-up computations are performed.
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NROWX — Absolute value oRROAX is the number of observations currently
input inX. (Input)

NROWK may be positive, zero, or negative. NegahiReMK means delete the
—NROMK observations iX from the analysis.

X — Vector of lengttNROAX containing observations from the first sample.
(Input)

NROWY — Absolute value oRROW is the number of observations currently
inputinY. (Input)

NROWY may be positive, zero, or negative. NegahiReW means delete the
—NROWY observations iry from the analysis.

Y — Vector of lengttiNROWY containing observations from the second sample.
(Input)

CONPRM — Confidence level for two-sided interval estimate of the mean of
minus themean ofy (assuming normality of both populations), in percent.
(Input)

If CONPRM= 0, no confidence interval for the difference in the means is
computed; otherwise, GONPRM percent confidence interval is computed, in
which caseCONPRMmust be between 0.0 and 10GCONPRMis often 90.0, 95.0,
or 99.0. For a one-sided confidence interval with confidence @NgstL, set
CONPRM= 100.0- 2.0* (100.0— ONECL).

CONPRYV — Confidence level for inference on variances. (Input)

Under the assumption of equal variances, the pooled variance is used to obtain a
two-sidedCONPRV percent confidence interval for the common variance in
STAT(13) andSTAT(14). Without making the assumption of equal variances, the
ratio of the variances is of interest. A two-sid&EaNPRV percent confidence

interval for the ratio of the variance of the first populatight¢ that of the

second population (assuming normality of both populations) is computed and
stored iNnSTAT(22) andSTAT(23). The confidence intervals are symmetric in
probability. See also the description@iNPRM

IPRINT — Printing option. (Input)
If I PRI NT = 0, no printing is performed; otherwise, various statistiG AT are
printed when DO= 0 or 3.

| PRI NT Action

No printing.

Simple statisticsSTAT (1) to STAT(6), STAT(24), andSTAT(25)).
Statistics for means, assuming equal variances.

Statistics for means, not assuming equal variances.
Statistics for variances.

All statistics.

gabhwNDEFEO

STAT — Vector of length 25 containing the statistics.
(Output, ift DO= 0 or 1; input/output, ifDO= 2 or 3.) These are:
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STAT(1)

|

1 Mean of thefirst sample.

2 Mean of the second sample.

3 Variance of the first sample.

4 Variance of the second sample.

5 Number of observationsin the first sample.

6 Number of observationsin the second sample.

(STAT(7) through STAT(14) depend on the assumption of equal variances.)

7 Pooled variance.

8 t value, assuming equal variances.

9 Probability of alarger t in absolute value, assuming normality, equal
means, and equal variances.

10 Degrees of freedom assuming equal variances.

11 Lower confidence limit for the mean of the first population minusthe
mean of the second, assuming equal variances.

12 Upper confidence limit for the mean of the first population minus the
mean of the second, assuming equal variances.

13 Lower confidence limit for the common variance.

14 Upper confidence limit for the common variance.
(STAT(15) through STAT(19) use approximations that do not depend on
an assumption of equal variances.)

15 t value, assuming unequal variances.

16 Approximate probability of alarger t in absolute value, assuming
normality, equal means, and unequal variances.

17 Degrees of freedom assuming unequal variances, for Satterthwaite’s
approximation.

18 Approximate lower confidence limit for the mean of the first population
minus the mean of the second, assuming equal variances.

19 Approximate upper confidence limit for the mean of the first population
minus the mean of the second, assuming equal variances.

20 F value (greater than or equal to 1.0).

21 Probability of a largef in absolute value, assuming normality and equal
variances.

22 Lower confidence limit for the ratio of the variance of the first
population to the second.

23 Upper confidence limit for the ratio of the variance of the first
population to the second.

24 Number of missing values of first sample.

25 Number of missing values of second sample.

Algorithm

The routineTWOW computes the statistics for making inferences about the means
and variances of two normal populations, using independent samplesdy.

For inferences concerning parameters of a single normal population, see routine
UVSTA (page 16). For two samples that are paired, see roAWeB (page 375),
since the pairs can be considered to be blocks.
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Let pyand
0%

be the mean and variance, respectively, of the first population, and py and
oy

be the corresponding quantities of the second population. The routine TWOW is
used for testing py = py and

0% = 0%

or for setting confidence intervals for py — py and
o /0%
The basic quantities in STAT(1) through STAT(4) are

Ny

Ny
)_(:ZXi/nX, VZZyi/ny
=1 i=1

Ny My

sk =5 (5 =%)% /(g =1, ands] = (v ~9)*/ (ny - 1)
=1 =1

where n, and n, are the respective sample sizes (in STAT(5) and STAT(6)).

Inferences about the Means

Thetest for the equality of means of two normal populations depends on whether
or not the variances of the two populations can be considered equal. If the
variances are equal, the test is the two-sample t test, which is equivalent to an
analysis of variance test (see Chapter 4). In this case, the statistics returned in
STAT(7) through STAT(12) are appropriate for testing py = py. The pooled
variance (in STAT(7)) is

2 2
82 _ (nx _1)Sx +(ny _l)sy
Ny +ny -2

Thet statistic (in STAT(8)) is
X-y
t=
s/@/n)+(@/ny)
For testing py = 1y + ¢, for some constant c, the confidence interval for py — py

can be used. (If the confidence interval includes c, the null hypothesis would not
be rejected at the significance level 1 — CONPRM100.)
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If the population variances are not equal, the ordinary t statistic does not have at
distribution; and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and Kendall and
Stuart 1979.) The name Fisher-Behrens is associated with this problem, and one
of the earliest tests devised for this situation is the Fisher-Behrens test, based on
Fisher’'s concept diducial probability. Another test is calle8atterthwaite’s
procedure The routine TWOMWV computes the statistics for this approximation,
which was suggested by H.F. Smith and modified by F.E. Satterthwaite
(Anderson and Bancroft 1952, page 83). Thetest statistic is

t'=(X-y)/sq

where

sa=(S2 /) +(s/ny)

Under the null hypothesis of equal population means, this quantity has an
approximate t distribution with degrees of freedom f (in STAT(17)), given by

_ sd
CALNNCTL
n, -1 n,-1

Inferences about the Variances

The F statistic for testing the equality of variancesis given by
F=s?/s5, wheres?
isthe larger of
sz and s, and s

isthe smaller. If the variances are equal, this quantity has an F distribution with
n, —1and n, - 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide
whether to use the regular t test or the modified t' on asingle set of data. The
more conservative approach isto use the modified t' (Satterthwaite’s procedure)
if there is doubt about the equality of the variances.

Example 1

This example is taken from Conover and Iman (1983, page 294). It involves
scores on arithmetic tests of two grade school classes. The question is whether a
group taught by an experimental method has a higher mean score. The data are
shown below.
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Scores for Scores for
Standard Group Experimental Group

72 111
75 118
77 128
80 138
104 140
110 150
125 163

164

169

It is assumed that the variances of the two populations are equal so the statistics
of interest arein STAT(8) and STAT(9). It is seen from the output below that there
is strong reason to believe that the two means are different (t-value of

—4.804). Since the lower 97.5% confidence limit does not include zero, the null
hypothesisthat 1 <, would be rejected at the 0.05 significance level. (The
closeness of the values of the sample variances provides some qualitative
substantiation of the assumption of equal variances.)

INTEGER DO, | PRI NT, NROAK, NROW
REAL CONPRM CONPRV, STAT(25), X(7), Y(9)
EXTERNAL  TVOW

DATA X/ 72., 75., 77., 80., 104., 110., 125./Y/111., 118., 128.,

& 138., 140., 150., 163., 164., 169./

| DO =0

NRONK = 7

NRONW = 9

| PRINT = 2

CONPRM = 95. 0

CONPRV = 0.0

CALL TWOW (I DO, NROAK, X, NROWY, Y, CONPRM CONPRV, |PRINT,
& STAT)

END

Output

Mean | nferences Assumi ng Equal Variances
Pool ed Vari ance

t Val ue

Probability of a Larger t in Abs. Value
Degrees of Freedom

Lower Confidence Linit Difference in Means
Upper Confidence Linit Difference in Means

434.

14.
-73.
- 27.

633

. 000

000
010
942
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Example 2

For a second example, the same data set is used to illustrate the use of the | DO
parameter to bring in the data one observation at a time. Since there ar&’more “
values than X’ values,NROAX is set to zero on the later callsToOw.

| NTEGER I, 1DO, | PRINT, NROAX, NROWY
REAL CONPRM CONPRV, STAT(25), X(7), Y(9)
EXTERNAL  TWOW
C
DATA X/ 72., 75., 77., 80., 104., 110., 125./Y/111., 118., 128.,
& 138., 140., 150., 163., 164., 169./
C
IPRINT = 5
CONPRM = 95.0
CONPRV = 95.0
| DO =1
NROXK =1
NROAY =1
DO 10 1=1, 7
C Bring in first seven observations
C on X and Y, one at a tine.
CALL TWOW (1 DO, NROAK, X(1), NROWY, Y(l), CONPRM CONPRVY,
& | PRI NT, STAT)
IDO = 2
10 CONTI NUE
C Now bring in remaining observations
C on Y.
NROWK = 0
CALL TWOW (1 DO, NROAK, X(1), NROAWY, Y(8), CONPRM CONPRV,
& | PRI NT, STAT)
C Set IDOto indicate |ast observation.
IDO =3
CALL TWOW (1 DO, NROWK, X(1), NROW, Y(9), CONPRM CONPRV,
& | PRI NT, STAT)
END
Output
Statistics from TWOW
First Sanple Mean 91. 857
Second Sanpl e Mean 142. 333
Fi rst Sanpl e Variance 435. 810
Second Sanpl e Vari ance 433. 750

First Sanple Valid Cbservations 7.000

Second Sanple Valid Cbservations 9.

Fi rst Sanple M ssing Val ues 0. 000
0

Second Sanpl e M ssing Val ues . 000

Mean | nferences Assum ng Equal Variances

Pool ed Vari ance 434. 63
t Val ue -4.80
Probability of a Larger t in Abs. Value 0. 00
Degrees of Freedom 14. 00
Lower Confidence Limt Difference in Means -73.01
Upper Confidence Limt Difference in Means -27.94
Lower Confidence Linmt for Comon Variance 232. 97
Upper Confidence Linmt for Common Variance 1081. 04
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Mean | nferences Assum ng Unequal Variances

t Val ue -4.8028
Approx. Prob. of a Larger t in Abs. Value 0. 0003
Degrees of Freedom 13. 0290
Lower Confidence Limt -73.1758
Upper Confidence Limt -27.7766
Vari ance | nferences
F Val ue 1. 00475
Probability of a Larger F in Abs. Val ue 0. 96571
Lower Confidence Limt for Variance Ratio 0.21600
Upper Confidence Limt for Variance Ratio 5.62621

BINES/DBINES (Single/Double precision)

Estimate the parameter p of the binomial distribution.

Usage
CALL BINES (N, K, CONPER, PHAT, PLOVER, PUPPER)

Arguments

N — Total number of Bernoulli trials. (Input)
Nis the parameteM in the binomial distribution from which one observati (
has been drawn.

K — Number of successes in tNdrials. (Input)

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

An approximatecONPER percent confidence interval is computed, heGGBPER
must be between 0.0 and 10020ONPER often will be 90.0, 95.0, or 99.0. For a
one-sided confidence interval with confidence leNECL, sSetCONPER = 100.0
—2.0* (100.0—- ONECL).

PHAT — Estimate op. (Output)
PLOWER — Lower confidence limit fop. (Output)
PUPPER — Upper confidence limit fop. (Output)

Comments
1. Informational errors
Type Code
3 1 CONPERis 100.0 or too large for accurate
computations. The confidence limits are set to 0.0 and
1.0.
3 2 CONPERis 0.0 or too small for accurate computations.

The confidence limits are both setRigAT.
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| NTEGER
REAL
EXTERNAL

2. Since the binomial is a discrete distribution, it is not possible to
construct an exact CONPER%% confidence interval for al values of
CONPER. Let a = 1 — CONPER/100. Then, the approximate lower and
upper confidence limits p; and py; (PLOAER and PUPPER) are solutions

to the equations
N N _
Z( jpﬁ(l— p)" " =a/2
x=K X
K N _
Z( jpé(l— pu)" 7 =02
x=0 X

These approximations are not just computational devices.
Approximations to the confidence limits are necessary because the
binomial distribution is discrete.

Algorithm

The routine BI NES computes a point estimate and a confidence interval for the
parameter, p, of a binomial distribution, using the number of “success€sh a
sample of siz&l from a binomial distribution with probability function

f(x) :(l:)px(l— o) forx=01...,N

The point estimate fqu is merelyK/N.

The routineBl NES makes use of the relationship between the binomial
distribution and the beta distribution (see Johnson and Kotz 1969, Chapter 3) by
solving the following equations equivalent to those in Comment 2:

PL =Bk N-K+La/2
Pu = BK+LN—K,1—0(/2

wheref, , . is the beta critical value with parametessandb (that is, the

inverse beta distribution function evaluated at1). The routineBETI N
(page 1127) is used to evaluate the critical values.

Example

In this example, we assume that the number of defective microchips in a given lot
follows a binomial distribution. We estimate the proportion defective by taking a
sample of 50. In this sample, 3 microchips were found to be defective. The
routineBl NES is used to estimageand to compute a 95% confidence interval.

K, N, NOUT

CONPER, PHAT, PLOVZER, PUPPER

Bl NES, UVACH
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CALL UMACH (2, NOUT)
N = 50
K =3
CONPER = 95.0
CALL BINES (N, K, CONPER, PHAT, PLOVER, PUPPER)
VWRI TE ( NOUT, 99999) PHAT, PLOWER, PUPPER
99999 FORMAT (' Point estimate of the proportion: ’, F5.3, /,
& ' 95% confidence interval: (, F5.3,",, F5.3,
& 7))
END

Output
Point estimate of the proportion: .060
95% confidence interval: (.013, .165)

POIES/DPOIES (Single/Double precision)

Estimate the parameter of the Poisson distribution.

Usage
CALL POIES (NOBS, IX, CONPER, THAT, TLOWER, TUPPER)

Arguments
NOBS — Number of observations. (Input)

I X — Vector of length NOBS containing the data.  (Input)
The data are assumed to be a random sample from a Poisson distribution; hence,
all elements of 1 X must be nonnegative.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

An approximateCONPER percent confidence interval is computed; he@GBPER
must be between 0.0 and 10020NPER often will be 90.0, 95.0, or 99.0. For a
one sided confidence interval with confidence leW#CL, setCONPER = 100.0-

2.0* (100.0— ONECL).

THAT — Estimate of the parameter, theta (the mean). (Output)
TLOWER — Lower confidence limit for theta. (Output)
TUPPER — Upper confidence limit for theta. (Output)

Comments
1. Informational error
Type Code
3 1 CONPERis 0.0 or too small for accurate computations.
The confidence limits are both setTidAT.
2. Since the Poisson is a discrete distribution, it is not possible to

construct an exa@@ONPER% confidence interval for all values of
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CONPER. Let a = 1 - CONPER/100, and let k be a single observation.
Then, the approximate lower and upper confidence limits 6, and 6,
(TLOWER and TUPPER) are solutions to the equations

exp(—eL)ze’[ I x!'=a/2
x=k

k
exp(—eu)zefj /x!'=a/2
x=0

Algorithm

Theroutine PO ES computes a point estimate and a confidence interval for the
parameter, 6, of a Poisson distribution. It is assumed that the vector | X contains a
random sample of size NOBS from a Poisson distribution with probability function

f(x)=e®0* /x!, forx=0,1,2,...
The point estimate for 8 corresponds to the sample mean.

By exploiting the relationship between the Poisson distribution and the chi-
squared distribution (see Johnson and Kotz, 1969, Chapter 4), the equationsin
Comment 2 can be written as

1.2
0L =3 X2ka/2

192
By = 3 X2k+21-0/2

where
2
Xv1

isthe chi-squared t critical value with degreesv of freedom (that is, theinverse
chi-sguared distribution function evaluated at 1 — T ). Theroutine CHI I N
(page 1132) is used to evaluate the critical values.

For more than one observation, the estimates are obtained as above and then
divided by the number of observations, NOBS.

Example

It is assumed that flight arrivals at a major airport during the middle of the day
follow a Poisson distribution. It is desired to estimate the mean number of arrivals
per minute and to obtain an upper one-sided 95% confidence interval for the
mean. During a half-hour period, the number of arrivals each minute was
recorded. These dataare stored in | X, and POl ES is used to obtain the estimates.

NOBS
( NOBS=30)
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INTEGER | X(NOBS), NOUT
REAL CONPER, THAT, TLOWER, TUPPER
EXTERNAL PO ES, UMACH

C
DATA I X/2, O, 1, 1, 2, O, 3, 1, 2, 0, O, 1, 1, O, O, O, O, O, O,
& o, 1, 2, 0, 2, 0, O, 1, 2, 0, 2/

C
CALL UMACH (2, NOUT)

C For a 95 percent one-sided C. 1.,

C CONPER = 100.0 - 2.0*(100.0-95.0)

CONPER = 90.0
CALL PO ES (NOBS, |X, CONPER, THAT, TLOWER, TUPPER)
VWRI TE (NOUT, 99999) THAT, TUPPER
99999 FORMAT (* Point estimate of the Poisson mean: ’, F5.3, /,
& " Upper one-sided 95% confidence limit: ’, F5.3)
END

Output
Point estimate of the Poisson mean: 0.800
Upper one-sided 95% confidence limit: 1.125

NRCES/DNRCES (Single/Double precision)

Compute maximum likelihood estimates of the meanand variance from grouped
and/or censored normal data.

Usage

CALL NRCES (NOBS, XRT, XLT, ICEN, EPSM, EPSSIG, MAXITS,
INIT, XMEAN, XSIGMA, VXM, VXS, COVXMS, NUMBER)

Arguments

NOBS — Number of observations. (Input)

XRT — Vector of lengtiNOBS containing either the exact value of the data or the
right endpoint of the censoring interval for interval-censored or right-censored
data. (Input)

See the argumentCEN.

XLT — Vector of lengthNOBS containing the left endpoint of the censoring
interval for interval-censored or left-censored data. (Input)
See the argumenCEN. XLT is not used if there is no left censoring.

ICEN — Vector of lengtitNOBS containing the censoring codes. (Input)
The values in CENindicate the meaning of the values<®T and/orXLT.

I CEN(1 ) Censoring

0 Exact response &RT(l ).

1 Right censored. The response is greater Xraxi ).

2 Left censored. The response is less than or eqXaim ).

3 Interval censored. The response is greaterx/a(i ), but less than or

equal toxL T(l ).

48 « Chapter 1: Basic Statistics IMSL STAT/LIBRARY



EPSM — Convergence criterion for the mean estimate. (Input)
See the argumeBPSSI G. If EPSMis not positiveEPSM= 0.00001 is assumed.

EPSSIG — Convergence criterion for the variance estimate. (Input)
Convergence is assumed when the relative change in the mean estimate is less
thanEPSMand the relative change in the variance estimate is lesgrBanG. If
EPSSI Gis not positiveEPSSI G= 0.00001 is assumed.

MAXITS — Maximum number of iterations allowed. (Input)
A typical value ofVAXI TS is 25.

INIT — Initialization option. (Input)

INIT  Action
0 On input,XMEAN andXSI GVA contain initial estimates of the parameters.
1 If there are enough exactly specified data, initial estimates are obtained

from it; and, if there are not enough such data, fixed starting values
(XRT(1) for the mean and 1.0 for the variance) are used.

XMEAN — Estimate of the mean. (Input/OutputMi T = O; output otherwise)

XSIGMA — Estimate of the standard deviation. (Input/OutpuNifT = 0O;
output otherwise)

VXM — Estimate of the variance of the mean estimate. (Output)
VXS — Estimate of the variance of the variance estimate. (Output)

COVXMS — Estimate of the covariance of the mean and the variance estimates.
(Output)

NUMBER — Vector of length 4 containing the numbers of observations having
the various censoring properties. (Output)

NUMBER(1) is the number of exact observatioRMBER(2) is the number of
observations specified by a lower bound (right censor@)BER(3) is the

number of observations specified by a upper bound (left censSkBER(4) is

the number of observations specified by an interval.

Algorithm

The routineNRCES computes maximum likelihood estimates of the mean and
variance of a normal population, using a sample that may be censored. An
observation whose value is known exactly is inputRR, and the corresponding
element in CENis set to 0. If an observation is known only by a lower bound, we
say the observation rsght censored; the lower bound is input iXRT, and the
corresponding element IrCEN is set to 1. If an observation is known only by an
upper bound, we say the observatiolefiscensored; the upper bound is input in
XLT, and the corresponding element TEN is set to 2. If an observation is
known only by two bounds, we say the observationtésval censored; the lower
bound is input irXRT, the upper bound is input KL T, and the corresponding
element in CENis set to 3.
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Newton-Raphson iterations are used to find a stationary point of the likelihood
function, and the Hessian at that point is used to estimate the variances and
covariance of the estimates of the population mean and variance. If the numerical
derivative of the estimate of the variance increases on nine consecutive iterations,
the process is deemed divergent and aterminal error isissued. Theiterations
begin at user-supplied valuesif I NI T isset to O.

Example

This example uses an artificial data set consisting of 18 observations. The first 12
observations are known exactly; the next three are known only by alower bound;
the next two, by an upper bound; and the last one, by two bounds.

INTEGER  NOBS
PARAMETER  ( NOBS=18)

INTEGER | CEN(NOBS), INIT, MAXITS, NOUT, NUVBER(4)

REAL COVXMB, EPSM EPSSI G VXM VXS, XLT(NOBS), XMEAN,
& XRT(NOBS), XSI GVA

EXTERNAL  NRCES, UMACH

DATA XRT/ 4.5, 5.4, 3.9, 5.1, 4.6, 4.8, 2.9, 6.3, 5.5 4.6, 4.1,
& 5.2, 3.2, 4.0, 3.1, 0.0, 0.0, 2.2/

DATA XLT/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
& 0.0, 0.0, 0.0, 0.0, 5.1, 3.8, 2.5/

DATA ICENO, O, O, O, O, O, O, O, O, O, O, O, 1, 1, 1, 2, 2, 3/

CALL UMACH (2, NaQUT)
EPSM 0.01
EPSSI G = 0.01
MAXI TS = 25
INIT 1
CALL NRCES (NOBS, XRT, XLT, ICEN, EPSM EPSSIG MAXITS, INT,
& XMEAN, XSI GVA, VXM VXS, COVXMS, NUMBER)
VWRI TE (NOUT, 99999) XMEAN, XSI GVA, VXM VXS, COVXMS, NUMBER
99999 FORMAT (' Estimate of mean: ', F8.4,
/, " Estimate of variance: ', F8.4,
, ' Estimate of variance of mean estimate: ', F8.4,
' Estimate of variance of variance estimate: ’, F8.4,
' Estimate of covariance of mean and variance:’, F8.4,
" Number of exact observations: 14,
" Number of right-censored observations: ', 14,
" Number of left-censored observations: ' 14,
, " Number of interval-censored observations: ', 14)

m R0 R0 R0 Ro Ro Ro Ro Ro

Output
Estimate of mean: 4.4990
Estimate of standard deviation: 1.2304
Estimate of variance of mean estimate: 0.0819
Estimate of variance of variance estimate: -0.0494
Estimate of covariance of mean and variance: -0.0019

Number of exact observations: 12
Number of right-censored observations: 3
Number of left-censored observations: 2

Number of interval-censored observations: 1
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GRPES/DGRPES (Single/Double precision)

Compute basic statistics from grouped data.

Usage
CALL GRPES (NGROUP, TABLE, CLOWN CWDTH, |PRINT, STAT)

Arguments
NGROUP — Number of groups. (Input)

TABLE — Vector of lengtiNGROUP containing the frequencies within the
groups. (Input)
The entries IMABLE are interpreted as counts. They must be nonnegative.

CLOW — The center (class mark) of the lowest class interval. (Input)

CWIDTH — The class width. (Input)
CW DTH must be positive.

IPRINT — Printing option. (Input)
If 1 PRI NT = 0, no printing is performed; andliPRI NT = 1, the statistics iBTAT
are printed.

STAT — Vector of length 13 containing the statistics.  (Output)

STAT(l)

The sum of the frequenciesTABLE.

Mean (arithmetic mean, first moment).

Sample standard deviation. (USTAT(1) — 1 as divisor).

Second moment about the mean, uncorrected for grouping. (Uses
STAT(1) as divisor.)

5 Second moment about the mean, adjusted using Sheppard’s correction.
6 Third moment about the mean, uncorrected for grouping.

7 Third moment about the mean, adjusted using Sheppard’s correction.
8

9

A WNPE—

Fourth moment about the mean, uncorrected for grouping.
Fourth moment about the mean, adjusted using Sheppard’s correction.

10 Median.

11 Geometric mean; defined onlydf Ow— CW DTH/2 is nonnegative.
12 Harmonic mean; defined onlyGt. Ow— CW DTH2 is nonnegative.

13 Mode; defined only if one elementABLE is strictly greater than all

other elements ofABLE.

Algorithm

The routineGRPES computes various statistics using data from equally spaced
groups. The second, third, and fourth moments are computed both with and
without Sheppard’s corrections. These corrections for grouped data are most
useful for distributions whose densities tail off smoothly (such as the normal
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distribution). Kendall, Stuart, and Ord (1987, Chapters 2 and 3) discuss these
corrections.

The moments are computed using the sum of the frequencies as the divisor. The
standard deviation (STAT(3)), on the other hand, is computed using as the divisor
the sum of the frequencies minus one.

If any of the class marks are negative, the geometric and harmonic means are not
computed, and NaN (not a number) is stored as the value of STAT(11). Likewise,
if the mode does not exist (no group has a frequency greater than that of all other
groups), NaN is stored as the value of STAT(13).

Example 1

This exampleis taken from Conover and Iman (1983, page 119). The objectiveis
to compute some basic statistics relating to test scores, using the following data:

Score Frequency
91-100 7
81-90 13
71-80 11
61-70
<60

| PRINT, NGROUP
CLOW CW DTH, STAT(13), TABLE(5)
GRPES

5
55.5
10.0
4.0
5.0
11.0
13.0
7.0
1
(

NGROUP, TABLE, CLOWN CWDTH, |PRI NT, STAT)

Output

Statistics from GRPES

Sum fregs.
Mean

Std. dev.
2nd nonent
2nd, adj.
3rd nonent
3rd, adj.
4t h nmonent
4t h, adj.
Medi an

'
\‘
N
N =BT
TOWWOA®OR OO
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Ceonetric 78.0

Har noni ¢ 77.0
Mode 85.5
Example 2
In this example, there are negative values of some class marks, and thereisno
modal class.
Class Marks Frequency
-2.0 2
-1.0 5
0.0 7
1.0 7
2.0 2
| NTEGER NGROUP, | PRI NT
REAL TABLE(5), CLON CWDTH, STAT(13)
EXTERNAL GRPES
C
NGROUP = 5
CLOWN= -2.0
CWDTH = 1.0
TABLE(1) = 2.0
TABLE(2) = 5.0
TABLE(3) = 7.0
TABLE(4) = 7.0
TABLE(5) = 2.0
IPRINT = 1
CALL GRPES (NGROUP, TABLE, CLON CWDTH, |PRINT, STAT)
END
Output
Statistics from GRPES
Sum fregs. 23. 0000
Mean 0. 0870
Std. dev. 1.1246
2nd nonent 1.2098
2nd, adj. 1. 1265
3rd nonent -0.2293
3rd, adj. -0. 2510
4t h nmonent 3.3292
4th, adj. 2. 7960
Medi an 0.1429

The node is not defined, since no class has higher
frequency than all others.

The geonetric and harnmoni c means are not defined, since
the | ower bound is negative.
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CSTAT/DCSTAT (Single/Double precision)

Compute cell frequencies, cell means, and cell sums of squares for multivariate
data.

Usage

CALL CSTAT (1 DO, NROW NCOL, X, LDX, NR, |RX, |FRQ |W,
MOPT, KMAX, K, CELIF, LDCELI)

Arguments

IDO — Processing option. (Input)

| DO Action

0 This is the only invocation @STAT for this data set, and all the data are
input at once.

1 This is the first invocation, and additional call<CETAT will be made.
Initialization and updating for the dataXrare performed.

2 This is an intermediate invocation@TAT, and updating for the data in

X is performed.

NROW — The absolute value ofR0wis the number of rows of data currently
inputinX. (Input)

NROWMay be positive or negative. NegatieOWvmeans that theNROWrows of

data are to be deleted from some aspects of the analysis, and this should be done
only if I DOis 2. When a negative value is input NROW it is assumed that each

of the—NROWrows ofX has been input (with positiROW in previous

invocations ofCSTAT.

NCOL — Number of columns iX. (Input)

X — |NROW by NCOL matrix containing the data. (Input)
Each column oK represents either a classification variable, a response variable, a
weight, or a frequency.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

NR — Number of response variables. (Input)
NR = 0 means no response variables are input. Otherwise, cell means and sums of
squares are computed for the response variables.

IRX — Vector of lengtNR.  (Input ifNR is greater than 0.)
Thel RX(1), ..., I RX(NR) columns ofX contain the response variables for which
cell means and sums of squares are computed.

IFRQ — Frequency option. (Input)
I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number
| FRQ of X contains the frequencies.
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IWT — Weighting option. (Input)
I WI = 0 means that all weights are 1.0. For positi€, columnl WI of X
contains the weights.

MOPT — Missing value option. (Input)

If MOPT is zero, the exclusion is listwise MDPT is positive, the following occurs:

(1) if a classification variable’s value is missing, the entire case is excluded, (2) if
| FRQ> 0 and the frequency variable’s value is missing, the entire case is
excluded, §) if | W > 0 and the weight variable’s value is missing, the case is
classified and the cell frequency updated, but no information with regard to the
response variables is computed, and (4) if only some response variables’ values
are missing, all computations are performed except those pertaining to the
response variables with missing values.

KMAX — Maximum number of cells. (Input)
This quantity does not have to be exact, but must be at least as large as the actual
number of cellsk.

K — Number of cells or an upper bound for this number. (Input/Output)

On the first calk must be inpuk = 0. It should not be changed between calls to
CSTAT. K is incremented by one for each new cell ugNBX cells. OnceKMAX

cells are encountereH,is incremented by one for each observation that does not
fall into one of thekMAX cells. In this case is an upper bound on the number of
cells and can be used filkAX in a subsequent run.

CELIF — Matrix with minMAX, K) columns containing cell information.
(Output, ifl DO= 0 or 1; input/output, if DO= 2 or 3.)
The number of rows iGELI F depends on the eight cases tabled below.

Case  Description Rowsin CELI F
1 MOPT <0, FRQ=0and Wr =0 NCOL + NR+ 1

2 MOPT<O0,I FRQ>0and Wr =0 NCCL + NR

3 MOPT <0, FRQ=0and Wr >0 NCOL +NR+ 1

4 MOPT <0, FRQ>0and Wr >0 NCCL + NR

5 MOPT > 0,1 FRQ=0 andl Wr =0 NCOL +2* NR+ 1
6 MOPT > 0,1 FRQ>0 and Wr =0 NCOL + 2* NR

7 MOPT > 0,1 FRQ=0 and Wr >0 NCOL + 3* NR

8 MOPT > 0,1 FRQ> 0 andl WI >0 NCOL + 3* NR—-1

Each column contains information on each unique combination of values of the
m classification variables that occurs in the data. Therfingsiws give the

values of the classification variables. Row 1 gives the number of

observations that are in this cell. (For cases 2, 4, 6 and 8, this is the sum of the
frequencies.) For case 3 and 4, now 2 contains the sum of the weights. For

NR greater than zero, the remaining rows (beginning withmom3 in case 3

and 4 and with rown + 2 otherwise) contain information concerning the
response variables. For cases 1, 2, 3 and 4, there*a® Bemaining rows with

the cell (weighted) mean and cell (weighted) sum of squares for each\sf the
response variables. For cases 5 and 6, there*arR3emaining rows with the
sample size, the mean and sum of squares for eachN® theponse variables.
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For case 7 and 8, there are 4 * NR remaining rows with the sample size, the sum
of weights, weighted means, and weighted sum of squares for each of theNR
response variables.

LDCELI — Leading dimension afELI F exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. If no nonmissing observations with positive weights or frequencies exist
in a cell for a particular response variable, the mean and sum of squares
are set to NaN (not a number).

2. In cases 3 and 6, if a zero weight is encountered, there is no contribution
to the means or sums of squares, but the sample sizes are implemented
by one for that observation.

Algorithm

The routineCSTAT computes cell frequencies, cell means, and cell sums of
squares for multivariate dataXn The columns oK can contain data for four

types of variables: classification variables, a frequency variable, a weight
variable, and response variables. The frequency variable, the weight variable, and
the response variables are all designated by indicatoER@ | W, andl RX. All

other variables are considered to be classification variables; hence, there are
classification variables, whene = NCOL — NR if there is no weight or frequency
variable,m=NCOL — NR - 1 if there is a weight or frequency variable but not

both, andn = NCOL — NR - 2 if there are weight and frequency variables.

Each combination of values of the classification variables is stored in the first m
rows ofCELI F. For each combination of values of the classification variables, the
frequencies are stored in the next rovCBE| F. Then, for each combination,

means and sums of squares for each of the response variables are computed and
stored in the remaining rows GELI F. If a weighting variable is specified, the

sum of the weights for each combination is computed and stored. If missing
values are deleted elementwise (that ISDHT is positive), the frequencies and

sums of weights for each of the response variables are stored in the rows of

CELI F.

Example 1

In this example, there are two classification varialflggndC,, and two
response variableR andR,. Their values are shown below.

56 « Chapter 1: Basic Statistics IMSL STAT/LIBRARY



1 2
R R, R R,
1 5.0 34 38 24
c 7.0 2.6 5.2 6.3
2 49 12
R R, R R,
2 4.3 9.8 6.5 34
3.2 7.1 31 51
17 6.3
| NTEGER KMAX, LDCELI, LDX, NR, NCOL
PARAMETER (KMAX=4, LDCELI =15, LDX=10, NR=2, NCOL=4)
C
| NTEGER IDO, IFRQ IRX(NR), W, K, MNO, MOPT, NROW
REAL CELI F(LDCELI , KMAX), X(LDX, NCOL)
CHARACTER CLABEL(1)*6, FMr*7, RLABEL(7)*6
INTRINSIC M NO
EXTERNAL CSTAT, WRRRL
C Get data f exanpl e
DATA X/ 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0,
& 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3,
& 3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 3.1, 3.4, 2.6, 9.8, 7.1, 6.3,
& 2.4, 6.3, 1.2, 3.4, 5.1/
C Al data are input at once
IDO =0
NROW = 10
K =0
C No unequal frequencies or weights
C are used
IFRQ = 0
IW =0
C Response variables are in 3rd and 4th
C col ums
IRX(1) =
IRX(2) =
C Del ete any row containing a nmssing
C val ue
MOPT = 0
C
CALL CSTAT (IDO NROW NCOL, X, LDX, NR, IRX, IFRQ |W, MOPT,
& KMAX, K, CELIF, LDCELI)
C Print the results
CLABEL(1) = 'NONE'’
RLABEL(1) ="'
RLABEL(2) ="'
RLABEL(3) = 'Freq.’
RLABEL(4) = 'Mean 1’
RLABEL(5) ='SS 1’
RLABEL(6) = 'Mean 2’
RLABEL(7) ='SS 2’
FMT  ='(W10.4y
CALL WRRRL ('Statistics for the Cells’, NCOL+NR+1, MINO(KMAX,K),
& CELIF, LDCELI, 0, FMT, RLABEL, CLABEL)
END
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Freq.
Mean 1
SS1
Mean 2
SS 2

Output

Statistics for the Cells

| NTEGER

CWNONEE

00 1.00 2.00 2.00
00 2.00 1.00 2.00
00 3.00 3.00 2.00
00 3.07 4.63 4.80
00 3.41 1.09 5.78
00 7.73 3.30 4.25
32 6.73 14. 22 1.44
Example 2

This example uses the same data as in the first example, except some of the data
are set to missing values. Also, afrequency variableis used. It isin the fourth
column of X. The frequency variable indicates that the values of the classification
and response variables in the first observation occur 3 times and that all other
frequencies are 1. Since MOPT is greater than zero, statistics on one response
variable are accumulated even if the other response variable has a missing value.
If the frequency variable has a missing value, however, the entire observation is
omitted.

The missing value isNaN (not a number) that can be obtained with the argument
of 6in the routine AVMACH (Reference Material). For this example, we set the first
response variable in thefirst cell (C, = 1, C, = 1) to amissing value; we set the
second response variable in the (2, 1) cell to amissing value; and we set the
frequency variablein the (1, 2) cell to amissing value. The data are now as
shown below, with “NaN” in place of the missing values.

G

R R R R

1 NaN 34 3.8 NaN
NaN 34 52 6.3
NaN 34 4.9 12
7.0 2.6

R R R R

2 NaN NaN 6.5 34
32 7.1 31 51
17 6.3

The first two rows output iGELI F are the values of the classification variables,
and the third row is the frequencies of the cells, as before. The next three rows
correspond to the first response variable, and the last three rows correspond to the
second response variable. (This is “case 6” above, where the argtiEhehtis
described.)

KMAX, LDCELI, LDX, NR, NCOL

PARAMETER (KMAX=4, LDCELI =15, LDX=10, NR=2, NCOL=5)

| NTEGER

IDO, IFRQ IRX(NR), IW, K MNO, MOPT, NR
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REAL AVACH, CELI F(LDCELI, KMAX), X(LDX, NCOL)
INTRINSIC M NO
EXTERNAL  AMACH, CSTAT, WRRRN

C Get data for exanple.
DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0,
& 1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3,
& 3.2, 1.7, 3.8, 5.2, 4.9, 6.5 3.1, 3.4, 2.6, 9.8, 7.1, 6.3,
& 2.4, 6.3, 1.2, 3.4, 5.1, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
& 1.0, 1.0, 1.0/
C Al'l data are input at once.
IDO =0
NROW = 10
K =0
C Frequencies are in the 5th col um.
C Al'l weights are equal
IFRQ =5
IWr =0
C Response variables are in 3rd and 4th
C col unms.
IRX(1) =3
IRX(2) = 4
C Set some values to “missing” for
C this example. Specify elementwise
C deletion of missing values of the
C response variables.
MOPT =1
X(1,3) = AMACH(6)
X(6,4) = AMACH(6)
X(3,5) = AMACH(6)
C
CALL CSTAT (IDO, NROW, NCOL, X, LDX, NR, IRX, IFRQ, IWT, MOPT,
& KMAX, K, CELIF, LDCELI)
C Print the results.
CALL WRRRN ('Statistics for the Cells’, NCOL+2*NR, MINO(KMAX,K),
& CELIF, LDCELLI, 0)
END
Output

Statistics for the Cells
1 2 3 4

1.00 1.00 2.00 2.00
1.00 2.00 1.00 2.00
400 2.00 3.00 2.00
1.00 2.00 3.00 2.00
7.00 245 463 4.80
0.00 1.12 1.09 5.78
400 200 2.00 2.00
3.20 6.70 3.75 4.25
0.48 0.32 13.01 1.44

O©CO~NOUAWNPE

MEDPL/DMEDPL (Single/Double precision)

Compute a median polish of atwo-way table.
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Usage
CALL MEDPL (NROW NCOL, TABLE, LDTABL, NMAXI T, PTABLE,

LDPTAB, | TER)
Arguments
NROW — Number of rows in the table. (Input)
NCOL — Number of columns in the table. (Input)
TABLE — NROWby NCOL matrix containing the table. (Input)

LDTABL — Leading dimension ofABLE exactly as specified in the dimension
statement in the calling program. (Input)

MAXIT — Maximum number of polishing iterations to be performed. (Input)
An iteration is counted each time the rows or the columns are polished. The
iterations begin by polishing the rows.

PTABLE — (NROW+ 1) by NCOL + 1) matrix containing the cell residuals from
the fitted table and, in the last row and column, the marginal residuals. (Output)

LDPTAB — Leading dimension tfTABLE exactly as specified in the dimension
statement in the calling program. (Input)

ITER — Number of iterations actually performed. (Output)

Comments
Automatic workspace usage is

MEDPL  max®NROW NCOL) units, or
DVEDPL 2 * max(NROW NCOL) units

Workspace may be explicitly provided, if desired, by use2afPL/DVM2DPL. The
reference is

CALL M2DPL (NROW NCOL, TABLE, LDTABL, NAXI T, PTABLE,
LDPTAB, |TER, WK)

The additional argument is
WK — Work vector of length maxXROwW NCOL).

Algorithm

The routineVEDPL performs a median polish on a two-way table. It first copies
TABLE into PTABLE and fills the last row and last columnRIfABLE with zeroes.

It then computes the row-wise medians, adds these to the values in the last
column and corresponding row, and subtracts them from the other entries in the
corresponding row. Similar computations are then performed fcall + 1
columns. The whole procedure is then repeated (00@/+ 1 rows) until
convergence is achieved (until no changes occur), orNXil T iterations
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are performed. Convergence is known to have occurred if | TERisless than
MAXI T.

As Emerson and Hoaglin (1983) discuss, it is not necessarily desirable to
continue until convergence. If MAXI T is set to twice the maximum of the number
of rows and columns plusfive, it islikely that convergence will occur.

As Emerson and Hoaglin point out, median polish starting with rows can lead to a
different fit from that obtained by starting with columns. Although MEDPL does
not make provision for choosing which dimension to start with, TABLE can be
transposed by use of routine TRNRR (IMSL MATH/LIBRARY). Use of the
transposed table in MEDPL would result in the iterations beginning with the
columns of the original table. Further descriptions of median polish, which was
first proposed by John Tukey, and examples of its use can be found in Tukey
(1977, Chapter 11) and in Velleman and Hoaglin (1981, Chapter 8).

Example

This example is taken from Emerson and Hoaglin (1983, page 168). It involves

data on infant mortality in the United States, classified by father’s education and

by region of the country. In order to show the difference between making only

one polishing pass over the rows and polishing until convergence, on the first
invocationMAXI T is set to one. On a second call, it is set large enough to have
reasonable assurance of execution until convergence. In the first case, the last row
and column oPTABLE are printed. The values in these are the medians before

any polishing. These values approach zero as the polishing continues.

| NTEGER NCOL, NROW
PARAMETER (NCOL=5, NROW:4)

Cc
| NTEGER | TER, LDPTAB, LDTABL, MAXIT, NOUT
REAL PTABLE( NROM-1, NCOL+1), TABLE( NROW NCOL)
EXTERNAL MEDPL, UVACH, WRRRL
c
DATA TABLE/ 25.3, 32.1, 38.8, 25.4, 25.3, 29.0, 31.0, 21.1, 18.2,
& 18.8, 19.3, 20.3, 18.3, 24.3, 15.7, 24.0, 16.3, 19.0, 16.8,
& 17.5/
Cc
CALL UMACH (2, NauT)
MXIT =1
LDTABL = 4
LDPTAB = 5
CALL MEDPL (NROW NCOL, TABLE, LDTABL, MAXI T, PTABLE, LDPTAB,
& | TER)
CALL WRRRL ('Fitted table after one iteration over the rows’,
& NROW+1, NCOL+1, PTABLE, LDPTAB, 0, '(W10.4)',
& 'NONE’, 'NONE")
MAXIT = 15
CALL MEDPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB,
& ITER)
CALL WRRRL ('%/Fitted table and marginal residuals’, NROW+1,
& NCOL+1, PTABLE, LDPTAB, 0, '(W10.4)’, 'NONE’,
& 'NONE’)

WRITE (NOUT,99999) ITER
99999 FORMAT (/, ’ Iterations taken: ', 12)
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END

Output
Fitted table after one iteration over the rows
7.0 7.0 -0.1 0.0 -2.0 18. 3
7.8 4.7 -5.5 0.0 -5.3 24. 3
19.5 11.7 0.0 -3.6 -2.5 19.3
4.3 0.0 -0.8 2.9 -3.6 21.1
0.0 0.0 0.0 0.0 0.0 0.0
Fitted table and narginal residuals
-1.55 0. 00 0. 00 -1.15 0. 60 -1.45
1.55 0. 00 -3.10 1.15 -0.40 2.25
10. 85 4. 60 0. 00 -4.85 0. 00 -0.35
-3.25 -6.00 0. 30 2.75 0.00 0. 35
8.10 6. 55 -0.55 0.70 -3.05 20. 20

Iterations taken: 15

62 « Chapter 1: Basic Statistics IMSL STAT/LIBRARY



Chapter 2: Regression

Routine
2.1. Simple Linear Regression
Straight INe fit ......oooiii e RLINE 79
Simple linear regression analysis...........ccccceeeeeeeie e, RONE 82
Response control by a fitted lINe.........ccccevviiiiiiiee RINCF 90
Inverse prediction by a fitted line..........ccccccevviii RINPF 94
2.2. Multivariate General Linear Model Analysis
2.2.1 Model Fitting
From raw data for a single dependent variable....................... RLSE 98
From COVArANCES ......cooiiiiiiiiiiiie et RCOV 104
From raw data without classification variables..................... RGIVN 107
From raw data with classification variables........................... RGLM 117
With linear equality restrictions ..........cccccovcveeeiiiieeeiiiieeens RLEQU 131
2.2.2 Statistical Inference and Diagnostics
Summary statistics for a fitted regression............ccccvvvvveenn. RSTAT 141
Variance-covariance
matrix of the estimated coefficients ............cccccceeeeiiiiiinnne RCOVB 152
Construction of a completely testable hypothesis................. CESTI 157
Sums of crossproducts for a multivariate hypothesis .......... RHPSS 163
Tests for the multivariate linear hypothesis............ccccccoeee. RHPTE 170
Test for lack of fit based on exact replicates.............ccc........ RLOFE 176
Test for lack of fit based on near replicates ..............cccoc.... RLOFN 182
Intervals and diagnostics for individual cases...................... RCASE 191
Diagnostics for outliers and influential cases............cccco....... ROTIN 201
2.2.3  Utilities for Classification Variables
Getting unique values of classification variables ................. GCLAS 207
Generation of regressors for a general linear model .......... GRGLM 210
2.3. Variable Selection
All best regressions via leaps-and-bounds algorithm .......... RBEST 214
StEPWISE FEQIESSION..uuuiiiieeeiiiiiiiieeeee e e sestree e e e e e e e snrrarreaeaes RSTEP 221
Generalized sweep of a nonnegative definite matrix.......... GSWEP 230
Retrieval of a symmetric submatrix
from a Symmetric MatriX .........coocvvveeiiiieeeniiiceeee e RSUBM 233
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2.4, Polynomial Regression and Second-Order Models

2.4.1 Polynomial Regression Analysis
Polynomial fit of known degree..........ccooeiiiiiieiiniiiiiiieeeen, RCURV 237
Polynomial regression analysis ...........cccccoeeeeeee e, RPOLY 241

2.4.2 Second-Order Model Design
Generation of an orthogonal central composite design...... RCOMP 248

2.4.3  Utility Routines for Polynomial Models and Second-Order Models

Polynomial regression fit ..........cccccoe oo, RFORP 252
Summary statistics for a fitted polynomial model ................ RSTAP 258
Case statistics for a fitted polynomial model ....................... RCASP 263
Generation of orthogonal polynomials............ccccccoviiiiennnne. OPOLY 269
Centering of variables and generation of crossproducts.....GCSCP 272
Transforming coefficients for a second order model ........... TCSCP 277
2.5. Nonlinear Regression Analysis
Nonlinear regression fit............cccooe e, RNLIN 280
2.6. Fitting Linear Models Based on Criteria Other Than Least Squares
Least absolute value regresSSion..........cocoveveeiieeeeiiiieee e RLAV 293
Least L, NOrM regression ..., RLLP 297
Least maximum value regreSSion..........coccveeeviiveeeiiiieeeseenns RLMV 308

Usage Notes

Simple Linear Regression
The simple linear regression model is
Yi =Bo +Byx +g  i=12...,n

where the observed values of they,'s constitute the responses or values of the
dependent variable, elx;'s are the settings of the independent (explanatory)
variable B, andp, are the intercept and slope parameters, respectively, and the
g;/'s are independently distributed normal errors each with mean zero and variance

0.

RoutineRLI NE (page 79) fits a straight line and computes summary statistics for
the simple linear regression model. There are no options with this routine.

RoutineRONE (page 82) analyzes a simple linear regression model. Re®INE
requires a data matrix as input. There is an option for excluding the intggcep

from the model. The variablesy, weights (optional), and frequencies (optional)
must correspond to columns in this matrix. The simple linear regression model is
fit, summary statistics are computed (including a test for lack of fit), and
confidence intervals and diagnostics for individual cases are computed. There are
options for printing and plotting the results.

64 « Chapter 2: Regression IMSL STAT/LIBRARY



Routines RI NCF (page 90) and RI NPF (page 94) solve the inverse regression
(calibration) problem using afitted simple linear regression. Routines RLI NE
(page 79) or RONE can be used to compute the fit. Routine RI NCF estimates
settings of the independent variable that restrict, at a specified confidence
percentage, y to a given specified range. Routine RI NPF computes a confidence
interval on the setting of the independent variable for a given response y,,.

Multiple Linear Regression
The multiple linear regression model is
Yi =Bo +B1Xix +BoXin +...+BiXy t€  1=12,...,n

where the observed values of they;’'s constitute the responses or values of the
dependent variable, thg's, X;5's, ..., X;'S are the settings of theindependent
(explanatory) variableg,, B, ..., B, are the regression coefficients, andgpe

are independently distributed normal errors each with mean zero and variance

0.

RoutineRLSE (page 98) fits the multiple linear regression model. There is an
option for excluding the interceft. There are no other options. The responses
are input in a one-dimensional arrgyand the independent variables are input in
a two-dimensional array that contains the individual cases as the rows and the
variables as the columns.

By specifying a single dependent variable, eitk@rvN (page 107) oRCOV

(page 104) can also be used to fit the multiple linear regression. (These routines
are designed to fit any number of dependent variables simultaneously. See the
section “Multivariate General Linear Model” on page 67.)

RoutineRG WN fits the model using fast Givens transformations. For large data
sets that cannot be stored in a single arayyN is designed to allow multiple
invocations. In this case, only some of the rows from the entire data set are input
at any one time. Alternatively, the data set can be input in a single array.

RoutineRCoV fits the multiple linear regression model from the sum of squares
and crossproducts matrix for the datg %, ..., X, ¥). RoutineCORVC (page 314)

can compute the required sums of squares and crossproducts matrix for input into
RCOV. RoutineRORDM (page 1268) can reorder this matrix, if required.

Three routines in the IMSL MATH/LIBRARY can be used for fitting the
multiple linear regression model. Routin@QRR (IMSL MATH/LIBRARY)
computes the fit via the Householder QR decomposition. RoOUSBRR

(IMSL MATH/LIBRARY) computes the fit via iterative refinement. Routine
LSVRR (IMSL MATH/LIBRARY) computes the singular value decomposition of
a matrix. Routines SQRR andLSBRR use the regressors and dependent variable
as two input arrays. RoutingVRR computes the singular value decomposition
of the matrix of regressors, from which the regression coefficients can be
obtained. Kennedy and Gentle (1980, section 8.1) discuss some of the
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computational advantages and disadvantages of the various methods for least-
sguares computations.

No Intercept Model

Several routines provide the option for excluding the intercept from amodel. In
most practical applications, the intercept should be included in the model. For
routines that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts
matrix asinput in place of the corrected sums of squares and crossproducts. The
raw sum of squares and crossproducts matrix can be computed as (X, Xo, ---, X,

Y) T (X, X, .-+, X, ¥) USiNg the matrix multiplication routine MXTXF
(IMSL MATH/LIBRARY).

Variable Selection

Variable selection can be performed by RBEST (page 214), which does all best
subset regressions, or by RSTEP (page 221), which does stepwise regression. In
either case, the sum of squares and crossproducts matrix must first be formed.
The method used by RBEST is generally preferred over that used by RSTEP
because RBEST implicitly examines all possible modelsin the search for a model
that optimizes some criterion while stepwise does not examine all possible
models. However, the computer time and memory requirements for RBEST can be
much greater than that for RSTEP when the number of candidate variablesis
large.

Two utility routines GSWEP (page 230) and RSUBM (page 233) are provided also
for variable selection. Routine GSWEP performs a generalized sweep of a
nonnegative define matrix. Routine RSUBMcan be invoked after either GSWEP or
RSTEP in order to extract the symmetric submatrix whose rows and columns have
been swept, i.e., whose rows and columns have entered the stepwise model.
Routines GSWEP and RSUBMcan be invoked prior to RBEST in order to force
certain variables into al the models considered by RBEST.

Polynomial Model
The polynomial model is
— 2 k -
Vi =Bo tB1X +Box" +....+BX +g  1=12,...,n
where the observed values of they;’'s constitute the responses or values of the

dependent variable, thes are the settings of the independent (explanatory)
variables B, B, ..., B; are the regression coefficients, anddfeare

independently distributed normal errors each with mean zero and vasfance

RoutineRCURV (page 237) fits a specified degree polynomial. RowRr@.Y

(page 241) determines the degree polynomial to fit and analyzes this model. If
only a decomposition of sum of squares for first, secondk-th degree effects

in a polynomial model is required, eitrREURV or the service routineFORP
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(page 252) can be used to compute this decomposition. The other service routines
(RSTAP, page 258, RCASP, page 263, OPOLY, page 269) can be used to perform
other parts of the full analysis.

Multivariate General Linear Model
Routines for the multivariate general linear model use the model
Y=XB+¢

where Y isthe n x g matrix of responses, X isthe n x p matrix of regressors, B is
the p x q matrix of regression coefficients, and € isthe n x g matrix of errors
whose g-dimensional rows are identically and independently distributed
multivariate normal with mean vector 0 and variance-covariance matrix .

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variabl es,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression
models may look quite different, the models are essentially the same. The term
general linear model emphasizes that a common notational schemeis used for
specifying amodel that may contain both continuous and classification variables.

A generd linear model is specified by its effects (sources of variation). We refer
to an effect asa single variable or a product of variables. (The term effect is often
used in anarrower sense, referring only to a single regression coefficient.) In
particular, an effect is composed of one of the following:

1 asingle continuous variable

2. asingle classification variable

3. several different classification variables

4, several continuous variables, some of which may be the same

5. continuous variables, some of which may be the same, and classification

variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effectsin analysis of variance models. Effects of the
third type appear asinteractionsin analysis of variance models. Effects of the
fourth type appear in polynomia models and response surface models as powers
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of
parallelism of aregression function across the groups.

The specification of ageneral linear model is through arguments| NTCEP,
NCLVAR, | NDCL, NEF, NVEF, and | NDEF, whose meanings are as follows:
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INTCEP — Intercept option. (Input)

I NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

NCLVAR — Number of classification variables. (Input)

INDCL — Index vector of lengthNCLVAR containing the column numbers>of
that are the classification variables. (Input)

NEF — Number of effects (sources of variation) in the model excluding error.
(Input)

NVEF — Vector of lengtiNEF containing the number of variables associated
with each effect in the model. (Input)

INDEF — Index vector of lengtRVEF(1) + NVEF(2) + ... + NVEF(NEF).

(Input)

The firstNVEF(1) elements give the column numberXdbr each variable in the
first effect. The nextVEF(2) elements give the column numbers for each variable
in the second effect.. The lastNVEF(NEF) elements give the column numbers

for each variable in the last effect.

Suppose the data matrix has as its first 4 columns two continuous variables in
columns 1 and 2 and two classification variables in columns 3 and 4. The data
might appear as follows:

Column 1 Column 2 Column 3 Column 4
11.23 1.23 1.0 5.0
12.12 2.34 1.0 4.0
12.34 1.23 1.0 4.0
4.34 221 1.0 5.0
5.67 431 2.0 4.0
412 5.34 2.0 1.0
4.89 9.31 2.0 1.0

9.12 371 2.0 1.0

Each distinct value of a classification variable determines a level. The
classification variable in column 3 has two levels. The classification variable in
column 4 has three levels. (Integer values are recommended, but not required, for
values of the classification variables. If real numbers are used, the values of the
classification variables corresponding to the same level must be identical.) Some
examples of regression functions and their specifications are as follows:
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INTCEP NCLVAR |INDCL NEF NVEF | NDEF

Bo + BiX 1 0 1 1 1
Bo+Bix + B’ 1 0 2 12 11,1
W+ 0 1 1 3 1 1 3
H+a;+ Bj +Y; 1 2 34 3 1,12 3434
Wy 0 2 34 1 2 34
Bo+Bx +Bx+B 1 0 30 112 1212
3% %

M+ o+ Bx;+ B 1 1 3 3 112 3113

Routines for Fitting the Model

Routine RGLM(page 117) fits amultivariate general linear model. If the dataset is
too large to be stored in asingle array, RGLMis designed so that multiple
invocations can be made. In this case, one or more rows of the entire data set can
be input at each invocation. Alternatively, the data set can beinput al at oncein a
single array. Index vectors are used to specify the column numbers of the data
matrix used as classification variables, effects, and dependent variables. Thisis
useful if several models with different effects need to be fit from the same data
matrix.

Routine RLEQU (page 131) can be called after RG VN (page 107) or RGLMto
impose linear equality restrictions AB = Z on the regression parameters. RLEQU
checks consistency of the restrictions. Routine RLEQU is useful for fitting spline
functions where restrictions on the regression parameters arise from continuity
and differentiability conditions on the regression function.

Routine RLEQU can be used to test the multivariate general linear hypothesis

AB = Z by fitting the restricted model after the full model isfit. The additional
degrees of freedom for error (and the additional sum of squares and crossproducts
for error) gained in the restricted model can be used for computing atest statistic.
However, a more efficient approach for computing the sum of squares and
crossproducts for amultivariate general linear hypothesisis provided by RHPSS
(page 163). See the next section entitled “Multivariate General Linear
Hypothesis” for a brief description of the problem and related routines.

Two utility routinesGCLAS (page 207) an@RGLM(page 210) are provided to
determine the values of the classification variables and then to use those values
and the specified general linear model to generate the regressors in the model.
These routines would not be required if you B&eMto fit the model sinceGLM

does this automatically. However, if other routines in this chapter are used that
require the actual regressors and not the classification variables, then these
routines could be used.
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Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—

sometimes by design and sometimes by accident. The routines in this chapter are
designed to handle linear dependence of the regressors, irex thmatrix X

(the matrix of regressors) in the general linear model can have rank leps than
Often, the models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5) some care must be taken to use correctly
the results of the fitted nonfull rank regression model for estimation and

hypothesis testing. In the nonfull rank case, not all linear combinations of the
regression coefficients can be estimated. Those linear combinations that can be
estimated are called “estimable functions.” If routines in this chapter are used to
attempt to estimate linear combinations that cannot be estimated, error messages
are issued. A good general discussion of estimable functions is given by Searle
(1971, pages 18(388).

The check used by routines in this chapter for linear dependence is sequential.
Thej-th regressor is declared linearly dependent on the preceding regressors
j — 1 regressors if

2
1-Rima,.j1

is less than or equal WoL. Here,R;; , ;- is the multiple correlation coefficient

of thej-th regressor with the firgt- 1 regressors. Als@CL is a tolerance that
must be input by the user. When a routine declargsttheegressor to be linearly
dependent on the firgt- 1 regressors, theth regression coefficient is set to zero.
Essentially, this removes th¢h regressor from the model.

The reason a sequential check is used is that frequently practitioners include the
variables that they prefer to remain in the model first. Also, the sequential check

is based on many of the computations already performed as this does not degrade
the overall efficiency of the routines. There is no perfect test for linear
dependence when finite precision arithmetic is used. The input of the tolerance
TOL allows the user some control over the check for linear dependence. If you
know your model is full rank, you can inpt@L = 0.0. However, generallyOL

should be input as approximately 100 times the machine epsilon. The machine
epsilon iSAMACH(4) in single precision andvACH(4) in double precision. (See
routinesAMACH andDMACH (Reference Material))

Routines in this chapter performing least squares are basgd on

decomposition oK or on a Cholesky factorizatid®’ R of XX. Maindonald
(1984, chapters-b) discusses these methods extensively. Rimatrix used by
the regression routines is taken to k@xap upper triangular matrix, i.e., all
elements below the diagonal are zero. The signs of the diagonal elenients of
are used as indicators of linearly dependent regressors and as indicators of
parameter restrictions imposed by fitting a restricted model. The roRsari
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be partitioned into three classes by the sign of the corresponding diagonal
element:

1. A positive diagonal element means the row corresponds to data

2. A negative diagonal element means the row correspondsto alinearly
independent restriction imposed on the regression parametersby AB = Z
in arestricted model.

3. A zero diagonal element means alinear dependence of the regressors

was declared. The regression coefficients in the corresponding row of B
are set to zero. This represents an arbitrary restriction which isimposed
to obtain a solution for the regression coefficients. The elements of the
corresponding row of R are also set to zero.

Multivariate General Linear Hypothesis

Routine RHPSS (page 163) computes the matrix of sums of squaresand
crossproducts for the general linear hypothesisH B U = G for the multivariate
general linear model Y = XB + € with possible linear equality restrictions AB = Z.

The R matrix and B from the routines that fit the model are required for input to
RHPSS.

The rows of H must be linear combinations of therows of R, i.e., H B = G must
be completely testable. If the hypothesisis not completely testable, routine CESTI
(page 157) can be used to construct an equivalent completely testable hypothesis.

Routine RHPTE (page 170) computes several test statistics and approximate p-

values for the multivariate general linear hypothesis. The test statistics computed
included are Wilks’ lambda, Roy’s maximum root, Hotelling’s trace, and Pillai’'s
trace. Seber (1984, pages 4036) and Morrison (1976, pages 2224) discuss
the procedures and compare the test statistics. The error sum of squares and
crossproducts matriXSCPE) output from the fit of the model is required for input
to RHPTE. In addition, the hypothesis sum of squares and crossproducts matrix
(SCPH), which can be computed usiRgPSS, is required for input t®RHPTE.

Nonlinear Regression Model

The nonlinear regression model is
yi = f(x;0)+g; 1=12...,n

where the observed values of tis constitute the responses or values of the
dependent variable, thes are the known vectors of values of the independent
(explanatory) variableg$,is a known function of an unknown regression
parameter vectd, and theg;'s are independently distributed normal errors each

with mean zero and variance.
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Routine RNLI N (page 280) performs the least-squares it to the data for this
model. The routine RCOVB (page 152) can be used to compute the large sample
variance-covariance matrix of the estimated nonlinear regression parameters from
the output of RNLI N.

Weighted Least Squares

Routines throughout the chapter generally allow weights to be assigned to the
observations. The argument | WI is used throughout to specify the weighting
option. (I WI = 0 means ordinary least squares; a positive | W means weighted
least squares with weightsin column| WI of the data set.) All of the weights must
be nonnegative. For routines requiring a sum of squares and crossproducts matrix
for input, aweighted analysis can be performed by using as input a weighted sum
of squares and crossproducts matrix. Routine CORVC (page 314) in Chapter 3,
“Correlation,” can compute the required weighted sum of squares and
crossproducts matrix.

Computations that relate to statistical inference, etgstsF tests, and
confidence intervals, are based on the multiple regression model except that the

variance of; is assumed to equa? (or Z in the multivariate case) times the
reciprocal of the corresponding weight.

If a single row of the data matrix corresponds;tobservations, the argument

I FRQcan be used to specify the frequency opti¢tRQ = 0 means that for all
rows,n; = 1; a positiveé FRQ means the frequencies are entered into colurRQ

of the data matrix. Degrees of freedom for error are affected by frequencies, but
are unaffected by weights.

Summary Statistics

Summary statistics for a single dependent variable are computed by several
routines in the regression chapter. The routR@¢ (page 82)RLSE (page 98),
RSTEP (page 221), an&POLY (page 241) output some summary statistics with
the fit of the the model. For additional summary statistics, the rolRBTs
(page 141) an&STAP (page 258) can be used.

RoutineRSTAT can be used to compute and print statistics related to a regression
for each of the dependent variables fitted RAE VN (page 107)RG.M(page
117),RLEQU (page 131), oRCOV (page 104). RoutinBSTAT computes summary
statistics that include the model analysis of variance table, sequential sums of
squares an#-statistics, coefficient estimates, estimated standard etrors,
statistics, variance inflation factors, and estimated variance-covariance matrix of
the estimated regression coefficients. If only the variance-covariance matrix of
the estimated regression coefficients in needed, roRG@eB (page 152) can be
used.

The summary statistics are computed under the nyod&B + €, wherey is then
x 1 vector of responseX,is then x p matrix of regressors with rar(=r, 3 is
thep x 1 vector of regression coefficients, anis then x 1 vector of errors
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whose elements are independently normally distributed with mean 0 and variance

a*iw,.

1

Given the results of aweighted least-squares fit of this model (with thew;’s as the
weights), most of the computed summary statistics are output in the following
variables:

AQV — a one-dimensional array usually of length 153mEP, AQV is of length

13 because the last last two elements of the array cannot be computed from the
input. The array contains statistics related to the analysis of variance. The sources
of variation examined are the regression, error, and total. The first 10 elements of
AOV and the notation frequently used for these is described in the following table:

Model Analysis of Variance Table

Sour ce of Degr ees of Sum of Mean Square F p-value
Variation  Freedom Squares

Regression DFR=AOV(1) SSR=AOV(4) MSR=AOV(7) AOV(9) AOV(10)
Error DFE=AOV(2) SSE=AQV(5) &= AOV(8)

Total DFT=AOV(3) SST=A0V(6)

In the case an intercept is indicated{CEP = 1), the total sum of squares is the
sum of squares of the deviationsypfrom its (weighted) mean

y

—the so-calledtorrected total sum of squares, it is denoted by
n
SST =% wi(y, -¥)°
i=1
In the case an intercept is not indicateNTCEP=0), the total sum of squares is

the sum of squares gf—the so-calledorrected total sum of squares, it is
denoted by

n
SST =3 wiy
1=1
The error sum of squares is given by
n
SSE = wi(y, ~9;)?
i=1

The error degrees of freedom is defined by
DFE =n-r
The estimate o’ is given by
s’ = SSE/DFE
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which isthe error mean sguare.

The computed F statistic for the null hypothesisH, : 3, =B, = ... = B, = 0versus
the alternative that at least one coefficient is nonzero is given by
F=MSR/S

The p-value associated with the test is the probability of an F larger than that
computed under the assumption of the model and the null hypothesis. A small p-
value (less that 0.05) is customarily used to indicate that there is sufficient
evidence from the data to reject the null hypothesis.

The remaining 5 elementsin AOV frequently are displayed together with the actual

analysis of variance table. The quantities R-squared (R2 = AOV(11)) and adjusted
R-squared

R2 = AOV(12)
are expressed as a percentage and are defined by
R® = 100(SSR/SST) = 100(1 — SSE/SST)

2
R2 =100max{0,1- ——
SST / DFT

The square root of sz(s = AOV(13)) isfrequently referred to as the estimated
standard deviation of the model error.

The overall mean of the responses

<

isoutput in (AOV(14)).
The coefficient of variation (CV = AOV(15)) is expressed as a percentage and is

defined by
CV =100s/y
COEF — a two dimensional array containing the regression coefficient vector
B

as one column and associated statistics (including the estimated standatd error,
statistic ang-value) in the remaining columns.

SQSS — a two dimensional array containing sequential sums of squares as one
column and associated statistics (including degrees of freddstatistic, ang-
value) in the remaining columns.

COVB — the estimated variance-covariance matrix of the estimated regression
coefficients.
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Tests for Lack of Fit

Tests for lack of fit are computed for simple linear regression by RONE (page 82),
for the polynomial regression by routines RPOLY (page 241) and RSTAP (page
258) and for multiple regression by routines RLOFE (page 176) and RLOFN (page
182).

In the case of polynomial regression, the two-dimensional output array TLOF
contains the lack of fit F tests for each degree polynomia 1, 2, ..., k, that isfit to
the data. These tests are useful for indicating the degree of the polynomial
required to fit the data well.

In the case of simple and multiple regression, the one-dimensional output array
TESTLF of length 10 contains the analysis of variance table for the test of lack of
fit. Two routines RLOFE and RLOFN can be used to compute atest for lack of fit.
Routine RLOFE requires exact replicates of the independent variables, i.e., there
must be at least two cases in the data set that have the same settings of al the
independent variables, while RLOFN does not require exact replicates.
Customarily, one would require there to be several sets of duplicate settings of the
independent variablesin order to use RLOFE.

For RLOFE, the 10 elements of TESTLF and the notation frequently used for these
is described in the following table:

Lack of Fit Analysis of Variance Table

Sour ce of Degrees of Sum of Squares Mean F p-value
Variation Freedom Square
Lack of Fit TESTLF(1)  TESTLF(4) TESTLF(7)  TESTLF(9) TESTLF(10)
Error DFPE = SSPE = TESTLF(5)  TESTLF(8)

TESTLF(2)
Pure Error DFE = SSE = TESTLF(6)

TESTLF(3)

For RLOFN, the 10 elements of TESTLF are similar to those in the previous table.
However, since there may not be exact replicates in the data, the data are grouped
into sets of near replicates. Then, instead of computing a pure error (or within)
sum of squares using a one-way analysis of variance model, an expanded one-way
analysis of covariance model using the clusters of near replicates as the groupsis
computed. The error from this expanded model replaces the pure error in the
preceding table in order to compute an exact F test for lack of fit conditional on
the selected clusters.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by several routines
in the regression chapter. Routines RONE (page 82), and RPOLY (page 241) output
diagnostics for individual cases with thefit. If the fit of the model is done
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by other routines, RCASE (page 191) and RCASP (page 263) can be used to
compute the diagostics.

Routine RCASE computes confidence intervals and diagnostics for individual
casesin the data matrix. The cases can be stored in a single data matrix or
multiple invocations can be made in which one or more rows of the entire data set
areinput at any one time. Statistics computed by RCASE include predicted values,
confidence intervals, and diagnostics for detecting outliers and cases that greatly
influence the fitted regression.

If not all of the statistics computed by RCASE are needed, ROTI N (page 201) can
be used to obtain some of the statistics.

The diagnostics are computed under themodel y = Xp + €, wherey isthen x 1
vector of responses, X isthen x p matrix of regressors with rank(X) =r, Bisthep
x 1 vector of regression coefficients, and € isthe n x 1 vector of errors whose
elements are independently normally distributed with mean 0 and variance

ozlwl-.

Given the results of aweighted least-squares fit of this model (with thew;’s as the
weights), the following five diagnostics are computed: (1) leverage, (2)
standardized residual, (3) jackknife residual, (4) Cook’s distance, and (5)
DFFITS. These diagnostics are stored in the FORTRAN maage. The
definition of these terms is given in the discussion that follows:

Letx; be a column vector containing the elements of-therow ofX. A case
could be unusual either becausear because of the respongeTheleverage
h;is a measure of unusualness ofth&he leverage is defined by

h = [xiT(XTW X) x }Wi

whereW = diag{v, , w,, ..., w,) and Q(TW X)~ denotes a generalized inverse of

XWX, The average value of tigs isr/n. Regression routines declaganusual
if h; > 2r/n. A row labelX is printed beside a case that is unusual becausexpf of

Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage
point) when this occurs.

Let e; denote the residual
Yi =Y

for thei-th case. The estimated varianceeds (1- h,-)szlwi wheres’ is the
residual mean square from the fitted regression.i-Thstandardized residual
(also called the internally studentized residual) is by definition

Wi

r.: -
T 2a-n)
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and r; follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involvesthe difference betweenyy;
and its predicted value based on the data set in which the i-th case is deleted. This
difference equals /(1 - h;). The jackknife residua is obtained by standardizing
this difference. The residual mean square for the regression in which thei-th case
isdeleted is

2 2
@ = (n=ns’ ~wie’ /(=)
n-r-1
The jackknife residual is defined to be
Wi

2(1-h
s (1-h)
and t; follows at distribution with n — r — 1 degrees of freedom. The regression
routines declare y; unusual (an outlier) if ajackknife residual greater than 2.0in

absolute value is computed. A row label Y is printed beside a case that is unusual
because of y;.

t=¢

Cook’sdistancefor the i-th case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as

= w;he”
L orsf(1-h)?

Weisberg (1985) states that if D; exceeds the 50-th percentile of the F(r, n—r)

distribution, it should be considered large. (This value is about 1. This statistic
does not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. Foithhease,
DFFITS is computed by the formula

w: h
DFFITS, =& |-
s (1-h)?

Hoaglin and Welsch (1978) suggest that DFFliEQreater than

24rin

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables

2 2
(X1, X2, X1 4 X5, % X2)
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is often needed. L ogarithms of the independent variables are a so often used. (See
Draper and Smith, 1981, pages 218-222, Box and Tidwell, 1962, Atkinson, 1985,
pages 177-180, Cook and Weisherg, 1982, pages 78-86.)

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation can often be selected so that the
transformed model is linear in the regression parameters. For example, the
exponential model

y= gPotPrx ¢

by taking natural logarithms on both sides of the equation, can be transformed to
amodel that satisfies the linear regression model provided the ;s have a log
normal distribution (Draper and Smith, pages-225).

When the responses are nonnormal and their distribution is known, a
transformation of the responses can often be selected so that the transformed
responses closely satisfy the regression model assumptions. The square root
transformation for counts with a Poisson distribution and the arc-sine
transformation for binomial proportions are common examples (Snedecor and
Cochran, 1967, pages 32830, Draper and Smith, pages 2339).

If the distribution of the responses is not known, the data can be used to select a
transformation so that the transformed responses may more closely obey the
regression model. For a positive response variabl®, the family of power
transformations indexed Ry

o L2 ifa#0

Iny  ifA=0

and generalizations of this family are useful. ROUBGER (page 629) (See

Chapter 8, “Time Series Analysis and Forecasting”) can be used to perform the
transformation. A method to estimate and to compute an approximate test for

A =1 is given by Atkinson (1973). Also, Atkinson (1986) discusses

transformation deletion statistics for computing the estimate and test leaving out a
single observation since the evidence for a transformation of the response may
sometimes depend crucially on one or a few observations.

y

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. The least absolute value
(LAV, L) criterion yields the maximum likelihood estimate when the errors
follow a Laplace distribution. RoutirRLAV (page 293) is often used when the
errors have a heavy tailed distribution or when a fit is needed that is resistant to
outliers.
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A more general approach, minimizing theL,, norm (p = 1), is given by routine
RLLP (page 297). Although the routine requires about 30 times the CPU time for
the case p = 1 than would the use of RLAV, the generality of RLLP allows the user
to try several choicesfor p = 1 by simply changing the input value of p in the
calling program. The CPU time decreases as p gets larger. Generally, choices of p
between 1 and 2 are of interest. However, the L,, norm solution for values of p
larger than 2 can also be computed.

The minimax (LMV, L,,, Chebyshev) criterion is used by RLMWV (page 308). Its
estimates are very sensitive to outliers, however, the minimax estimators are quite
efficient if the errors are uniformly distributed.

Missing Values

NaN (not a number) is the missing value code used by the regression routines.

Use function AMACH(6) (or function DMACH(6) with double precision regression

routines) to retrieve NaN. (See the section “Machine-Dependent Constants” in
Reference Material.) Any element of the data matrix that is missing must be set to
AVACH(6) (or DMACH(6) for double precision). In fitting regression models, any

row of the data matrix containing NaN for the independent, dependent, weight, or
frequency variables is omitted from the computation of the regression parameters.

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by including additional rows in the data matrix. These
additional rows should contain the desired settings of the independent variables
along with the responses set equal to NaN. The cases with NaN will not be used
in determining the estimates of the regression parameters, and a predicted value
and confidence interval will be computed from the given settings of the
independent variables.

RLINE/DRLINE (Single/Double precision)

Fit a line to a set of data points using least squares.

Usage

CALL RLINE (NOBS, XDATA, YDATA, BO, B1l, STAT)
Arguments

NOBS — Number of observations. (Input)

XDATA — Vector of lengtitNOBS containing thex-values. (Input)
YDATA — Vector of lengtiNOBS containing the/-values. (Input)
B0 — Estimated intercept of the fitted line. (Output)

IMSL STAT/LIBRARY

Chapter 2: Regression « 79



B1 — Estimated slope of the fitted line. (Output)
STAT — Vector of length 12 containing the statistics described below. (Output)

STAT(1)

Mean ofXDATA

Mean ofYDATA

Sample variance 0fDATA

Sample variance ofDATA
Correlation

Estimated standard error B
Estimated standard error Bf
Degrees of freedom for regression
Sum of squares for regression

10 Degrees of freedom for error

11 Sum of squares for error

12 Number of X, y) points containing NaN (not a number) as eithextbe
y value

O©oo~NOOODWNE —

Comments

Informational error
Type Code
4 1 Eachx, y) point contains NaN (not a number). There are no
valid data.

Algorithm

RoutineRLI NE fits a line to a set of( y) data points using the method of least
squares. Draper and Smith (1981, pageé9) discuss the method. The fitted
model is

)7:&0*'[}1)(

WhereBO (stored inBO) is the estimated intercept aﬁq (stored inB1) is the

estimated slope. In addition to the fit,| NE produces some summary statistics,
including the means, sample variances, correlation, and the error (residual) sum

of squares. The estimated standard erroé(pand fﬂl are computed under the

simple linear regression model. The errors in the model are assumed to be
uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In thisRiaeE setsBl

to zero and3 to the mean of thg values.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981,
Table 1.1, pages-33). The responsgis the amount of steam used per month
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(in pounds), and the independent variable x is the average atmospheric
temperature (in degrees Fahrenheit).

INTEGER  NOBS
PARAMETER  ( NOBS=25)

C
INTEGER  NOUT
REAL BO, Bl, STAT(12), XDATA(NOBS), YDATA(NOBS)
CHARACTER CLABEL(13)*15, RLABEL(1)*4
EXTERNAL  RLINE, UVACH, WRRRL
C

DATA XDATA/ 35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,
57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,
74.5, 72.1, 58.1, 44.6, 33.4, 28.6/

DATA YDATA/ 10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,
7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.009,
8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/

DATA RLABEL/'NONE’/, CLABEL/ ’, 'Mean of X', 'Mean of Y’,

& 'Variance X', 'Variance Y’, 'Corr.’, 'Std. Err. BO’,

& 'Std. Err. B, 'DF Reg.’, 'SS Reg.’, 'DF Error’,

& 'SS Error’, 'Pts. with NaN'’/

R R0 RoRo

CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) B0, B1
99999 FORMAT (' BO =, F7.2,” Bl =", F9.5)
CALL WRRRL (%/STAT’, 1, 12, STAT, 1, 0, (12W10.4), RLABEL,
& CLABEL)
C
END

Output
BO= 13.62 B1= -0.07983

STAT
Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. BO
52.6 9.424 298.1 2.659 -0.8452 0.5815

Std. Err.B1 DF Reg. SSReg. DFError SS Error Pts. with NaN
0.01052 1 45.59 23 18.22 0
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Figure 2-1 Plot of the Data and the Least Squares Line

RONE/DRONE (Single/Double precision)

Anayze asimple linear regression model.

Usage

CALL RONE (NOBS, NCOL, X, LDX, INTCEP, I RSP, IND, |FRQ
| WI, | PRED, CONPCM CONPCP, | PRI NT, AOV, CCEF,
LDCCEF, COVB, LDCOVB, TESTLF, CASE, LDCASE,
NRM SS)

Arguments

NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

INTCEP — Intercept option. (Input)

| NTCEP Action
0 An intercept is not in the model.
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1 Anintercept isin the model.

IRSP — Column number RSP of X contains the data for the response
(dependent) variable. (Input)

IND — Column number ND of X contains the data for the independent
(explanatory) variable. (Input)

IFRQ — Frequency option. (Input)

I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number

| FRQof X contains the frequencies.Xfl , | FRQ) = 0.0, none of the remaining
elements of row of X are referenced, and updating of statistics is skipped for
rowl .

IWT — Weighting option. (Input)
| WI = 0 means that all weights are 1.0. For positw&, column number W of
X contains the weights.

IPRED — Prediction interval option. (Input)

I PRED = 0 means that prediction intervals are computed for a single future
response. For positivePRED, a prediction interval is computed on the average of
future responses, and column numib@RED of X contains the number of future
responses in each average.

CONPCM — Confidence level for two-sided interval estimates on the mean, in
percent. (Input)

CONPCM percent confidence intervals are computed, hes@d?CMmust be

greater than or equal to 0.0 and less than 1@@WCMoften will be 90.0, 95.0,

or 99.0. For one-sided intervals with confidence |&&CL, whereONECL is
greater than or equal to 50.0 and less than 100.@oseCM= 100.0- 2.0*

(100.0— ONECL).

CONPCP — Confidence level for two-sided prediction intervals, in percent.
(Input)

CONPCP percent prediction intervals are computed, he@CRPCP must be
greater than or equal to 0.0 and less than 1@@WPCP often will be 90.0, 95.0,
or 99.0. For one-sided intervals with confidence |&&CL, whereONECL is
greater than or equal to 50.0 and less than 100.@oseCP = 100.0- 2.0*

(100.0— ONECL).

IPRINT — Printing option. (Input)

| PRI NT Action

0 No printing is performed.

1 AQV, CCEF, TESTLF, and unusual rows @ASE are printed.

2 AQV, CCEF, TESTLF, and unusual rows @ASE are printed. A plot of the
data with the regression line is printed.

3 All printing is performed. A plot of the data with the regression line, a

plot of the standardized residuals versus the independent variable, and a
half-normal probability plot of the standardized residuals are printed.
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AQV — Vector of length 15 containing statistics relating to the analysis of
variance. (Output)

AOV( 1)

Degrees of freedom for regression
Degrees of freedom for error

Total degrees of freedom

Sum of squares for regression

Sum of squares for error

Total sum of squares

Regression mean square

Error mean square

F-statistic

p-value

R (in percent)

12 Adjusted®’ (in percent)

13 Estimated standard deviation of the model error
14 Mean of the response (dependent) variable
15 Coefficient of variation (in percent)

P OoO~NOOThWNPE —

[EnY
= O

If I NTCEP = 1, the regression and total are corrected for the meBNTUEP = O,
the regression and total are not corrected for the meamGu(tl4) andaov(15)
are set to NaN (not a number).

COEF — | NTCEP + 1 by 5 matrix containing statistics relating the regression
coefficients. (Output)

If I NTCEP = 1, the first row corresponds to the intercept. ROWCEP + 1
corresponds to the coefficient for the slope. The statistics in the columns are

Col. Description

Coefficient estimate

Estimated standard error of the coefficient estimate
t-statistic for the test that the coefficient is zero
p-value for the two-sidetltest

Variance inflation factor

G wWDN P

LDCOEF — Leading dimension afOEF exactly as specified in the dimension
statement in the calling program. (Input)

COVB — | NTCEP + 1 byl NTCEP + 1 matrix that is the estimated variance-
covariance matrix of the estimated regression coefficients. (Output)

LDCOVB — Leading dimension afOvB exactly as specified in the dimension
statement in the calling program. (Input)

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model. (Output)

Elem. Description
1 Degrees of freedom for lack of fit
2 Degrees of freedom for pure error
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Degrees of freedom for error (TESTLF(1) + TESTLF(2))
Sum of squares for lack of fit

Sum of squares for pure error

Sum of squares for error

Mean sgquare for lack of fit

Mean square for pure error

F statistic

10 p-value

©oo~NOO UL~ W

If there are no replicates in the data set, atest for lack of fit cannot be performed.
In this case, elements 7, 8, 9, and 10 of TESTLF are set to NaN (not a number).

CASE — NOBS by 12 matrix containing case statistics. (Output)
Columns 1 through 12 contain the following:

Col. Description

Observed response
Predicted response
Residual

Leverage
Standardized residual
Jackknife residual
Cook’s distance
DFFITS

9,10 Confidence interval on the mean
11, 12 Prediction interval

O~NO U WNPEP

LDCASE — Leading dimension afASE exactly as specified in the dimension
statement in the calling program. (Input)

NRMISS — Number of rows of data encountered containing missing values for
the independent, dependent, weight, or frequency variables. (Output)

NaN (not a number) is used as the missing value code. Any rewarftaining

NaN as a value of the independent, dependent, weight, or frequency variables is
omitted from the computations for fitting the model.

Comments
1. Automatic workspace usage is

RONE 4 * NOBS units, or
DRONE 7 * NOBS units.

Workspace may be explicitly provided, if desired, by use of

R2NE/DR2NE. The reference is

CALL R2NE (NOBS, NCOL, X, LDX, INTCEP, |RSP, |ND,
IFRQ | WI, | PRED, CONPCM CONPCP, | PRI NT,

AQOV, CCEF, LDCCEF, COvB, LDCOVB, TESTLF,
CASE, LDCASE, NRM SS, WK, WK)

The additional arguments are as follows:
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| NTEGER
PARAMETER
&

| NTEGER
REAL

&
EXTERNAL

IWK — Work vector of lengtiNOBS.
WK — Work vector of length 3 NOBS.

2. Informational errors
Type Code
3 5 CONPCMis less than 50.0. Confidence percentages
commonly used are 90.0, 95.0, and 99.0.
3 6 CONPCP is less than 50.0. Confidence percentages
commonly used are 90.0, 95.0, and 99.0.
4 1 Negative weight encountered.
4 2 Negative frequency encountered.
4 7 Each row of contains NaN.
Algorithm

RoutineRONE performs an analysis for the simple linear regression model. In
addition to the fit, summary statistics (analysis of varianissts, lack-of-fit test),

and confidence intervals and diagnostics for individual cases are computed. With
the printing option, diagnostic plots can also be produced. Draper and Smith
(1981, chapter 1) give formulas for many of the statistics computBGNEy For
definitions of the case diagnostics (store€ASE), see the introduction to

Chapter 2 (page 75).

Example 1

This example fits a line to a set of data discussed by Draper and Smith (1981,
pages 933). The responsgis the amount of steam used per month (in pounds),
and the independent variablés the average atmospheric temperature (in degrees
Fahrenheit). The PRI NT = 1 option is selected. Hence, plots are not produced
and only unusual cases are printed. Note in the case analysis, with the default
page width, the observation number and the associated 12 statistics require two
lines of output. (RoutinBGOPT, page 1263, can be invoked to increase the page
width to put all 12 statistics on the same line.) Also note that observation 11 is
labeled with a Y” to indicate an unusugl (response). The residual for this case is
about 2 standard deviations from zero.

I NTCEP, LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS

(NOBS=25, LDX=25, LDCASE=25, | NTCEP=1, NCOEF=| NTCEP+1,
LDCOEF=NCCEF, LDCOVB=NCCEF, NCOL=2)

IFRQ IND, IPRED, |PRINT, RSP, |W, NRM SS
AOV(15), CASE(LDCASE, 12), COEF(LDCOEF,5), CONPCM
CONPCP, COVB( LDCOVB, NCOEF), TESTLF(10), X(LDX, NCOL)
RONE

J),J=1,2) /35.3, 10.98/

J),J=1,2) /29.7, 11.13/

J),J=1,2) 1/30.8, 12.51/

J),J=1,2) /58.8, 8.40/

J),J=1,2) /61.4, 9.27/

J),J=1,2) /71.3, 8.73

J),J=1,2) /74.4, 6.36/
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DATA (X(8,J3),J=1,2) /76.7, 8.50/
DATA (X(9,J),J=1,2) /70.7, 7.82/
DATA (X(10,J),J=1,2) /57.5, 9.14/
DATA (X(11,J),J=1,2) /46.4, 8.24/
DATA (X(12,J),J=1,2) /28.9, 12.19/
DATA (X(13,J),J=1,2) /28.1, 11.88/
DATA (X(14,J),J=1,2) /39.1, 09.57/
DATA (X(15,J),J=1,2) /46.8, 10.94/
DATA (X(16,J),J=1,2) /48.5, 9.58/
DATA (X(17,J),J=1,2) /59.3, 10.09/
DATA (X(18,J),J=1,2) /70.0, 8.11/
DATA (X(19,J),J=1,2) /70.0, 6.83/
DATA (X(20,J),J=1,2) /74.5, 8.88/
DATA (X(21,J),J=1,2) /72.1, 7.68/
DATA (X(22,J),J=1,2) /58.1, 8.47/
DATA (X(23,J),J=1,2) /44.6, 8.86/
DATA (X(24,J),J=1,2) /33.4, 10.36/
DATA (X(25,J),J=1,2) /28.6, 11.08/
C
IRSP =2
| ND =1
IFRQ =0
| WI =0
IPRED =0
CONPCM = 95.0
CONPCP = 99.0
IPRINT = 1
CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, |FRQ |W,
& | PRED, CONPCM CONPCP, | PRI NT, AOV, COEF, LDCOEF,
& COVB, LDCOVB, TESTLF, CASE, LDCASE, NRM SS)
C
END
Output
R- squar ed Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Mdel Error Mean Var. (percent)
71. 444 70. 202 0. 8901 9.424 9. 445
* * * Anal ysis of Variance * * *
Sum of Mean Prob. of
Sour ce DF Squar es Square Overall F Larger F
Regr essi on 1 45. 59 45. 59 57. 543 0. 0000
Resi dual 23 18. 22 0.79
Corrected Tot al 24 63. 82
* * * |nference on Coefficients * * *
St andard Prob. of Vari ance
Coef . Estimate Error t-statistic Larger |t] Inflation
1 13.62 0. 5815 23.43 0. 0000 10. 67
2 -0.08 0. 0105 -7.59 0. 0000 1.00
* * * Test for Lack of Fit * * *
Sum of Mean Prob. of
Sour ce DF Squar es Square Overall F Larger F
Lack of fit 22 17. 40 0. 7911 0. 966 0. 6801
Pure error 1 0. 82 0. 8192
Resi dual 23 18. 22
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Qbs.

Cook's D DFFITS 95.0% CI
8.2400 9.9189
-0.4497

Y 11

0.0886

| NTEGER
PARAMETER
&

| NTEGER
REAL

&
EXTERNAL

DATA (X(1,

Cbserved Predicted

* * * Case Analysis * * *
Resi dual Lever age
95.0% CI 99.0% Pl 99.0% PI
-1.6789 0.0454 -1.9305 -2.0625
9.5267 10.3112 7.3640 12.4739

Std. Res. Jack Res.

17.5

5.0

G e [ A S B B

40.0 60.0
P

Temperature (
Figure 2-2 Plot of Line and 99% One-at-a-Time Prediction Intervals

Example 2

This examplefitsaline to a data set discussed by Draper and Smith (1981, pages
38-40). The data set contains several repeated x values in order to assess lack of
fit of the straight line. The IPRINT =1 option is selected. Hence, plots are not
produced and only unusual cases are printed. Note in the case analysis that
observations 1 and 2 are labeled with &htb indicate an unusualvalue. Each
have leverage 0.1944 that exceeds the average leverpfye—02/24 by a factor
of 2.

| NTCEP, LDCASE, LDCCEF, LDCOVB, LDX, NCOEF, NCOL, NOBS

(I NTCEP=1, NCOL=2, NOBS=24, LDCASE=NOBS, LDX=NOBS,

NCCEF=I NTCEP+1, LDCOEF=NCCEF, LDCOVB=NCOEF)

| FRQ IND, |PRED, I|PRINT,
AOV(15), CASE(LDCASE, 12),
CONPCP, COVB( LDCOVB, NCOEF)
RONE

RSP, | W, NRM SS
COEF( LDCOEF, 5), CONPCM
TESTLF(10), X(LDX, NCOL)

J),Jd=1,2) /2.3, 1.3/
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DATA (X(2,J),J=1,2) /1.8, 1.3/
DATA (X(3,J),J=1,2) /2.8, 2.0/
DATA (X(4,J),J=1,2) /1.5, 2.0/
DATA (X(5,3),J3=1,2) /2.2, 2.7/
DATA (X(6,J),J=1,2) /3.8, 3.3/
DATA (X(7,J),J=1,2) /1.8, 3.3/
DATA (X(8,J),J=1,2) /3.7, 3.7/
DATA (X(9,J),J=1,2) /1.7, 3.7/
DATA (X(10,J),J=1,2) /2.8, 4.0/
DATA (X(11,J),J=1,2) /2.8, 4.0/
DATA (X(12,J),J=1,2) /2.2, 4.0/
DATA (X(13,J),J=1,2) /5.4, 4.7/
DATA (X(14,J),J=1,2) /3.2, 4.7/
DATA (X(15,J),J=1,2) /1.9, 4.7/
DATA (X(16,J),J=1,2) /1.8, 5.0/
DATA (X(17,J),J=1,2) /3.5, 5.3/
DATA (X(18,J),J=1,2) /2.8, 5.3/
DATA (X(19,J),J=1,2) /2.1, 5.3/
DATA (X(20,J),J=1,2) /3.4, 5.7/
DATA (X(21,J),J=1,2) /3.2, 6.0/
DATA (X(22,J),J=1,2) /3.0, 6.0/
DATA (X(23,J),J=1,2) /3.0, 6.3/
DATA (X(24,J),J=1,2) /5.9, 6.7/
C
IRSP =1
| ND =2
IFRQ =0
| WI =0
IPRED =0
CONPCM = 95.0
CONPCP = 95.0
IPRINT = 1
CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, |FRQ |W,
& | PRED, CONPCM CONPCP, | PRI NT, AOV, COEF, LDCOEF,
& COVB, LDCOVB, TESTLF, CASE, LDCASE, NRM SS)
END
Output
R- squar ed Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Mdel Error Mean Var. (percent)
22.983 19. 483 0. 9815 2.858 34.34
* * * Anal ysis of Variance * * *
Sum of Mean Prob. of
Sour ce DF Squar es Square Overall F Larger F
Regr essi on 1 6. 32 6. 325 6. 565 0.0178
Resi dual 22 21.19 0. 963
Corrected Tot al 23 27.52
* * * |nference on Coefficients * * *
St andard Prob. of Vari ance
Coef . Estimate Error t-statistic Larger |t] Inflation
1 1.436 0. 5900 2.435 0. 0235 8.672
2 0. 338 0. 1319 2.562 0.0178 1. 000
* * * Test for Lack of Fit * * *
Sum of Mean Prob. of
Sour ce DF Squar es Square Overall F Larger F

IMSL STAT/LIBRARY

Chapter 2: Regression ¢ 89



Lack of fit 11 8.72 0.793 0. 700 0.7183
Pure error 11 12. 47 1.134
Resi dual 22 21.19

* * * Case Analysis * * *
bs. Ohserved Predicted Resi dual Leverage Std. Res. Jack Res.
Cook'sD DFFITS 95.0% ClI 95.0% CI 95.0% Pl 95.0% PI

X 1 23000 1.8756 0.4244 0.1944 0.4817 0.4731
0.0280 0.2324 0.9783 2.7730 -0.3489 4.1002
X 2 18000 1.8756 -0.0756 0.1944 -0.0859 -0.0839
0.0009 -0.0412 0.9783 2.7730 -0.3489 4.1002
Y 13 54000 3.0245 23755 0.0460 2.4780 2.8515
0.1481 0.6264 2.5877 3.4612 0.9426 5.1063
Y 24 59000 3.7002 2.1998 0.1537 2.4363 2.7855
0.5391 1.1873 2.9021 4.4983 15138 5.8866

0.20

0.15 —

0.05

OO e e e e I

2 4 6 8 10 12 14 16 18 20 22 24
Observation Number

Figure 2-3 Plot of Leverages hjand the Average (p/n = 2/24)

RINCF/DRINCF (Single/Double precision)

Perform response control given afitted simple linear regression model.

Usage

CALL RINCF (SUMWTF, DFE, INTCEP, B, XYMEAN, SSX, S2,
SWTFY0, CONPER, YLOWER, YUPPER, XLOWER,
XUPPER)
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Arguments

SUMWTF — Sum of products of weights with frequencies from the fitted
regression. (Input, ifNTCEP = 1)

In the ordinary case when weights and frequencies are albloméfF equals the
number of observations.

DFE — Degrees of freedom for error from the fitted regression. (Input)

INTCEP — Intercept option. (Input)

| NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

B — Vector of length NTCEP + 1 containing a least-squares solution for the
intercept and slope. (Input)

| NTCEP I nter cept Slope
0 B(1)
1 B(1) B(2)

XYMEAN — Vector of length 2 containing the variable means. (Input)
XYMEAN(1) is the independent variable mesWVEAN(2) is the dependent
variable mean. If NTCEP = 0, XYMEAN is not referenced and can be a vector of
length one.

SSX — Sum of squares for the independent variable. (Input)
If I NTCEP = 1,SSX is the sums of squares of deviations of the independent
variable from its mean. OtherwisgSX is not corrected for the mean.

S2 — &, the estimate af” from the fitted regression. (Input)

SWTFYO — S2/SWIFYO0 is the estimated variance of the future response (or
future response mean) that is to be controlled. (Input)

In the ordinary case, when weights and frequencies are alb\WreYo is the
number of observations in the response mean that is to be controlled.
SWIFY0 = 0.0 means the true response mean is to be controlled.

CONPER — Confidence level for a two-sided response control, in percent.
(Input)

CONPER percent limits are computed; henC&NPER must be greater than or
equal to 0.0 and less than 1000ONPER often will be 90.0, 95.0, or 99.0. For
one-sided control with confidence lev@®ECL, whereONECL is greater than or
equal to 50.0 and less than 100.0,GaPCM= 100.0- 2.0* (100.0— ONECL).

YLOWER — Lower limit for the response. (Input)
YUPPER — Upper limit for the response. (Input)

XLOWER — Lower limit on the independent variable for controlling the
response. (Output)
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XUPPER — Upper limit on the independent variable for controlling the
response. (Output)

Comments
Informational errors
Type Code
4 1 The slope is not significant at the (*0DONPER) percent
level. Control limits cannot be obtained.
4 2 The computed lower limKL OVER, exceeds the computed

upper limit, XUPPER. No satisfactory settings of the
independent variable exist to control the response as specified.

Algorithm

RoutineRI NCF estimates settings of the independent variable that restrict, at a
specified confidence percentage, the averageraidomly drawn responses to a
given acceptable range (or the true mean response to a given acceptable range),
using a fitted simple linear regression model. The results of raritingE (page

79) orRONE (page 82) can be used for input iRIANCF. The simple linear

regression model is assumed:

V=B +Bixt+e 1=1,2,...,n+k

where thee/'s are independently distributed normal errors with mean zero and

varianceo2lw,-. Here,n is the total number of observations used in the fit of the
line, i.e.,n =DFE + | NTCEP + 1. Also,k is the number of additional responses
whose average is to be restricted to the specified rangev,/Eha&re the weights.

The methodology is based on Graybill (1976, pages288). The estimate of
o, § (stored inS2), is the usual estimate af from the fitted regression based
on the firsth observations. First, a test of the hypothékis;, = 0 vs.

H,: B, # 0 at levelo = 1 - CONPER/100 is performed. IH, is accepted, the model
becomey; =, + €;, and limits forx to control the response are meaningless
sincex is no longer in the model. In this case, a type 4 fatal error is issuég. If

is rejected antﬂSl is positive, a lower limit (upper limit) for stored in
XLOWER(XUPPER) is computed for the case wh&wl'FYO0 is positive by

ci PN, s a . a . (%-W’
a a\y E1 W, > e Wi > Law; (x = %)
wherey, is the value stored MLOAER(YUPPER) and where
t2s?

S Lawi (% - %)

— /2
a=pB1 -
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and t isthe 50 + CONPER/2 percentile of the t distribution with DFE degrees of
freedom. In the formula, the symbol + is used to indicate that + is used to
compute XLOWER with y,, = YLOWER, and — is used to compute XUPPER with

Yo = YUPPER. If H, isrejected and [31 is negative, alower limit (upper limit) for x
stored in XL OWER(XUPPER) is computed for the case where SWIFYO is positive by
asmall modification. In particular, the symbol * is then taken so that + is used to
compute XLOWER with Y, = YUPPER, and — is used to compute XUPPER with y, =
YLOVER. These limits actually have a confidence coefficient less than that
specified by CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN)

and the sum of squares for x (stored in SSX) are all weighted. When the variances

of theg,’s are all equal, ordinary least squares must be used, this corresponds to
allw; = 1.

The previous discussion can be generalized to the case where an intercept is not

in the model. The necessary modifications are tf & 0,5 = 0 and to
replace the first term under the square root symbol by Zetwy; zero, andy by
zero.

In order to restrict the true mean response to a specified range, i.eSWitref®
is zero, the formulas are modified by replacing the second term under the square
root symbol with zero.

Example

This example estimates the settings of the independent variable that restrict, at
97.5% confidence, the true mean response to a upper bound of -4.623, using a
fitted simple linear regression model. The fitted model excludes the intercept
term. To accomplish one-sided cont@NPER is set to 10G- 2(100- 97.5)

= 95, andvLOVER is set to an arbitrary value less thasPPER. The output for
XLOVER furnishes the lower bound famecessary to contrgl

INTEGER | NTCEP
PARAVETER (| NTCEP=0)

C
| NTEGER NOUT
REAL B(1 NTCEP+1), CONPER, DFE, ONECL, S2, SSX, SUMWMF,
& SWIFYO, XLOWER, XUPPER, XYMEAN(1l), YLOWER, YUPPER
EXTERNAL RI NCF, UVACH
C
DATA B/ -. 079829/
C
SUMMF = 25.0
DFE =24.0
SSX = 76323.0
S2 = 0.7926
SWFYO = 0.0
ONECL = 97.5
CONPER = 100.0 - 2*(100. 0- ONECL)
YUPPER = -4.623
YLONER = -9.0
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CALL RINCF (SUMATF, DFE, |NTCEP, B, XYMEAN, SSX, S2, SWIFYO,
& CONPER, YLOWER, YUPPER XLOWER, XUPPER)
CALL UMACH (2, NOUT)

WRITE (NOUT,*) ’XLOWER ="', XLOWER,’ XUPPER ="', XUPPER

END

Output
XLOWER =63.1747 XUPPER = 104.07

RINPF/DRINPF (Single/Double precision)

Perform inverse prediction given afitted ssmple linear regression model.

Usage

CALL RINPF (SUMWTF, DFS2, INTCEP, B, XYMEAN, SSX, S2,
CONPER, IYO, SWTFYO, YO, XOHAT, XLOWER,
XUPPER)

Arguments

SUMWTF — Sum of products of weights with frequencies from the fitted
regression. (Input, ifNTCEP = 1)

In the ordinary case when weights and frequencies are alboW&fF equals the
number of observations used in the fit of the model.

DFS2 — Degrees of freedom for estimateodf (Input)

If 1 YO = 1,DFS2 is the degrees of freedom for error from the fitted regression. If
I YO = 0,DFS2 is the pooled degrees of freedom from the estimate of sigma-
squared based on the fitted regression and the additional responses used to
compute the mearp.

INTCEP — Intercept option. (Input)

I NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

B — Vector of length NTCEP + 1 containing a least-squares solution for the
intercept and slope. (Input)

I NTCEP I nter cept Slope
0 B(1)
1 B(1) B(2)

XYMEAN — Vector of length 2 with the mean of the independent and dependent
variables, respectively. (Input,liNTCEP = 1)
If I NTCEP = 0, XYMEAN is not referenced and can be a vector of length 1.
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SSX — Sum of squares for  (Input)
If | NTCEP = 1,SSX is the sum of squares of deviationsxdfom its mean. If
I NTCEP = 0, SSX must not be corrected for the mean.

S2 — &, the estimate of the variance of the error in the model. (Input)

If 1 YO= 1,S2 is the estimate af* from the fitted regression. Ify0= 0, S2 is the
pooled estimate af” based on the fitted regression, and the additional responses
used to compute the meg0.

CONPER — Confidence level for the interval estimation. (Input)

CONPER must be expressed as a percentage between 0.0 anddIPER often

will be 90.0, 95.0, 99.0. For one-sided confidence intervals with confidence level
ONECL, SetCONPER = 100.0- 2.0* (100.0— ONECL).

1'YO — Option foryo. (Input)

YO M eaning
0 YO0 is a sample mean of one or more responses.
1 Y0 is the true mean response.

SWTFYO — Sum of products of weights with frequenciesYor (Input, if

I YO = 0)

In the ordinary case, when weights and frequencies are ab\WwheYo is the
number of observations used to obtain the m@arf | YO = 1, SWIFYO is not
referenced.

YO — Value of the response variable for which an interval estimate of the
corresponding independent variable value is desired. (Input)

XOHAT — Point estimate of the independent variable. (Output)

XLOWER — Lower limit of the interval estimate for the independent variable.
(Output)

XUPPER — Upper limit of the interval estimate for the independent variable.
(Output)

Comments
Informational errors
Type Code
3 2 The slope is not significant at the (X0CONPER)% level.

Confidence limitXLOAER andXUPPER cannot be obtained.

Algorithm

RoutineRI NPF computes a confidence interval on the independent variable
settingx, for a given responsg from the results of a straight line fit. Heyg,

may represent the meanlkofesponses or the true mean response. The results of
routineRLI NE (page 79) oRONE (page 82) can be used for input iRIGNPF.

The simple linear regression model is assumed,
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Yi =Bo +Bix+g  i=12..,n+k

wheretheg,’s are independently distributed normal errors with mean zero and

varianceo’/w;. Here,n is the total number of observations used in the fit of the

line, i.e.,n = DFE + | NTCEP + 1 whereDFE is the degrees of freedom from the
fitted regression. Alsd is the number of additional responses used to determine
Yo- Thew;'s are the weights that must be used in the fit of the model. The

methodology is discussed by Graybill (1976, pages-288). For the case when
1 YO = 1, the estimate af’, § (stored inS2), is the usual estimate of from the

fitted regression based on the fingtbservations. If YO = 0, the estimate of is
a pooled estimator based on the fitted regression ardrésponses that produce

Yo-
This pooled estimator (stored 82) is given by
&2 = S Lawi (v =Bo =Bri) + S a5~ Yo)°
(n-2)+(k-12)

where (- 2) + k- 1) (stored irDFS2) is the pooled degrees of freedom $or
First, a point estimat& (stored inXOHAT) is computed by

Yo ~ f‘o
B1

Then, a test of the hypothesis : 3, = 0 vs.H, : B, # 0 is performed. IH, is
accepted, the model becomgs 3, + €;, and therefore no confidence interval
exists forx, because it is no longer in the model. In this case, a type 3 warning
error is issued. IH, is rejected, a confidence interval exists and is computed for
the case YO =1 by

%+ ) s a_ . a . ~-y)°
a aly tw Yy W > iLawi(x; - %)

)/ZO:

where
- t252
> Wi (X = X)?
andt is the 50 +CONPER/2 percentile of the distribution withDFS2 degrees of

freedom. The interval actually has a confidence coefficient less than that specified
by CONPER.

In the weighted case, which was discussed earlier, the means (StoY&EAN)
and the sum of squares fo(stored inSSX) are all weighted. When the
variances of the,’s are all equal, ordinary least squares must be used, this
corresponds to all,= 1.
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Modifications are necessary to the preceding discussion for other cases. For the
case when an intercept is not in the model, let B = 0,3 = O the pooled

degrees of freedom of s* equal to (n — 1) + (k — 1), and replace the first term
under the square root symbol with zero, X with zero, and Y with zero.

For the case of the true response mean, i.e, when | YO = 1, replace the second
term under the square root symbol by zero.

Example

This example fitsalineto a set of data discussed by Draper and Smith (1981,
Table 1.1, page 9). The response y is the amount of steam used per month (in
pounds), and the independent variable x is the average atmospheric temperature
(in degrees Fahrenheit). A 95% confidence interval for the temperature x, is
computed given a single response of y, = 10.

INTEGER  NOBS
PARAVETER  ( NOBS=25)

C
INTEGER | NTCEP, 1Y0, NOUT
REAL B(2), BO, Bl, CONPER DFS2, S2, SSX, STAT(12),
& SUMATF, SWIFYO, XOHAT, XDATA(NOBS), XLOWER, XUPPER
& XYMEAN(2), YO, YDATA(NOBS)
EXTERNAL  RINPF, RLINE, UMACH
C
DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,
& 57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,
& 74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
DATA YDATA/ 10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,
& 7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,
& 8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
C
CALL RLINE (NOBS, XDATA, YDATA, BO, Bl, STAT)
SUMMTE = NOBS
DFS2 = STAT(10)
INTCEP =1
B(1) = BO
B(2) = Bl
XYMEAN( 1) = STAT(1)
XYMEAN( 2) = STAT(2)
SSX = STAT(3)*( NOBS- 1)
s2 = STAT(11)/ STAT(10)
CONPER = 95.0
1 YO =0
SWIFYO = 1.0
YO = 10.0
CALL R NPF (SUMWTF, DFS2, |INTCEP, B, XYMEAN, SSX, S2, CONPER
& | YO, SWIFYO, YO, XOHAT, XLOWER XUPPER)

CALL UMACH (2, NOUT)
WRITE (NOUT,*) '’XOHAT =, XOHAT
WRITE (NOUT,*) (XLOWER,XUPPER) = (, XLOWER, ’,’, XUPPER, ’)’
END
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Output
XOHAT = 45. 3846
( XLOWER, XUPPER) = (20. 2627, 69. 347)

RLSE/DRLSE (Single/Double precision)

Fit amultiple linear regression model using least squares.

Usage
CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)

Arguments
NOBS — Number of observations. (Input)

Y — Vector of lengtiNOBS containing the dependent (response) variable.
(Input)
NIND — Number of independent (explanatory) variables. (Input)

X — NOBS by NI ND matrix containing the independent (explanatory) variables.
(Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

INTCEP — Intercept option. (Input)

I NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

B — Vector of length NTCEP + NI ND containing a least-squares solutf@rfor
the regression coefficients. (Output)

For1 NTCEP = 0, the fitted value for observations B(1) * X(I, 1) +B(2) *
X(1,2) +... +B(NIND) * X(I , NI ND).

For| NTCEP = 1, the fitted value for observatioris B(1) +B(2) * X(I, 1) +... +
B(NIND + 1)* X(I , NI ND).

SST — Total sum of squares. (Output)
If | NTCEP = 1, the total sum of squares is corrected for the mean.

SSE — Sum of squares for error. (Output)
Comments
1. Automatic workspace usage is

RLSE (I NTCEP + NI ND)> + 5* NI ND+ 4* | NTCEP + 2 units, or
DRLSE 2* (I NTCEP + NI ND)” + 10* NI ND+ 8* | NTCEP + 4 units.
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Workspace may be explicitly provided, if desired, by use of
R2SE/DR2SE. The referenceis

CALL R2SE (NOBS, Y, NIND, X, LDX, |INTCEP, B, SST,
SSE, R LDR DFE, NRM SS, WVK)

The additiona arguments are as follows:

R — I NTCEP + NI ND by | NTCEP + NI ND upper triangular matrix
containing thek matrix from aQR decomposition of the matrix of
regressors. (Output)

All of the diagonal element d&® are taken to be nonnegative. The rank

of the matrix of regressors is the number of positive diagonal elements,

which equalNOBS — NRM SS - DFE.

LDR — Leading dimension @R exactly as specified in the dimension
statement in the calling program. (Input)

DFE — Degrees of freedom for error. (Output)

NRMISS — Number of rows in the augmented matkxY) containing
NaN (not a number). (Output)

If a row contains NaN, that row is excluded from all other computations.

WK — Work vector of length 5 NI ND+ 4* | NTCEP + 2.

2. Informational error
Type Code
3 1 The model is not full rank. There is not a unique least-

squares solution. If thie-th diagonal element & is
zero,B(1 ) is set to zero in order to compute a solution.

Algorithm

RoutineRLSE fits a multiple linear regression model with or without an intercept.

If I NTCEP = 1, the multiple linear regression model is

Yi =Bo *B1Xig *BoXip +...+PyXi tE 1=12,...,n
where the observed values of §iie (input inY) constitute the responses or
values of the dependent variable, ¥jés, x,,’s, ..., X;'s (input inX) are the
settings of thé& (input inNI ND) independent variableBy, B, ..., B, are the
regression coefficients whose estimated values are outpuaird theg;'s are
independently distributed normal errors each with mean zero and vasfance
Here,n is the number of valid rows in the augmented max;xy), i.e.n equals

NOBS — NRM SS (the number of rows that do not contain NaN).Nf CEP = 0, 3,
is not included in the model.
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Routine RLSE computes estimates of the regression coefficients by minimizing
the sum of squares of the deviations of the observed response y; from the fitted

response
Y,

for the n observations. This minimum sum of squares (the error sum of sgquares) is

output and denoted by

SSE = ;(Yi -9)?

In addition, the total sum of squares is output. For the case, | NTCEP = 1, the total
sum of squaresisthe sum of squares of the deviations of y; from its mean

y

—the so-calledorrected total sum of squares; it is denoted ¥
A 2
SST=3% (Vi -V
i=1

For the caseéNTCEP = 0, the total sum of squares is the sum of squargs-ghe
so-calleduncorrected total sum of squares; it is denoted by

n
SST=3
=1

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and maxangples.

In order to compute a least-squares solutRusE performs an orthogonal
reduction of the matrix of regressors to upper triangular form. If the user needs
the upper triangular matrix output for subsequent computing, the réaiste

can be invoked in place 8L SE. (See the description &in Comment 1). The
reduction is based on one pass through the rows of the augmented Xpajrix (
using fast Givens transformations. (See rout8RE MG andSROTM Golub and

Van Loan, 1983, pages 156-162, Gentleman, 1974.) This method has the
advantage that the loss of accuracy resulting from forming the crossproduct
matrix used in the normal equations is avoided.

With | NTCEP = 1, the current means of the dependent and independent variables
are used to internally center the data for improved accuracy; beta column
vector containing thith row of data for the independent variables. Xget

represent the mean vector for the independent variables given the data for rows 1,
2, ..., 1. The current mean vector is defined to be

% = > %)
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Thei-th row of data has X; subtracted from it and is then weighted by i/(i — 1).
Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formulafor the sum of squares and
crossproducts matrix:
n T n | T

Z (X =Xa)(% = %p) " = z.—(xi =X )(X —X)

& &i1-1

i=1 =2
An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the first row of R and the first element of B are
updated so that they reflect the statistics for the original (uncentered) data. This

means that the estimate of the intercept and the R matrix are for the uncentered
data

As part of the final computations, RLSE checks for linearly dependent regressors.
If thei-th regressor is alinear combination of the firsti — 1 regressors, the i-th
diagonal element of Ris close to zero (exactly zero if infinite precision arithmetic
could be used) prior to the final computations. In particular, linear dependence of
the regressorsis declared if any of the following three conditionsis satisfied:

e A regressor equals zero.

e Two or more regressors are constant.

N Rz, i

islessthan or equal to 100 x £ where € is the machine epsilon. (For RLSE,

€ = AMACH(4) and for DRLSE, € = DMACH(4). See routines AMACH and DMACH
(Reference Materia)). Here, R;; , . ; isthe multiple correlation coefficient of
the i-th independent variable with the firsti — 1 independent variables. If no
intercept isin the model (I NTCEP = 0), the “multiple correlation” coefficient is
computed without adjusting for the mean.

¢ Theresult of

On completion of the final computations, if thih regressor is declared to be
linearly dependent upon the previdus1 regressors, then tivh element o8

and all elements in theth row ofR are set to zero. Finally, if a linear dependence
is declared, an informational (error) message, code 1, is issued indicating the
model is not full rank.

Example 1

A regression model

Yi=Bo +BiXip +BoXpp +Bixz v i=1.2,...,9
is fitted to data taken from Maindonald (1984, pages-203).
| NTEGER I NTCEP, LDX, NCOEF, N ND, NOBS

PARAMETER (I NTCEP=1, NI ND=3, NOBS=9, LDX=NOBS,
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&

| NTEGER
REAL
EXTERNAL

DATA (X(1,

DATA (X(2,
DATA (X(3,

DATA (X(8,
DATA (X(9.

CALL RLSE

NCCOEF=I NTCEP+NI ND)

NOUT
B(NCOEF), SSE, SST, X(LDX, NIND), Y(NOBS)
RLSE, UMACH, WRRRN

J),J=1,NIND)/ 7.0, 5.0, 6.0/, Y(1)/ 7.0/
J),J=1,NIND)/ 2.0, -1.0, 6.0/, Y(2)/-5.0/
J),J=1,NIND)/ 7.0, 3.0, 5.0/, Y(3)/ 6.0/
J),J=1,NIND)/-3.0, 1.0, 4.0/, Y(4)/ 5.0/
J),J=1,NIND)/ 2.0, -1.0, 0.0/, Y(5)/ 5.0/
J),J=1,NIND)/ 2.0, 1.0, 7.0/, Y(6)/-2.0/
J),J=1,NIND)/-3.0, -1.0, 3.0/, Y(7)/ 0.0/
J),J=1,NIND)/ 2.0, 1.0, 1.0/, Y(8)/ 8.0/
J),J=1,NIND)/ 2.0, 1.0, 4.0/, Y(9)/ 3.0/

(NOBS, Y, NIND, X, LDX, |INTCEP, B, SST, SSE)

CALL WRRRN ('B’, NCOEF, 1, B, NCOEF, 0)
CALL UMACH (2, NOUT)

WRITE (NOUT )

WRITE (NOUT,99999) 'SST =", SST, ' SSE ="', SSE

99999 FORMAT (A7,

END

F7.2, A7, F7.2)

Output

SST = 156.00 SSE= 4.00

Example 2
A weighted least-squares fit is computed using the model
Yi=Bo+ BiXa +Boxpte;  i=12..,4

and weights 1/i* discussed by Maindonald (1984, pages 67 - 68). In order to
compute the weighted least-squares fit, using an ordinary least squares routine
(RLSB), the regressors (including the column of ones for the intercept term as well
as the independent variables) and the responses must be transformed prior to
invocation of RLSE The transformed regressors and responses can be computed
by using routine SHPROGIMSL MATH/LIBRARY). For thei-th case the
corresponding response and regressors are multiplied by a square root of the i-th
weight. Because the column of ones corresponding to the intercept term in the
untransformed model, is transformed by the weights, this transformed column of
ones must be input to the least squares subroutine as an additional independent
variable along with the option INTCEP = 0.

In terms of the original, untransformed regressors and responses, the minimum
sum of sgquares for error output in SSEis
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n
SSE = zWi (Vi = 9)?
i=1

where here the weight w; = 1/i*. Also, since | NTCEP = 0, the uncorrected total
sum of sguaresis output in SST. In terms of the original untransformed responses,

n
— 2
SST = ZWi Yi
i=1
| NTEGER I NTCEP, LDX, NCOEF, NI ND, NOBS
PARAMETER (I NTCEP=0, NI ND=3, NOBS=4, LDX=NOBS,
& NCOEF=I NTCEP+NI ND)
C
| NTEGER I, NOUT
REAL B(NCOEF), SQRT, SSE, SST, WNOBS), X(LDX, NI ND),
& Y( NOBS)
I NTRINSIC SQRT
EXTERNAL RLSE, SHPROD, UMACH, WRRRN
C
DATA (X(1,J),J=1,NND)/1.0, -2.0, 0.0/, Y(1)/-3.0/
DATA (X(2,J),J=1,NND)/1.0, -1.0, 2.0/, Y(2)/ 1.0/
DATA (X(3,J),J=1,NNND)/1.0, 2.0, 5.0/, Y(3)/ 2.0/
DATA (X(4,J),J=1,NND)/1.0, 7.0, 3.0/, Y(4)! 6.0/
C
DO 10 1=1, NOBS
C Assign weight's
WI) = 1.0/1**2
C Store square roots of weights
W) = SQRT(WI))
10 CONTI NUE
C Transformregressors
DO 20 J=1, NIND
CALL SHPROD (NOBS, W 1, X(1,J3), 1, X(1,J), 1)
20 CONTI NUE
C Transform response
CALL SHPROD (NOBS, W 1, VY, 1, Y, 1)
C
CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)
C

CALL WRRRN ('B’, NCOEF, 1, B, NCOEF, 0)

CALL UMACH (2, NOUT)

WRITE (NOUT*)

WRITE (NOUT,99999) 'SST =, SST,” SSE =", SSE
99999 FORMAT (A7, F7.2, A7, F7.2)

END

Output
B
1-1431
2 0.658
3 0.748

SST= 1194 SSE= 1.01
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RCOV/DRCOV (Single/Double precision)

Fit amultivariate linear regression model given the variance-covariance matrix.

Usage

CALL RCOV (I NTCEP, NI ND, NDEP, COV, LDCOV, XYMEAN, SUMATF,
TOL, B, LDB, R LDR | RANK, SCPE, LDSCPE)

Arguments

INTCEP — Intercept option. (Input)

I NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

NIND — Number of independent (explanatory) variables. (Input)
NDEP — Number of dependent (response) variables. (Input)

COV — NI ND + NDEP by NI ND + NDEP matrix containing the variance-
covariance matrix or sum of squares and crossproducts matrix. (Input)
Only the upper triangle @OV is referenced. The firsl ND rows and columns
correspond to the independent variables, and theélb&st rows and columns
correspond to the dependent variables NFCEP = 0, COV contains raw sums of
squares and crossproductsl. NTCEP = 1, COV contains sums of squares and
crossproducts corrected for the mean. If weighting is desi@dcontains
weighted sums of squares and crossproducts.

LDCOV — Leading dimension afOv exactly as specified in the dimension
statement in the calling program. (Input)

XYMEAN — Vector of lengttNl ND + NDEP containing variable means. (Input,
if | NTCEP = 1)

The firstNI ND elements oKYMEAN are for the independent variables in the same
order in which they appear @0v. The lastNDEP elements oKYMEAN are for the
dependent variables in the same order in which they appeav.itf weighting

is desired XYMEAN contains weighted meansl KITCEP = 0, XYMEAN is hot
referenced and can be a vector of length one.

SUMWTF — Sum of products of weights with frequencies. (Input, if

| NTCEP = 1)

In the ordinary case when weights and frequencies are albloméerF equals the
number of observations.

TOL — Tolerance used in determining linear dependence. (Input)

For RCOV, TOL = 100* AVACH(4) is a common choice. FORCOV,

TOL = 100* DMACH(4) is a common choice. See documentation for routine
AVACH/DMACH (Reference Material).

104 « Chapter 2: Regression IMSL STAT/LIBRARY



B — | NTCEP + NI ND by NDEP matrix containing a least-squares solutBrfor
the regression coefficients. (Output)

Columnj is for thej-th dependent variable. IINTCEP = 1, row 1 is for the
intercept. Row NTCEP +i is for thei-th independent variable. Elements of the

appropriate row(s) oB are set to 0.0 if linear dependence of the regressors is
declared.

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

R — I NTCEP + NI ND by | NTCEP + NI ND upper triangular matrix containing the

R matrix from a Cholesky factorizati®® R of the matrix of sums of squares and
crossproducts of the regressors. (Output)

Elements of the appropriate row(s)R®#re set to 0.0 if linear dependence of the
regressors is declared.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

IRANK — Rank ofR.  (Output)
| RANK less than NTCEP + NI ND indicates that linear dependence of the

regressors was declared. In this case, some roldsark set to zero.

SCPE — NDEP by NDEP matrix containing the error (residual) sums of squares
and crossproducts. (Output)

LDSCPE — Leading dimension 8CPE exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1. Informational error
Type Code
3 1 COV is not a variance-covariance matrix within the
tolerance defined byQL.
2. If COV is not needed, then the partitioned matrix

R B

- SCPE
andA can share the same storage locations. Hdsea matrix,| NTCEP
+ NI ND + NDEP by | NTCEP + NI ND + NDEP, with leading dimensiohDA
and containingcOV in the lastNl ND + NDEP rows and columns &. The
reference is
CALL RCOV (I NTCEP, NI ND, NDEP, A(INTCEP+1, | NTCEP+1),

LDA, XYMEAN, SUMMF, TOL,

A(1, | NTCEP+NI ND+1), LDA, A, LDA,
I RANK, A( 1 NTCEP+NI ND+1, | NTCEP+NI ND+1) , LDA)

IMSL STAT/LIBRARY

Chapter 2: Regression « 105



Algorithm

Routine RCOV fits amultivariate linear regression model given the variance-
covariance matrix (or sum of sguares and crossproducts matrix) for the
independent and dependent variables. Typically, an intercept isto bein the
model, and the corrected sum of sgquares and crossproducts matrix isinput for
COV. Routine CORVC (page 314) can be invoked to compute the corrected sum of
sguares and crossproducts matrix. Routine RORDM (page 1268) can reorder this
matrix, if required. If an intercept is not to be included in the model, araw
(uncorrected) sum of squares and crossproducts matrix must be input for COv;
and SUMATF and XYMEAN are not used in the computations. Routine MXTXF
(IMSL MATH/LIBRARY) can be used to compute the raw sum of squares and
crossproducts matrix.

Routine RCOV is based on a Cholesky factorization of COV. Let k (input in NI ND)
be the the number of independent variables, and d (input in SUMATF) the
denominator used in computing the x means (input in the first k locations of
XYMEAN). The matrix Risformed by computing a Cholesky factorization of the
first k rows and columns of COV. If | NTCEP equals one, the k rows from this
factorization are appended to the initial row

Vd,dxy,...,Jdx,

The resulting R matrix is the Cholesky factor of the X X matrix where X contains
acolumn of ones as its first column and the independent variable settings as its
remaining k columns.

Maindonald (1984, Chapter 3) discusses the Cholesky factorization asit applies
to regression computations.

The routine RCOV checks sequentially for linear dependent regressors. Linear
dependence of the regressorsis declared if

Error! Objects cannot be created from editing field codes.

islessthan or equal to TOL. Here, R;; , ;- isthe multiple correlation coefficient

of the i-th independent variable with the first i — 1 independent variables. If no

intercept isin the model (I NTCEP = 0), the “multiple correlation” coefficient is
computed without adjusting for the mean. When a dependence is declared,
elements of the corresponding rowsRdindB are set to zero. Maindonald (1984,
Sections 3.3, 3.4, and 3.9) discusses these implementation details of the Cholesky
factorization in regression problems.

Example

This example uses a data set from Draper and Smith (1981, page$8@p This

data set is put into the matpixby routineGDATA (page 1302). The first four columns
are for the independent variables, and the last column is for the dependent variable.
RoutineCORVC (page 314) is invoked to compute the corrected
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sum of squares and crossproducts matrix. Then, RCOV isinvoked to compute the
regression coefficient estimates, the R matrix, and the sum of squares for error.

PARAMETER (LDX=13, NDX=5, NI ND=4, NDEP=1, LDCOV=NI ND+NDEP,

& L DSCPE=NDEP)
PARAMETER (| NTCEP=1, LDB=I NTCEP+NI ND, LDR=l NTCEP+NI ND)
REAL XYNEAN( NI ND+NDEP)
REAL X(LDX, NDX), B(LDB, NDEP), R(LDR, | NTCEP+NI ND)
REAL COV( LDCOV, NI ND+NDEP) ,  SCPE( LDSCPE, NDEP)
INTEGER  INCD(1, 1)
C
CALL GDATA (5, 0, NROW NVAR X, LDX, NDX)
C
IFRQ = 0
W =0
MOPT = 0
| COPT = 1
CALL CORVC (0, NRON NVAR X, LDX, IFRQ |W, MOPT, |COPT, XYMEAN,
& COv, LDCOV, INCD, 1, NOBS, NMSS, SUMATF)
C
TOL = 100. 0* AMACH( 4)
CALL RCOV (I NTCEP, NIND, NDEP, COV, LDCOV, XYMEAN, SUMAWF, TOL,
& B, LDB, R LDR IRANK, SCPE, LDSCPE)
C

CALL UMACH (2, NOUT)

WRITE (NOUT,*) 'IRANK =, IRANK, ' SCPE(1,1) =, SCPE(1,1)
CALL WRRRN ('B’, 1, INTCEP+NIND, B, 1, 0)

CALL WRRRN (R’, INTCEP+NIND, INTCEP+NIND, R, LDR, 0)
END

Output
IRANK = 5 SCPE(1,1)= 47.8638

B
1 2 3 4 5
62.40 155 0.51 0.10 -0.14

R
1 2 3 4 5
3.6 269 173.6 42.4 108.2
0.0 204 123 -183 -14.2
00 00 525 1.1 -546
00 00 0.0 125 -129
00 00 00 00 34

GO WNPE

RGIVN/DRGIVN (Single/Double precision)

Fit amultivariate linear regression model viafast Givens transformations.

Usage

CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND,
IDEP, INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R,
LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN,
XMAX)
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Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation &G VN for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callf@ VN will be made.
Initialization and updating for the dataXrare performed.

2 This is an intermediate invocationRii VN, and updating for the data in
X is performed.

3 This is the final invocation of this routine. Updating for the dataand

wrap-up computations are performed.

NROW — The absolute value ofR0wis the number of rows of data currently

input inX. (Input)

NROWMay be positive, zero, or negative. NegatiR®wmeans that theNROW

rows of data are to be deleted from some aspects of the analysis, and this should
be done only if DOis 2 or 3 and the wrap-up computations have not been
performed. When a negative value is inputNBOW it is assumed that each of the
—NROWrows ofX has been input (with positivdROW in previous invocations of

RG VN. Use of negative values 8BROWshould be made with care and with the
understanding thatM N andXMAX cannot be updated properly in this case. It is
also possible that a constant variable in the remaining data will not be recognized
as such.

NCOL — Number of columns iX. (Input)
X — INROW by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

INTCEP — Intercept option. (Input)

| NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IIND — Independent variable option. (Input)

I[IND Meaning

<0 The first=1 I ND columns ofX contain the independent (explanatory)
variables.

>0 Thel | ND independent variables are specified by the column numbers in
| NDI ND.

=0 There are no independent variables.

The regressors are the intercept (fTCEP = 1) and the independent variables.
There ard NTCEP + || | ND| regression coefficients for each dependent variable.

INDIND — Index vector of lengthl ND containing the column numbers)of
that are the independent variables. (Input] MD is positive)
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If 11 NDisnonpositive, | NDI NDis not referenced and can be a vector of length
one.

IDEP — Dependent variable option. (Input)

IDEP Meaning

<0 The last| DEP columns ofX contain the dependent (response) variables.
That is, column$ICOL + | DEP + 1,NCOL + 1 DEP + 2, ..., NCOL contain
the dependent variables.

>0 Thel DEP dependent (response) variables are specified by the column
numbers in NDDEP.

=0 There are no dependent variables. (Generally, this option is not used.
The R matrix from aQR decomposition of a matrix of regressors is
computed.)

INDDEP — Index vector of lengthDEP containing the column numbers>of
that are the dependent variables. (InputDiP is positive)

If | DEP is nonpositive| NDDEP is not referenced and can be a vector of length
one.

IFRQ — Frequency option. (Input)

I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number

| FRQof X contains the frequencies Xl , | FRQ) = 0.0, none of the remaining
elements of row of X are referenced, and updating of statistics is skipped for
rowl .

IWT — Weighting option. (Input)
| WI = 0 means that all weights are 1.0. For positw&, column number W of
X contains the weights.

| SUB — Data centering option. (Input)
If I NTCEP = 0,1 SUB must equal 0.

| SUB Action

0 No centering. This option should be used when (1) the data are already
centered; (2) there is no intercept in the model; or (3) the independent
variables for a large percentage of the data are zero, and sparsity of the
problem needs to be preserved in order that the Givens rotations are
performed quickly.

1 Variables are centered using the method of provisional means for
improved accuracy of the computations. The final estimate for the
intercept and th& matrix are given for the uncentered data. This option
is generally recommended.

TOL — Tolerance used in determining linear dependence. (Input)
ForRAd VN, TOL = 100* AMACH(4) is a common choice. FORG VN, TOL = 100
* DMACH(4) is a common choice. See the documentation for routiviseH and
DVACH (Reference Material).

B — I NTCEP + || | ND| by | DEP| matrix containing a least-squares solution
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A

B

for the regression coefficients on return from the final invocation of this routine.
(Output, if 1| DO= 0 or 1; input/output, if | DO= 2 or 3)

If I NTCEP = 1, row 1isfor theintercept. Row | NTCEP + | isfor thel -th
independent variable. Column j isfor the j-th dependent variable.

IDO  Action
lor2 A current least-squares solution is given by a solution x to the equation
Rx = B.

Oor3 A least-squares solution for the regression coefficientsis returned in B.
Elements of the appropriate row(s) of B are set to 0.0 if linear
dependence of the regressorsis declared.

If | DEP = 0, B is not referenced and can be a vector of length 1.

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

R — I NTCEP + || I ND| byl NTCEP + | | ND| upper triangular matrix containing
the R matrix from aQR decomposition of the matrix of regressors on return from
the final invocation of this routine. (Output) ibO= 0 or 1; input/output, if DO
=2o0r3)

| DO Action

lor2 The current matrix of raw sums of squares and crossproducts for the

regressors can be found RE CdiagD) CR where diagp) is the diagonal
matrix whose diagonal elements are the elements of the ector

0O or3 The matrix of raw sums of squares and crossproducts for the regressors

can be found aB’ R. Elements of the appropriate row(s)roére set to
0.0 if linear dependence of the regressors is declared.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

D — Vector of length NTCEP + || I ND| containing scale factors for fast Givens
transformations. (Output, ifbO= 0 or 1; input/output, if DO= 2 or 3)

| DO Action
1 or2 Dcontains the current scale factors associated with the fast Givens
transformations.

0 or3 Each element @fis set to 1.0.

IRANK — Rank ofR. (Output, ifl DO= 0 or 3)
I RANK less than NTCEP + || | ND| indicates linear dependence of the regressors
was declared.

DFE — Degrees of freedom for error on return from the final invocation of this
routine. (Output, if DO= 0 or 1; input/output, if DO= 2 or 3)
Prior to the final invocation kG VN, DFE is the sum of the frequencies.

110 « Chapter 2: Regression IMSL STAT/LIBRARY



SCPE — || DEP| by | DEP| matrix containing error (residual) sums of squares and
crossproducts. (Output,libo= 0 or 1; input/output, if DO= 2 or 3)

SCPE(m, n) contains the current sum of crossproducts of residuals fon-the
andn-th dependent variables.IIDEP = 0, SCPE is not referenced and can be a
vector of length 1.

LDSCPE — Leading dimension 8CPE exactly as specified in the dimension
statement in the calling program. (Input)

NRMISS — Number of rows of data encountered in callR&VN that contain

any missing values for the independent, dependent, weight, or frequency
variables. (Output, ifDO= 0 or 1; input/output, if DO= 2 or 3)

NaN (not a number) is used as the missing value code. Any rewarftaining

NaN as a value of the independent, dependent, weight, or frequency variables is
omitted from the analysis.

XMIN — Vector of length NTCEP + | | ND| containing the minimum values for
each of the regressors. (Output, 0= 0 or 1; input/output, if DO= 2 or 3)

XMAX — Vector of length NTCEP + || | ND| containing the maximum values for
each of the regressors. (Output,O= 0 or 1; input/output, if DO= 2 or 3)

Comments
1. Automatic workspace usage is

RG VN | NTCEP + | I ND| + | DEP] units, or
DRG VN 2* (I NTCEP + | | ND| + | DEP|) units.

Workspace may be explicitly provided, if desired, by use of
R21 VN/'DR2I VN. The reference is

CALL R2I VN (1 DO, NROW NCOL, X, LDX, INTCEP, || ND,
I NDI ND, | DEP, INDDEP, |FRQ |W, TO., B,
LDB, R LDR, D, I RANK, DFE, SCPE,
LDSCPE, NRM SS, XM N, XMAX, WK)

The additional argument is
WK — Work vector of length NTCEP + || | ND| + | DEP|

2. Informational errors
Type Code
4 1 Negative weight encountered.
4 2 Negative frequency encountered.
Algorithm

RoutineRG VN fits a multivariate linear regression model. (See the chapter
introduction for a description of the multivariate linear regression model.) The
routineRA VN is designed so that multiple invocations can be made. In this case,
zero, one, or several rows of the data set can be input for each invocation of

RA WN (with 1 DO=1, 2, 2,..., 2, 3). Alternatively, one invocation &f3 VN
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(with 1 DO= 0) can be made with the entire data set contained in X. Routine
RSTAT (page 141) can be invoked after the wrap-up computations are performed
by RG VN to compute and print summary statistics related to the fitted regression.

Routine R@ VN performs an orthogonal reduction of the matrix of regressors to
upper triangular form. The reduction is based on fast Givens transformations.
(Seeroutines SROTMG and SROTM Golub and VVan Loan 1983, pages 156-162,
Gentleman 1974.) This method has two main advantages:. (1) the loss of accuracy
resulting from forming the crossproduct matrix used in the normal equationsis
avoided, (2) data can be conveniently added or deleted to take advantage of the
previous computations performed.

With | SUB = 1, the current means of the independent and dependent variables are
used to center the data for improved accuracy. Let x; be a column vector

containing thei-th row of data for the independent variables. Let X; represent the

mean vector for the independent variables given the data for observations 1, 2, ...
, i. The mean vector is defined to be

|
o = 2 =W fiX;
1 i
> =Wt

wherethe w;’s andf;’s are the weights and frequencies, respectively.i-fiheow
of data hasx; subtracted from it, and thevf; is multiplied by the factoa,/a,
where

— i
g =) jaWf]
Although a crossproduct matrix is not computed, the validity of this centering

operation can be seen from the following formula for the sum of squares and
crossproducts matrix:

n W, f; (% = %) (X% = %) " = n iWi fi(x = %X)(x% —%)"

An orthogonal reduction on the centered matrix is computed. When wrap-up
computationsI(DO= 3 orl DO= 0) are performed, the first rows RfandB are
updated so that they reflect the statistics for the original (uncentered) data. This
means that the estimate of the intercept an&Rtimatrix are for the uncentered
data.

If thei-th regressor is a linear combination of the firstl regressors, theth

diagonal element d® will be close to zero (exactly zero if infinite precision
arithmetic could be used) prior to the wrap-up computations. When performing

the wrap-up computationB3E VN checks sequentially for linear dependent
regressors. Linear dependence of the regressors is declared if any of the following
three conditions is satisfied:

112 « Chapter 2: Regression IMSL STAT/LIBRARY



A regressor equals zero, as determined from XM N and XVAX.
Two or more regressors are constant, as determined from XM N and XMAX.

islessthan or equal to TOL. Here, R;; , ;- isthe multiple correlation coefficient

of the i-th independent variable with the first i — 1 independent variables. If no
intercept isin the model (I NTCEP = 0) the “multiple correlation” coefficient is
computed without adjusting for the mean.

When a dependence is declarBds changed in the wrap-up computations so as
to reflect the deletion of thieth regressor from the model. On completion of the
wrap-up computations, if theth regressor is declared to be dependent upon the

previousi — 1 regressors, then tieand B matrices will have all elements in
theiri-th rows set to zero.

Example 1

The first example uses a data set from Draper and Smith (1981, pages 629-630).
This data set is put into the matkby routineGDATA (page 1302). There is 1
dependent variable and 4 independent variaB@svN is invoked to fit the
regression model with thédbO = 0 option, so all computations are performed in

one call.

INTEGER  LDB, LDCOEF, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, NRX
PARAMETER (LDSCPE=1, NCOEF=5, NCOL=5, NDEP=1, NRX=13,
& LDB=NCOEF, LDCOEF=NCOEF, LDR=NCOEF, LDX=NRX)
C
INTEGER |, IDEP, 1DO, IFRQ |IND, |NDDEP(1), |NDIND(1),
& INTCEP, |RANK, |SUB, |WF, NOBS, NOUT, NRM SS, NROW
& NVAR
REAL AVACH, B(LDB, NDEP), D(NCOEF), DFE, R(LDR, NCOEF),
& SCPE( LDSCPE, NDEP), TOL, X(LDX, NCOL), XMAX( NCOEF) ,
& XM N( NCOEF)
EXTERNAL  AVACH, GDATA, RG VN, UMACH, WRRRN
C
CALL GDATA (5, 0, NOBS, NVAR X, LDX, NCOL)
C
IDO =
NROW = NOBS
| NTCEP =
I[IND = -4
IDEP = -1
IFRQ =
W =
ISUB =
TOL = 100. 0* AVACH( 4)
CALL RG VN (1 DO, NROW NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
& INDDEP, |FRQ |WI, ISUB, TOL, B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)
C

CALL WRRRN ('B’, NCOEF, NDEP, B, LDB, 0)
CALL WRRRN ('R’, NCOEF, NCOEF, R, LDR, 0)
CALL UMACH (2, NOUT)
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VRI TE ( NOUT, *)
WRITE (NOUT,*) 'Regressor XMIN  XMAX’
DO 10 I1=1, NCOEF
WRITE (NOUT,(1X,15,2X,2F9.1)") I, XMIN(1), XMAX(1)
10 CONTINUE
WRITE (NOUT,*) "
WRITE (NOUT,*) 'IRANK =", IRANK
WRITE (NOUT,*) 'DFE =", DFE, ’ SCPE(1,1) =*, SCPE(1,1)
WRITE (NOUT,*) 'NRMISS ="', NRMISS
END

Output

62.41

abwiNpEF
o
a1
[y

R
1 2 3 4 5
3.6 269 173.6 424 108.2
0.0 204 123 -183 -14.2
00 00 525 1.1 -546
00 00 0.0 125 -129
00 00 00 00 34

OB WNPE

Regressor XMIN  XMAX
1.0 1.0
1.0 21.0
26.0 71.0
40 230
6.0 60.0

GO WNPF

IRANK = 5
DFE = 8.00000 SCPE(1,1)= 47.8637
NRMISS = 0

Example 2

The data for the second example are taken from Maindonald (1984, pages 203-
204). The data are saved in the matrix X. Here, the data are input into RGIVNa
row at atime. The data set is small for clarity. However, the approach is generally
useful when the data set is large and the entire data set cannot be stored in X. A
multivariate regression model containing two dependent variables and three

independent variablesisfit.

INTEGER INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,

& NIND, NOBS
PARAMETER (INTCEP=1, NCOL=5, NDEP=2, NIND=3, NOBS=9,
& LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,
& LDR=NCOEF)
c
INTEGER |, IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1),
& IRANK, ISUB, IWT, NOUT, NRMISS, NROW
REAL  AMACH, B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF),
& SCPE(LDSCPE,NDEP), TOL, X(LDX,NCOL), XMAX(NCOEF),
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& XM N( NCOEF)
EXTERNAL ~ AVACH, RG VN, UMACH, WRRRN
C
DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
c
NROW = 1
IIND = - NI ND
| DEP = - NDEP
IFRQ = 0
W =0
ISUB = 1
TOL = 100. 0* AVACH( 4)
DO 10 1=1, 9
IF (I .EQ 1) THEN
I DO =
ELSE IF (I .EQ 9) THEN
IDO = 3
ELSE
DO = 2
END | F
CALL RG VN (1 DO, NROW NCOL, X(1,1), LDX, INTCEP, IIND,
& INDIND, |DEP, INDDEP, |FRQ |W, ISUB, TOL, B,
& LDB, R, LDR D, IRANK, DFE, SCPE, LDSCPE, NRM SS,
& XM N,  XMAX)
10 CONTI NUE
C

CALL WRRRN ('B’, NCOEF, NDEP, B, LDB, 0)

CALL WRRRN ('R’, NCOEF, NCOEF, R, LDR, 0)

CALL WRRRN ('SCPE’, NDEP, NDEP, SCPE, LDSCPE, 0)

CALL UMACH (2, NOUT)

WRITE (NOUT )

WRITE (NOUT,*) 'Regressor XMIN ~ XMAX’

DO 20 =1, NCOEF

WRITE (NOUT,'(1X,15,2X,2F9.1)") I, XMIN(I), XMAX(1)

20 CONTINUE

WRITE (NOUT*)

WRITE (NOUT,*) 'IRANK =, IRANK

WRITE (NOUT,*) 'DFE =, DFE

WRITE (NOUT,*) 'NRMISS =, NRMISS

END

Output
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R

1 2 3 4
1 3.00 6. 00 3.00 12. 00
2 0. 00 10. 00 4.00 2.00
3 0. 00 0. 00 4.00 2.00
4 0. 00 0. 00 0. 00 6. 00
SCPE
1 2
1 4.0 20.0
2 20.0 110.0
Regr essor XM N XVAX
1 1.0 1.0
2 -3.0 7.0
3 -1.0 5.0
4 0.0 7.0
I RANK = 4
DFE = 5. 00000
NRM SS = 0
Example 3
The data for the third example are taken from Maindonald (1984, pages 104-
106). The constant regressor and the independent variables X, X,, and X; are
linearly dependent
-1 _1
(Xa =3+ X =3%)
| NTEGER I NTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
& NI ND, NOBS
PARAMETER (I NTCEP=1, NCOL=5, NDEP=1, NI ND=4, NOBS=9,
& LDSCPE=NDEP, LDX=NOBS, NCOEF=| NTCEP+NI ND, LDB=NCCEF,
& L DR=NCCEF)
C
| NTEGER I, IDEP, I1DO, IFRQ |IND, |NDDEP(1), |NDI ND(1),
& I RANK, 1SUB, W, NOUT, NRM SS, NROW
REAL AMVACH, B(LDB, NDEP), D(NCOEF), DFE, R(LDR, NCCEF),
& SCPE( LDSCPE, NDEP), TOL, X(LDX, NCOL), XMAX( NCCEF),
& XM N( NCOEF)
EXTERNAL AVACH, RG VN, UVACH, WRRRN
C
DATA (X(1,J),J=1,NCOL)/-1.0, 0.0, -0.5, 1.0, 0.0/
DATA (X(2,J),J=1,NCOL)/3.0, 0.0, 3.5, 1.0, 0.0/
DATA (X(3,J),J=1,NCOL)/2.0, -2.0, 3.5, -2.0, -2.0/
DATA (X(4,J),J=1,NCOL)/-2.0, -1.0, -1.0, 1.0, 1.0/
DATA (X(5,J),J=1,NCOL)/-1.0, 1.0, -1.0, -1.0, -1.0/
DATA (X(6,J),J=1,NCOL)/3.0, 3.0, 2.0, 1.0, 3.0/
DATA (X(7,J),J=1,NCOL)/2.0, 2.0, 1.5, 2.0, 4.0/
DATA (X(8,J),J=1,NCOL)/-2.0, -1.0, -1.0, -1.0, -2.0/
DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 2.0, 1.0, 3.0/
C
IDO =0
NROW = NOBS
I ND = - NI ND
| DEP = - NDEP
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| FRQ = 0
W =0
ISUB = 1
TOL = 100. 0* AVACH( 4)
CALL RG VN (1 DO, NRON NCOL, X, LDX, INTCEP, |IND, |INDIND, IDEP,
& I NDDEP, | FRQ |W, ISUB, TOL, B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XVAX)

CALL WRRRN ('B’, NCOEF, NDEP, B, LDB, 0)

CALL WRRRN ('R’, NCOEF, NCOEF, R, LDR, 0)

CALL UMACH (2, NOUT)

WRITE (NOUT,*)

WRITE (NOUT,*) 'Regressor Minimum Maximum’

DO 10 I=1, NCOEF

WRITE (NOUT,’(1X,15,2X,2F9.1)") I, XMIN(I), XMAX(I)

10 CONTINUE

WRITE (NOUT,*)

WRITE (NOUT,*) 'IRANK =", IRANK

WRITE (NOUT,*) 'DFE =", DFE,’ SCPE(1,1) =’, SCPE(1,1)

WRITE (NOUT,*) 'NRMISS =", NRMISS

END

Output

GO WNPE
o
[
o
o

R
1 2 3 4 5

1 3.000 2.000 1.000 3.000 1.000
2 0.000 6.000 2.000 5.000 1.000
3 0.000 0.000 4.000 -2.000 2.000
4 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 3.000
Regressor Minimum Maximum

1 1.0 1.0

2 -20 3.0

3 -20 3.0

4 -1.0 35

5 -20 20
IRANK = 4
DFE = 5.00000 SCPE(1,1)= 6.00000
NMISS = 0

RGLM/DRGLM (Single/Double precision)

Fit amultivariate general linear model.
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Usage

CALL RGLM (1 DO, NROW NCOL, X, LDX, | NTCEP, NCLVAR, | NDCL,
NEF, NVEF, | NDEF, |DEP, | NDDEP, |FRQ |W,
| DUMWY, 1SUB, TOL, MAXCL, NCLVAL, CLVAL, I RBEF,
B, LDB, R LDR D, IRANK, DFE, SCPE, LDSCPE,
NRM SS, XM N, XVAX)

Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation &GLMfor this data set, and all the data are
input at once.

1 This is the first invocation, and additional callsR@ Mwill be made.
Initialization and updating for the dataXrare performed.

2 This is an intermediate invocationR#LM and updating for the data in
X is performed.

3 This is the final invocation of this routine. Updating for the dataand

wrap-up computation are performed.

NROW — The absolute value ofR0wis the number of rows of data currently
inputinX. (Input)

NROWMay be positive, zero, or negative. NegatiR®wmeans that theNROW

rows of data are to be deleted from some aspects of the analysis, and this should
be done only if DOis 2 or 3 and the wrap-up computations have not been
performed. When a negative value is inputNBOW it is assumed that each of the
—NROWrows ofX has been input (with positivdROW in previous invocations of

RG VN. Use of negative values 8BROWshould be made with care and with the
understanding thadM N, XMAX, andCLVAL cannot be updated properly in this
case. It is also possible that a constant variable in the remaining data will not be
recognized as such.

NCOL — Number of columns iX. (Input)
X — INROW by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

INTCEP — Intercept option. (Input)

| NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

NCLVAR — Number of classification variables. (Input)

INDCL — Index vector of lengtNCLVAR containing the column numbersXof
that are the classification variables. (Input)

NEF — Number of effects (sources of variation) in the model excluding error.
(Input)
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NVEF — Vector of lengtitNEF containing the number of variables associated
with each effect in the model. (Input)

INDEF — Index vector of lengtRVEF(1) + NVEF(2) + ... + NVEF(NEF).

(Input)

The firstNVEF(1) elements give the column numberXdbr each variable in the
first effect. The nextVEF(2) elements give the column numbers for each variable
in the second effect.. The lastNVEF(NEF) elements give the column numbers

for each variable in the last effect.

IDEP — Dependent variable option. (Input)
The absolute value ofDEP is the number of dependent (response) variables. The
sign ofl DEP specifies the following options:

| DEP  Meaning

<0 The last-1 DEP columns ofX contain the dependent (response) variables.
That is, columns$IiCOL + | DEP + 1,NCOL + 1 DEP + 2, ..., NCOL contain
the dependent variables.

>0 The data for theDEP dependent variables are in the columnx of
whose column numbers are given by the elementsRifEpP.

=0 There are no dependent variables. (Generally, this option is not used.
However, it is possible to get tiematrix from aQR decomposition of a
matrix of regressors in this way.)

INDDEP — Index vector of lengthDEP containing the column numbersXf
that are the dependent (response) variables. (InpuEH is positive)

If 1 DEP is nonpositive| NDDEP is not referenced and can be a vector of length
one.

IFRQ — Frequency option. (Input)

I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number

I FRQ of X contains the frequencies Xfl , | FRQ) = 0.0, none of the remaining
elements of row of X are referenced and updating of statistics is skipped for row
I.

IWT — Weighting option. (Input)
| WI = 0 means that all weights are 1.0. For positi®, column numberwr of
X contains the weights.

IDUMMY — Dummy variable option. (Input)

Some indicator variables are defined for tht class variable as follows: Let

J =NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(l — 1).NCLVAL(l) indicator
variables are defined such that for 1, 2,..., NCLVAL(I ) theK-th indicator
variable for observation numbeBS takes the value 1.0 X{1 OBS, | NDCL( )) =
CLVAL(J +K) and equals 0.0 otherwise. Dummy variables are generated from
these indicator variables, and restrictions may be applied as given by the
following:
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| DUMWY Description

0 The NCLVAL (1) indicator variables are the dummy variables. The usual
balanced-data restrictions on the regression parameters are applied as
part of the wrap-up computations regardless of whether the data are

balanced.
1 The NCLVAL (I ) indicator variables are the dummy variables.
2 NCLVAL(1 ) — 1 indicator variables are used as the dummy variables. The

indicator variable associated with the class value given in the first row of
X on thefirst invocation is omitted.

| SUB — Data centering option. (Input)
If | NTCEP = 0,1 SUB must equal 0.

| SUB Action

0 No centering. This option should be used when (1) the data are already
centered, (2) there is no intercept in the model, or (3) the regressors for a
large percentage of the data are zero, and sparsity of the problem needs
to be preserved in order that the fast Givens transformations are
performed quickly.

1 Variables are centered using the method of provisional means for
improved accuracy of the computations. The final estimate for the
intercept along with thB matrix are given for the uncentered data. This
option is generally recommended.

TOL — Tolerance used in determining linear dependence. (Input)
ForRGLM TOL = 100* AMACH(4) is a common choice. FORGLM TOL = 100*
DMACH(4) is a common choice. See the documentation for IMSL routine
AMACH/DVACH (Reference Material).

MAXCL — An upper bound on the sum of the number of distinct values taken on
by each classification variable. (Input)

NCLVAL — Vector of lengtiNCLVAR containing the number of values taken on
by each classification variable. (Output, @O = 0 or 1; input/output, if DO= 2
or3)

NCLVAL(1 ) is the number of distinct values for theh classification variable.

CLVAL — Vector of lengtiNCLVAL (1) + NCLVAL(2) + ... + NCLVAL(NCLVAR)
containing the values of the classification variables. (Outpubdf= O or 1;
input/output, ifl DO= 2 or 3)

Since in general the length @f VAL will not be known in advanc&RAXCL (an
upper bound for this length) should be used for purposes of dimensioning
CLVAL. The firstNCLVAL (1) elements contain the values of the first
classification variable. The neMCLVAL(2) elements contain the values of the
second classification variable. The lastNCLVAL(NCLVAR) elements contain
the values of the last classification variable.Divvy = 0 or 1, the values are
in ascending order for each classification variableDiiMvY = 2, the last value
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for each classification variable is the value associated with the indicator variable
omitted from the model. The remaining values for each classification variable are
in ascending order.

IRBEF — Index vector of lengthEF + 1. (Output, if DO=0 or 1;
input/output, ifl DO= 2 or 3)

Forl =1, 2,..., NEF, rows!| RBEF(I ), | RBEF(1) + 1,..., | RBEF(I + 1)-1 ofB
correspond to the-th effect.

B — NCCEF by | DEP| matrix containing on return from the final invocation of

this routine a least-squares solutiBnfor the regression coefficients. (Output, if
I DO= 0 or 1; input/output, if DO= 2 or 3)

Here,NCOEF = | RBEF(NEF + 1) — 1 is the number of coefficients in the model. If
I NTCEP = 1, row 1 is for the intercept. Columis for thej-th dependent

variable.

IDO  Action

1or2 A current least-squares solution is given by a solxtiorthe equatiofR
*X=B

Oor3 A least-squares solution for the regression coefficients is returBed in
Elements of the appropriate row(s)®ére set to 0.0 if linear
dependence of the regressors is declared.

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

R — NCOEF by NCOEF upper triangular matrix containing, on return from the
final invocation of this routine, thie matrix from aQR decomposition of the
matrix of regressors. (Output,libO= 0 or 1; input/output, if DO= 2 or 3)

Upon completion of the wrap-up computations, a zero row indicates a nonfull
rank model. If DUMWY = 0, a negative diagonal elemeniRihdicates that the
associated row corresponds to a summation restriction.

LDR — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

D — Vector of lengtiNCOEF.  (Output, ifl DO= 0 or 1; input/output, if DO= 2
or3)

| DO Action

1 or2 Dcontains the current scale factors associated with the fast Givens
transformations. The current matrix of uncorrected sums of squares and

crossproducts for the regressors can be fourmTeE'diag@) [(Rwhere
diag() is the diagonal matrix whose diagonal elements are the elements
of D.

0or3 Each element @fis set to 1.0.

IRANK — Rank ofR.  (Output, iff DO= 0 or 3)
I RANK less thamNCCEF indicates linear dependence of the regressors was
declared.
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DFE — Degrees of freedom for error on return from the final invocation of this
routine. (Output, if DO= 0 or 1; input/output, if DO= 2 or 3)
Prior to the final invocatiorDFE is the sum of the frequencies.

SCPE — || DEP| by | DEP| matrix containing error (residual) sums of squares and
crossproducts. (Output,liDO= 0 or 1; input/output, if DO= 2 or 3)

SCPE(M N) is the current sum of crossproducts of residuals foktineandN -th
dependent variables.

LDSCPE — Leading dimension 8CPE exactly as specified in the dimension
statement in the calling program. (Input)

NRMISS — Number of rows of data encountered in callR@M containing

NaN (not a number) for the independent, dependent, weight, and/or frequency
variables. (Output, ifDO= 0 or 1, input/output, ifDO= 2 or 3)

If a row of data contains NaN for any of these variables, that roxeclisded

from the computations.

XMIN — Vector of lengttNCOEF containing the minimum values for each of the
regressors. (Output,libO= 0 or 1; input/output, if DO= 2 or 3)

XMAX — Vector of lengtiNCOEF containing the maximum values for each of
the regressors. (OutputlibO= 0 or 1; input/output, if DO= 2 or 3)

Comments
1. Automatic workspace usage is

RGLM  max(AXB, NCLVAR) + MAXB + | DEP| + 2 units, or
DRGLM max(VAXB, NCLVAR) + 2* MAXB + 2* || DEP| + 4 units,

whereMAXB = min(LDB, LDR). Workspace may be explicitly provided, if
desired, by use d2LMDR2LM The reference is
CALL R2LM (1 DO, NROW NCOL, X, LDX, |NTCEP, NCLVAR,

I NDCL, NEF, NVEF, | NDEF, | DEP, | NDEP,

IFRQ W, I DUMWY, |SUB, TOL, MAXCL,

NCLVAL, VAL, IRBEF, B, LDB, R LDR, D,

| RANK, DFE, SCPE, LDSCPE, NRM SS, XM N,

XMAX, | WK, VK)

The additional arguments are as follows:
WK — Work vector of length makaXB, NCLVAR).
WK — Work vector of lengtivAaxB + | DEP| + 2.

2. Informational errors
Type Code
4 1 Negative weight encountered.
4 2 Negative frequency encountered.
4 7 MAXCL is too small. IncreasédXCL and the dimension
of CLVAL.
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4 8 LDB or LDRistoo small. One or more of the
dimensions of B, R, D, XM N, and XMAX must be
increased.

3. Let the datamatrix X = (A, B, X|, Y) where A and B are classification
variables, X, is a continuous independent variable, and Y is a response
variable. The model containing an intercept and the effects A, B, AB, X,
AX, BX;, and ABX; is specified asfollows: | NTCEP = 1, NCLVAR = 2,
INDCL =(1,2), NEF=7,NVEF=(1,1,2,1,2,2,3), INDEF=(1,2, 1,2,
3,1,3,23,1,23), | DEP=1, and | NDDEP = (4).

For this model suppose NCLVAL(1) =2, NCLVAL(2) = 3, and

CLVAL =(1.0,,2.0,1.0,, 2.0, 3.0). Let A, Ay, B, B,, and B;, be the
associated indicator variables. For each | DUMMY option the regressors
following the intercept in their order of appearance in the model are
given asfollows:

| DUMWY Regressors

Oorl A,A, B, By, By, AB;, AB,, AB;s, ABy, AB,, ABs, X, AX,
AXi B X, BoXi, BsXi, A B X, ABX, A BX, AB X,
AB X, AByX

2 AL B By A B ABy, X AXy BrXy, BoXi, A B X, ABYX

Within agroup of regressors corresponding to an interaction effect, the
indicator variables composing the regressors change most rapidly for the
last classification variable, change next most rapidly for the next to last
classification variable, etc.

4, If NROWis negative, no downdating of XM N, XMAX, NCLVAL, and CLVAL
can occur.
Algorithm

Routine RG.Mfits amultivariate linear regression model. (See the chapter
introduction for a description of the multivariate linear regression model.) The
routine RGLMis designed so that multiple invocations can be made. In this case,
zero, one, or several rows of the data set can be input for each invocation of RGLM
(with1 DO=1, 2, 2, ..., 2, 3). Alternatively, one invocation of RGLM(with | DO=
0) can be made with the entire data set contained in X. Routines RSTAT (page

141) and RCASE (page 191) can be invoked after the wrap-up computations are
performed by RGLMto compute and print summary statistics and case statistics
related to the fitted regression.

The data matrix can contain classification variables as well as continuous
variables. The specification of ageneral linear model through the arguments
I NTCEP, NCLVAR, | NDCL, NEF, NVEF, | NDEF is discussed in the chapter
introduction.
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Regressors for effects composed solely of continuous variables are generated as
powers and crossproducts. Consider a data matrix containing continuous variables
as columns 3 and 4. The effect (3, 3) generates aregressor whose i-th value (i = 1,
2, ..., n) isthe square of thei-th valuein column 3. The effect (3, 4) generates a
regressor whose i-th value is the product of thei-th value in column 3 with thei-th
valuein column 4.

Regressors for an effect containing a single classification variable are generated
using indicator variables. Let the classification variable A take on values a;, a,,
..., &, (stored in that order in CLVAL). From this classification variable, n
indicator variables |, are created. For k=1, 2, ..., nwe have

_ 1 if A:ak
K710 otherwise

For each classification variable, another set of variablesis created from the
indicator variables. We call these new variables dummy variables. Dummy
variables are generated from the indicator variables in one of two manners: (1)
the dummies are the n indicator variables, or (2) the dummies are thefirstn - 1
indicator variables. In particular, for | DUMWY = 0 or | DUMWY = 1, the dummy
variablesare A, =1, (k=1, 2, ..., n). For | DUMW = 2, the dummy variables are

Ak: Ik(k:]-! 2, ceey n—l).

Let m; be the number of dummies generated for the-th classification variable.
Suppose there are two classification variables A and B with dummiesA,, A, ...,
A, and B, B,,..., B,,», respectively. The regressors generated for an effect
composed of two classification variables A and B are

AOB
(Av Ag,..s Ay )O(By, By, ..., By )
(ABL ABy..... ABr, A2Br, AoBy, . AgBr,, A Br, A By, A By )

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variablesis specified in
I NDEF. Consider adata matrix containing classification variablesin columns 1
and 2 and continuous variables in columns 3 and 4. Label these four columns A,
B, X, and X,, respectively. The regressors generated by the effect (1, 2, 3, 3, 4)
are A OB O X X X,.

Routine RGLMperforms an orthogonal reduction of the matrix of regressors to
upper triangular form. The reduction is based on fast Givens transformations.
(See routines SROTMG and SROTM Golub and VVan Loan 1983, pages 156-162,
Gentleman 1974.) This method has two main advantages:. (1) the loss of

124 « Chapter 2: Regression IMSL STAT/LIBRARY



accuracy resulting from forming the crossproduct matrix used in the normal
equationsis avoided, and (2) data can be conveniently added or deleted to take
advantage of the previous computations performed.

With | SUB = 1, the current means of the regressors and dependent variables are
used to center the data for improved accuracy. Let x; be a column vector

containing thei-th row of data for the regressors. Let X; represent the mean
vector for the regressors given the data for observations 1, 2, ..., i. The mean

vector is defined to be
i
_ D =W fix
(I i
PRELR

wherethew;’s andf;'s are the weights and frequencies, respectively.i-fheow
of data hasx; subtracted from it, and thewf; is multiplied by the factoa,/a; |
where

— i
g =) jawf
Although a crossproduct matiis not computed, the validity of this centering

operation can be seen from the following formula for the sum of squares and
crossproducts matrix:

n n

> Wi fi (5 = %)% —Xp) T = ZiWi fi0G =%)04 —%)T

Bl =2 &1
An orthogonal reduction on the centered matrix is computed. When wrap-up
computationsI(DO= 3 orl DO = 0) are performed, the first rows RfandB are
updated so that they reflect the statistics for the original (uncentered) data. This
means that thB matrix and the estimate of the intercept are for the uncentered
data.

An orthogonal reduction on the centered matrix is computed. When wrap-up
computationsI(DO= 3 orl DO = 0) are performed, the first rows RfandB are
updated so that they reflect the statistics for the original (uncentered) data. This
means that the estimate of the intercept an&Rtimatrix are for the uncentered
data.

If thei-th regressor is a linear combination of the firstl regressors, theth

diagonal element d® will be close to zero (exactly zero if infinite precision
arithmetic could be used) prior to the wrap-up computations. When performing

the wrap-up computationBGLMchecks sequentially for linear dependent
regressors. Linear dependence of the regressors is declared if any of the following
three conditions is satisfied:

« Aregressor equals zero, as determined N andXVAX.
« Two or more regressors are constant, as determineddvbrandXVAX.
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| NTEGER
PARAMETER

R0 Ro

| NTEGER

REAL

R R0 __RoRo

CHARACTER
EXTERNAL

DATA (X(1,
DATA (X(2,
DATA (X(3,
DATA (X(4,

The product of

V1= Rz i

islessthan or equal to TOL. Here R;| 5 . ;1 isthe multiple correlation coefficient

of thei-th regressor with thefirsti — 1 regressors. If no intercept isin the model
(I NTCEP = 0) the ‘multiple correlation’ coefficient is computed without adjusting
for the mean.

When a dependence is declarBds changed in the wrap-up computations so as
to reflect the deletion of theth regressor from the model. On completion of the
wrap-up computations, if theth regressor is declared to be dependent upon the
previousi — 1 regressors, then tieandB matrices will have all elements in their
i-th rows set to zero.

Example 1

A one-way analysis of covariance model is fitted to the turkey data discussed by
Draper and Smith (1981, pages 2239). The response variable is turkey weight

y (in pounds). There are three groups of turkeys corresponding to the three states
where they were reared. The age of a turkey (in weeks) is the covariate. The
explanatory variables are group, age, and interaction. The model is

whereo; = 0 andB; = 0. Here, thé DUMWY = 2 option is used. The fitted model
gives three separate lines, one for each state where the turkeys were reared.

SPEC! FI CATI ONS FOR PARANMETERS
| DEP, |NTCEP, LDB, LDR LDSCPE, LDX, MAXB, MAXCL,
NCLVAR, NCOL, NEF, NROW
(I DEP=1, | NTCEP=1, LDX=13, MAXB=6, MAXCL=3, NCLVAR=1,
NCOL=3, NEF=3, NROW:13, LDB=MAXB, LDR=MAXB,

LDSCPE=I DEP)

I, 1DO, 1 DUMW, |FRQ |NDCL(NCLVAR), |NDDEP(IDEP),
INDEF(4), |RANK, |RBEF(NEF+1), |SUB, |W, J,
NCLVAL(NCLVAR), NCOEF, NOUT, NRM SS, NVEF( NEF)
AVACH, B(LDB, | DEP), CLVAL(MAXCL), D(MAXB), DFE,
R(LDR, MAXB), SCPE(LDSCPE, | DEP), TOL, X(LDX, NCOL),
XMAX( MAXB) , XM N( MAXB)

CLABEL(7)*6, RLABEL(1)*4
AVACH, RGLM UMACH, WRI RN, WRRRL, VRRRN
J),J=1,3) /25, 13.8, 3/
J),J=1,3) /28, 13.3, 1/
J),J=1,3) /20, 8.9, 1/
J),Jd=1,3) /32, 15.1, 1/
J),Jd=1,3) /22, 10.4, 1/
J),Jd=1,3) /29, 13.1, 2/
J),Jd=1,3) /27, 12.4, 2/
J),Jd=1,3) /28, 13.2, 2/
J),Jd=1,3) /26, 11.8, 2/
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DATA (X(10,J),J=1,3) /21, 11.5, 3/
DATA (X(11,J),J3=1,3) /27, 14.2, 3/
DATA (X(12,J3),J=1,3) /29, 15.4, 3/
DATA (X(13,J),J=1,3) /23, 13.1, 3/

DATA | NDCL/ 3/, NVEF/ 1, 1, 2/, INDEF/3, 1, 1, 3/, |NDDEP/ 2/
DATA CLABEL/’, 'MU’, 'ALPHAY’, '’ALPHA?2’, 'BETA’, 'BETAL’,
& 'BETA2/
DATA RLABEL/'NONE’/

IDO =0
IFRQ =0
IWT =0
IDUMMY = 2
ISUB =1
TOL = 100.0AMACH(4)
CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
& NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
& IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)

C
CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'NRMISS =, NRMISS
WRITE (NOUT,*) 'IRANK =", IRANK, ' DFE =", DFE, "’ ’//
& 'SCPE(1,1) =, SCPE(1,1)
J=0
DO 10 I=1, NCLVAR

CALL WRRRN (‘Class values’, 1, NCLVAL(l), CLVAL(J+1), 1, 0)
J =J + NCLVAL())
10 CONTINUE

NCOEF = IRBEF(NEF+1) - 1
CALL WRRRN ('XMIN’, 1, NCOEF, XMIN, 1, 0)
CALL WRRRN ('XMAX’, 1, NCOEF, XMAX, 1, 0)
CALL WRIRN (IRBEF’, 1, NEF+1, IRBEF, 1, 0)
CALL WRRRN ('R-MATRIX’, NCOEF, NCOEF, R, LDR, 1)
CALL WRRRL (B’, 1, NCOEF, B, 1, 0, '(2W10.4), RLABEL, CLABEL)

C
END
Output
NRMISS = 0
IRANK= 6 DFE= 7.00000 SCPE(1,1)= 0.706176
Class values
1 2 3

1.000 2.000 3.000

XMIN
1 2 3 4 5 6
1.00 0.00 0.00 20.00 0.00 0.00

XMAX
1 2 3 4 5 6
1.00 1.00 1.00 32.00 32.00 29.00

IRBEF
1234
2457
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R- MATRI X
1 2 3 4 5 6

1 3.61 1.11 1.11 93. 47 28. 29 30.51
2 1.66 -0.74 -1.02 42.43 -20.34
3 1.49 3.73 0. 00 40. 99
4 11. 66 7.80 0.43
5 5.49 -0.61
6 2.11
B
MJ ALPHAL ALPHA2 BETA BETAl BETA2
2.475 -3.454 -2.775 0. 445 0. 06104 0. 025
20.0 -
il rgia +
] Virginia o
B Wisconsin &
17.5 o
515.0
) ]
g ]
e N
12,5
= ]
= :
= 10.0 -
7.5
5.0 1 rr 1T 7 1T 1T T 17 T T T T 7T T T T7
15.0 20.0 25.0 50.0 35.0
Age (Weeks)
Figure 2-4 Plot of Turkey Weights and Fitted Lines by State
Example 2

A two-way analysis-of-variance model is fitted to balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
weight gains (in grams) of rats fed diets varying in two components—Ilevel of
protein and source of protein. The model is

V= W+ o Byt ey i=1,2=1,2,3k=1,2,..,10

where

2 3 2 3

> a; =03 B; =0y =0forj=123 and ) y; =0fori =12
i=1 j=1 =1 J=1

Here, tha DUMWY = O option is used.
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| NTEGER | DEP, LDB, LDR, LDSCPE, LDX, LINDEF, MAXB, MAXCL,

& NCLVAR, NCOL, NEF, NROW

PARAMETER (1 DEP=1, LI NDEF=4, MAXB=12, MAXCL=5, NCLVAR-=2,
NCOL=3, NEF=3, NROW60, LDB=NMAXB, LDR=NMAXB,
LDSCPE=| DEP, LDX=NROW

Ro Ro

INTEGER |, IDO IDUMW, |FRQ |NDCL(NCLVAR), | NDDEP(IDEP),
| NDEF( LI NDEF), | NTCEP, |RANK, |RBEF(NEF+1), I|SUB,
W, J, NCLVAL(NCLVAR), NCOEF, NOUT, NRM SS, NVEF( NEF)
REAL AVACH, B(LDB, | DEP), CLVAL(MAXCL), D(MAXB), DFE,
R(LDR, MAXB), SCPE(LDSCPE, | DEP), TOL, X(LDX, NCOL),
XMAX( MAXB) , XM N( MAXB)
CHARACTER CLABEL( MAXB+1)*7, RLABEL(1)*4
EXTERNAL  AVACH, RGLM UMACH, WRI RN, VWRRRL, WRRRN

RoRo oo

DATA X/ 73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0,
77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0,
51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0,
10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/

DATA INDCL/ 2, 3/, NVEF/1, 1, 2/, INDEF/ 2, 3, 2, 3/, |NDDEPF/ 1/

DATA CLABEL/ ', 'MU’, "ALPHAL’, '"ALPHA2’, 'BETA1’, 'BETAZ’,

& 'BETA3, 'GAMMA1l’, 'GAMMA12’, "GAMMA13’, 'GAMMAZ21’,

& 'GAMMA22',"GAMMA23'/

DATA RLABEL/NONE’/

Ro Ro Ro Ro Ro Ro Ro

IDO =0
INTCEP =1
IFRQ =0
IWT =0
IDUMMY =0
ISUB =1
TOL =100.0*AMACH(4)
CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
& NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
& IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)

C
CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'NRMISS =, NRMISS
WRITE (NOUT,*) 'IRANK =", IRANK, ' DFE =", DFE, "’ ’//
& 'SCPE(1,1) = ', SCPE(L,1)
J=0
DO 10 I=1, NCLVAR

CALL WRRRN (‘Class Values’, 1, NCLVAL(I), CLVAL(J+1), 1, 0)
J =J+ NCLVAL())
10 CONTINUE

NCOEF = IRBEF(NEF+1) - 1
CALL WRRRN ('XMIN’, 1, NCOEF, XMIN, 1, 0)
CALL WRRRN ('XMAX’, 1, NCOEF, XMAX, 1, 0)
CALL WRIRN (IRBEF’, 1, NEF+1, IRBEF, 1, 0)
CALL WRRRN ('R-MATRIX’, NCOEF, NCOEF, R, LDR, 1)
CALL WRRRL (B’, 1, NCOEF, B, 1, 0, '(2W10.4),, RLABEL, CLABEL)

END
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Output

NRM SS = 0
| RANK = 12 DFE = 54. 0000 SCPE(1,1) 11586. 0
Cl ass Val ues
1 2
1. 000 2. 000
Cl ass Val ues
1 2 3
1. 000 2. 000 3. 000
XM N
1 2 3 4 5 6 7 8
1.000 0.000 0.000 0. 000 0. 000 0. 000 0. 000 0. 000
11 12
0. 000 0. 000
XMAX
1 2 3 4 5 6 7 8
1.000 1.000 1.000 1. 000 1. 000 1. 000 1. 000 1. 000
11 12
1. 000 1. 000
| RBEF
1 2 3 4
2 4 7 13
R- MATRI X
1 2 3 4 5 6 7
1 7.746 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
2 -1.000 -1.000 0. 000 0. 000 0. 000 0. 000
3 7.746 0. 000 0. 000 0. 000 0. 000
4 -1.000 -1.000 1. 000 0. 000
5 6. 325 3.162 0. 000
6 5.477 0. 000
7 -1.000
8
9
10 11 12
1 0. 000 0. 000 0. 000
2 0. 000 0. 000 0. 000
3 0. 000 0. 000 0. 000
4 0. 000 0. 000 0. 000
5 0. 000 0. 000 0. 000
6 0. 000 0. 000 0. 000
7 -1.000 0. 000 0. 000
8 0.000 -1.000 0. 000
9 0. 000 0.000 -1.000
10 -1.000 -1.000 -1.000
11 6. 325 3.162
12 5.477
B
MJ ALPHA1 ALPHA2 BETAL BETA2

POOOOOOO

9 10
0.000 0.000
9 10
1.000 1.000
8 9
.000 0.000
.000 0.000
000 0.000
.000 0.000
.000 0.000
000 0.000
.000 0.000
.000 0.000
-1. 000
BETA3
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87.87

GAMVAL1
3. 1383

7.267 -7.267 1.733 -2.967 1.233
GAMVA12 GAMVA13 GAMVA21 GAMVA22 GAMVA23
-6. 267 3.133 -3.133 6. 267 -3.133

RLEQU/DRLEQU (Single/Double precision)

Fit amultivariate linear regression model with linear equality restrictionsH B=G
imposed on the regression parameters given results from routine RG VN (page
107) after | DO=1and | DO= 2 and prior to | DO= 3.

Usage

CALL RLEQU (I NVOKE, NH, NCCEF, H, LDH, |G NDEP, G LDG
TOL, B, LDB, R LDR D, IRANKR DFE, SCPE,
LDSCPE, | RANKH)

Arguments

INVOKE — Invocation option. (Input)

I NVOKE Action

0 This is the only invocation &LEQU. All the restrictions are input at
once.

1 This is the first invocation, and additional call&td&EQU will be made.
Initialization and updating for the restrictioHsB = G are performed.

2 This is an intermediate invocationRfEQU, and updating for the
restrictionsH B = G is performed.

3 This is the final invocation of this routine. Updating for the restrictions

H B = G is performed, and wrap-up computations are performed.
NH — Number of rows in the restrictidghB = G. (Input)

NCOEF — Number of coefficients in the regression equation for each dependent
variable. (Input)

H — NH by NCOEF matrix with the-th row specifying a linear combination of the
regression parameters for thi row in the restrictiold B=G. (Input)

LDH — Leading dimension df exactly as specified in the dimension statement
of the calling program. (Input)

|G — Option forGmatrix. (Input)

1G Restrictions
0 HB=0
1 HB=G

NDEP — Number of dependent (response) variables. (Input)

G — NH by NDEP matrix containing the right-hand side of the restriction
HB=G. (Input,ifl G=1)
If | G=0,Gis not referenced and can be a vector of length 1.
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LDG — Leading dimension af exactly as specified in the dimension statement
in the calling program. (Input)

TOL — Tolerance used in determining linear dependence. (Input)
ForRLEQU, TOL = 100.0* AMACH(4) is a common choice. FORLEQU,

TOL = 100.0* DVMACH(4) is a common choice. See the documentation for IMSL
routinesAMACH andDVACH (Reference Material).

B — NCOEF by NDEP matrix containing on return from the final invocation of this
routine a least-squares solution for the regression coefficients in the restricted
model. (Input/Output)

Invocation ofRLEQU with | NVOKE = 0 and 1 requires as input tRenatrix from

RG VN (page 107) afteRG VN's invocation with DO= 1 andl DO= 2 and prior

to | DO= 3 withNROW= 0. After the wrap-up computations are computed by
RLEQU, B contains a least-squares solution for the regression coefficients in the
restricted model.

LDB — Leading dimensioB exactly as specified in the dimension statement in
the calling program. (Input)

R — NCOEF by NCOEF upper triangular matrix containing, on return from the
final invocation of this routine, the matrix from the restricted regression fit.
(Input/Output)

Invocation ofRLEQU with | NVOKE = 0 and 1 requires as input tRematrix from
RG VN afterRA VN's invocation withl DO= 1 andl DO= 2 and prior td DO= 3
with NROW= 0. After the wrap-up computations are compute@UBQu, R
contains th&k matrix from the restricted regression fit. Elements to the right of a
diagonal element dR (that is zero) are also zero. A zero rovRimdicates a
nonfull rank model. Each row & corresponding to a restriction has a
corresponding diagonal element that is negative. Each remaining Rihasfa
corresponding diagonal element that is positive.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

D — Vector of lengtiNCOEF containing scale factors associated with the fast
Givens transformations. (Input/Output)

Invocation ofRLEQU with | N\VOKE = 0 and 1 requires as input thérom RG VN
afterRA VN's invocation withl DO= 1 andl DO = 2 and prior td DO = 3 with
NROW= 0. After the wrap-up computations are compute@LUBQu, D contains all
its elements set to 1.0.

IRANKR — Rank of matrixR. (Output, ifl NVOKE = 0 or 3)

DFE — Degrees of freedom for error for the restricted model on return from the
final invocation of this routine. (Input/Output)

Prior to the final invocation of this routinBFE contains the sum of the
frequencies. Invocation &LEQU with | NVOKE = 0 and 1 requires as input the

DFE from RG VN afterRGA VN's invocation withl DO= 1 andl DO= 2 and prior to

| DO = 3 withNROW= 0.
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SCPE — NDEP by NDEP matrix containing error (residual) sums of squares and
crossproducts for the restricted model. (Input/Output)

SCPE(M N) is the current sum of crossproducts of residuals fokteandN-th
dependent variables. InvocationRfEQU with | NVOKE = 0 and 1 requires as
input theSCPE matrix fromRG VN afterRG VN's invocation withl DO= 1 and

I DO= 2 and prior td DO= 3 withNROW= 0.

LDSCPE — Leading dimension 3CPE exactly as specified in the dimension
statement in the calling program. (Input)

IRANKH — Rank of matrixd. (Output)

Comments
1. Automatic workspace usage is

RLEQU NCCEF + NDEP units, or
DRLEQU 2 * NCOEF + 2* NDEP units.

Workspace may be explicitly provided, if desired, by use of
R2EQU/DR2EQ. The reference is

CALL R2ZEQU (I NVOKE, NH, NCCEF, H, LDH, 1 G NDEP, G
LDG TO., B,LDB, R, LDR D, |RANKR,
DFE, SCPE, LDSCPE, | RANKH, WK)

The additional argument is

WK — Work vector of lengtiNCOEF + NDEP.

2. Informational error
Type Code
3 1 The restrictions are inconsistent.
3. The results of routineGLM(page 117) can be used as inpuRit&QU in

place of the results of routif VN (page 107).

Algorithm

RoutineRLEQU requires the output from routifR& VN (page 107) afteR@ VN
has been invoked withbO= 1 andi DO= 2 and prior td DO = 3 withNROW= 0.
Similarly, RLEQU can use results from IMSL routiReLM (page 117).

The routineRLEQU is designed so that you can partition a large number of
restrictions, as might arise in classification models, into several groups of
restrictions (each requiring less space) and make multiple c&lE@) (with

I N\VOKE = 1, 2, 2,..., 3). Alternatively, one invocation ®LEQU (with | NVOKE =
0) can be made with all the restrictions containad amdG.

After the wrap-up computations are performedbyQU, routinesRSTAT
(page 141) an&CASE (page 191) can be used to compute and print summary
statistics and case statistics related to the fitted regression.

RoutineRG VN (or RGLM together with routin®LEQU compute estimates of the
regression coefficients in a multivariate general linear médeX B + E
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subject to H B = G. Here, Yisthe n x g matrix of responses, X isthen x p matrix
of regressors, B isthe p x g matrix of regression coefficients, and Eisthen x g
matrix of errors whose g-dimensional rows are identically and independently
distributed multivariate normal with mean vector O and variance-covariance
matrix Z. The restriction is specified by the h x p matrix H and the

h x g matrix G.

Previoudly, algorithms for solving the restricted | east-squares problem were based
on solving the following equations (Rao, 1973, page 232):

XTXB+HTA=XTY
HB=G
Routine RLEQU is based on an orthogonal reduction of X to upper triangular form.

Fast Givens transformations with modifications described by Stirling (1981) for
incorporating restrictions are used. This method has two main advantages: (1) the

loss of accuracy resulting from forming XT X and X” Y is avoided, and (2
restrictions can be conveniently added so as to take advantage of the previous
computations performed.

The method conceptually treats restrictions as observations with zero error
variance. Fast Givens transformations as described by Golub and Van Loan
(1983, pages 156-162) are used. The modification to the matrix R from the
unrestricted fit to form amodified

R

for the restricted fit is as follows:

1. If the leading nonzero element of thefirst restriction is small (as
determined by TOL times a computed scale factor), the element is set to
zero.

2. Let i betheindex of the leading nonzero element in the modified first

restriction. Replacerow i of R by the restriction. Flag thei-th row asa
restriction. Use the restriction to reduce the first nonzero element of the
row that was removed from R to zero. Incorporate the row that has been
reduced by the restriction into the remaining rows of R asif it were new
data.

3. Add additional restrictionsinto R by using Gaussian elimination, with
the rowsin R corresponding to restrictions, to reduce the restriction to a
form so that it can replace arow of R corresponding to data and preserve
the upper triangular structure of R. While performing the Gaussian
elimination, set small nonzero elements (as determined by TOL timesa
computed scale factor) of the reduced restriction to zero, so that errors
from in exact computer arithmetic are not incorporated as a new
restriction. Flag the row as arestriction. Use the restriction to reduce the
first nonzero element of the row that was removed from R to
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zero. Incorporate the row that has been reduced by the restriction into
the remaining rows of Ras if it were new data.

4, After all the data and restrictions are incorporated, the i-th row of R
(wherei ranges over each row of R corresponding to alinearly
independent constraint) is used to zero out elements of Rin thei-th
column of the previous rows of R that correspond to data. Although this
step is hot required to get aleast-squares solution, Sallas (1988)
recommends this step so that the rows and columns of

R
corresponding to data form the R matrix for the reduced model that
arises from expressing some regression parameters, f3;, in terms of other
regression parameters, f3;(j > i).
Linear dependence of the regressors in the reduced model is then checked as part
of the wrap-up computations, using the rows and columns of R corresponding to
the reduced model. The check is complicated somewhat by the fact that a

regressor could become zero in the reduced model, but because of the finite
precision of computer arithmetic, the regressor is not exactly zero. Let d; equal

thei-th diagonal element of XT X, and let

d;

equal the corresponding diagonal from the crossproducts matrix for the reduced
model. Linear dependence of regressorsin the reduced model is declared if

V1= Rz ia

islessthan or equal to TOL or if

\/(l_ I:‘1)'2EIJ,2,...,i—1)ai /d,

islessthan or equal to TOL. (The last check is designed to detect a zero regressor
in the reduced model.) Here,

2
F\I)' @2,..,i-1

is the square of the “multiple correlation” coefficient of itk regressor in the

reduced model with the first- 1 regressors in the reduced model. The “multiple
correlation” coefficient is computed using the regressors in the reduced model
and adjusted for the mean only if the incorporated restrictions have that effect.

When a linear dependence is declaiRds changed so as to reflect the deletion

of thei-th regressor from the model. On completion of the wrap-up computations,
the rows oR can be partitioned into three classes according to the sign of the
corresponding diagonal element:
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1. A positive diagonal element means the row/column corresponds to data
for regressors in the reduced model.

2. A negative diagonal element means the row correspondsto alinearly
independent restriction imposed on the regression parameters by
HB=G.

3. A zero diagonal element means alinear dependence in the reduced
model was declared. The regression coefficients in the corresponding
row of

A

B

are set to zero. This represents an arbitrary restriction that isimposed to
obtain a solution for the regression coefficients. The elements of the
corresponding row of R are also set to zero.

Redundant restrictions on the regression parameters are frequently specified in
genera linear models. Routine RLEQU permits redundant restrictions and returns
therank of H. Aninformational error isissued if inconsistent restrictions are
detected.

Example 1

A grafted polynomial (spline function) isfit to data discussed by Fuller (1976,
pages 396—-398). The data set contains the response variable y measuring the
annual wheat yield (in bushels per acre) for the years 1908 through 1971. In order
to fit the trend, Fuller fitsa function that is constant for the first 25 years,
increases at a quadratic rate until 1961, and islinear for the last 10 years. This
trend is represented by the function f(t) where

B, if1<t<25
f(t) =B, +Bst +P4t? if 255<t<54
Bs +Bgt if 54<t<64

wheret = 1 for 1908.

In order to fit a smooth function to the data, we require both continuity and
differentiability. Thisimposes four restrictions on the coefficients given as

follows:

1 B =By —25B; - 25254 =0

2. [32"'54[33"'542[34_[35_54[36:0
3. B3 + SOB4 =0

4. B3 + 10884 - B6 =0

The example program first calls routine RG VN (page 107) with | DO= 1, which
specifiesthat initialization and updating for the data are performed and wrap-up
computations are not performed. Thisintermediate output from RG VN along with
therestrictions is the input to RLEQU .
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| NTEGER | DEP, LDB, LDG LDH LDR, LDSCPE, LDX, NCOEF, NH,
& NOBS, NVAR
PARAMETER (1 DEP=1, LDG=1, NCCEF=6, NH=4, NOBS=64, NVAR=7,

& LDB=NCCEF, LDH=NH, LDR=NCOCEF, LDSCPE=I| DEP, LDX=NOBS)
C
| NTEGER I, 1DO IFRQ |G | NDDEP(IDEP), | NDI ND(NCCEF),
& I NTCEP, | NVOKE, | RANK, | RANKH, | RANKR, |SUB, |W, NOUT,
& NRM SS
REAL AVACH, B(LDB, | DEP), D(NCOCEF), DFE, G LDG, | DEP),
& H(LDH, NCOEF), R(LDR, NCOEF), SCPE(LDSCPE, |DEP), TO.,
& X(LDX, NVAR), XMAX( NCOEF), XM N( NCCEF)
CHARACTER*4 RLABEL(1), CLABEL(1)
EXTERNAL AMACH, RG VN, RLEQU, UMACH, WRRRL
C
DATA INDIND/1, 2, 3, 4, 5, 6/, | NDDEP/7/
DATA X/ 384*0.0, 14.3, 15.5, 13.7, 12.4, 15.1, 14.4, 16.1, 16.7,
& 11.9, 13.2, 14.8, 12.9, 13.5, 12.7, 13.8, 13.3, 16.0, 12.8,
& 14.7, 14.7, 15.4, 13.0, 14.2, 16.3, 13.1, 11.2, 12.1, 12.2,
& 12.8, 13.6, 13.3, 14.1, 15.3, 16.8, 19.5, 16.4, 17.7, 17.0,
& 17.2, 18.2, 17.9, 14.5, 16.5, 16.0, 18.4, 17.3, 18.1, 19.8,
& 20.2, 21.8, 27.5, 21.6, 26.1, 23.9, 25.0, 25.2, 25.8, 26.5,
& 26.3, 25.9, 28.4, 30.6, 31.0, 33.9/
DATA (H(1,J),J=1, NCCEF)/1, -1, -25, -625, 0, 0/
DATA (H(2,J),J=1, NCCEF)/0, 1, 54, 2916, -1, -54/
DATA (H(3,J),J=1, NCCEF)/0, 0O, 1, 50, 0, 0/
DATA (H(4,J),J=1, NCCEF)/0, O, 1, 108, 0, -1/
C
DATA RLABEL/’'NONE’/,CLABEL/'NONE’/
C
DO 10 I=1, NOBS
IF (I .LE. 25) THEN
C Constant function.
X(,1)=1.0
ELSE IF (I.GT.25 .AND. |.LE.54) THEN
C Quadratic function.
X(,2)=1.0
X(1,3) =1
X(1,4) = 1**2
ELSE IF (I .GT. 54) THEN
C Linear function.
X(1,5)=1.0
X(1,6) =1
END IF
10 CONTINUE
IDO =1
INTCEP =0
IFRQ =0
IWT =0
ISUB =0
TOL =100.*AMACH(4)
CALL RGIVN (IDO, NOBS, NVAR, X, LDX, INTCEP, NCOEF, INDIND,
& IDEP, INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR,
& D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
INVOKE =0
IG =0
CALL RLEQU (INVOKE, NH, NCOEF, H, LDH, IG, IDEP, G, LDG, TOL, B,
& LDB, R, LDR, D, IRANKR, DFE, SCPE, LDSCPE, IRANKH)

CALL UMACH (2, NOUT)
WRITE (NOUT,*) IRANKR =", IRANKR, ' IRANKH =", IRANKH

IMSL STAT/LIBRARY Chapter 2: Regression « 137



13.99

-1 1 25

WRITE (NOUT,*) 'DFE =, DFE,’ SCPE(1,1) =, SCPE(1,1)
CALL WRRRL ('%/B’, 1, NCOEF, B, 1, 0, '(2W10.4)’, RLABEL, CLABEL)
CALL WRRRL ('%/R’, NCOEF, NCOEF, R, LDR, 1, '(2W10.4)’, RLABEL,

& CLABEL)
END

Output

IRANKR = 6 IRANKH = 4
DFE =

62.0000 SCPE(1,1)= 172.559
B

2158 -0.6068 0.01214 -13.81 0.7039

R

625 0.

-1 -54 -2916 1.
-1 -50 0.

-58 0.

1900 1910 1920

1930

1940

Year

1950

1960 1970 1980

Figure 2-5 Annual U.S. Wheat Yield and a Grafted Polynomial Fit

Example 2

A fit to unbalanced datafor atwo-way classification model is computed. The

model is
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Yk =M+ o+ Bry;+e; i=12)=1,2k=12...,n;

wherethe a;’s andp;’s are the row and column effects, respectively, \grelare
the interaction effects. The respongggsare given in the cells of the following 2

x 2 table:
17,14, 11 13, 12
12, 14, 15, 14, 12 13, 14

The following restrictions can be imposed on the regression parameters in order
to compute a cell-means fit to the responses:

50, + 70, =0

8 +43,=0

30 + 501, + 3y + Sy =0

200 + 200, + 215+ 2y, =0

P+ 2B, + 3+ 2y =0

By + 2B, + 5+ 2y, =0

The example program first calls IMSL routiReLM(page 117) with DO= 1,
which specifies that initialization and updating for the data are performed and

wrap-up computations are not performed. This intermediate outpuREDM
along with the restrictions is the inputRbEQU.

S e o

A cell-means fit to the data could also be obtained without WiBQU and using

I DO= 0 in the call tRGLMin this example. Although the fittgg, would be the

same, the coefficient estimates and their interpretations would be different.
| NTEGER | DEP, | NTCEP, LDB, LDG LDH LDR, LDSCPE, LDX, MAXCL,

& NCLVAR, NCOEF, NEF, NH, NOBS, NVAR
PARAMETER (| DEP=1, |NTCEP=1, LDG=1, LDH=6, MAXCL=4, NCLVAR=2,

& NCOEF=9, NEF=3, NH=6, NOBS=12, NVAR=3, LDB=NCOEF,
& LDR=NCOEF, LDSCPE=I DEP, LDX=NOBS)
C
INTEGER  IDO, IFRQ |G |NDCL(NCLVAR), |NDDEP(1), |NDEF(4),
& I NVOKE, |RANK, | RANKH, |RANKR, |RBEF(NEF+1), |SUB, I|W,
& MODEL, NCLVAL(NCLVAR), NOUT, NRM SS, NVEF( NEF)
REAL AVACH, B(LDB, | DEP), CLVAL(MAXCL), D(NCOEF), DFE,
& G(LDG, | DEP), H(LDH, NCOEF), R(LDR, NCOEF),
& SCPE( LDSCPE, | DEP), TOL, X(LDX, NVAR), XMAX( NCOEF),
& XM N( NCOEF)
CHARACTER CLABEL(10)*7, RLABEL(1)*4
EXTERNAL ~ AMACH, RGLM RLEQU, UMACH, WRRRL, WRRRN
C

DATA INDCL/1, 2/, NVEF/1, 1, 2/, INDEF/1, 2, 1, 2/, |NDDEP/3/

DATA CLABEL/’, 'MU’, '"ALPHAL’, 'ALPHA?2’, 'BETAL’, 'BETA2’,

& ’'GAMMALL’, 'GAMMAL2’, 'GAMMA21’,"GAMMA22'/

DATA (X(1,J),J=1,NVAR) /1, 1, 17/

DATA (X(2,3),J=1,NVAR) /1, 1, 14/

DATA (X(3,J),J=1,NVAR) /1, 1, 11/

DATA (X(4,d),J=1,NVAR) /1, 2, 13/

DATA (X(5,d),J=1,NVAR) /1, 2, 12/

DATA (X(6,d),J=1,NVAR) /2, 1, 12/
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DATA (X(7,J),J=1,NVAR) /2, 1, 14/

DATA (X(8,J),J=1,NVAR) /2, 1, 15/

DATA (X(9,J),J=1,NVAR) /2, 1, 14/

DATA (X(10,J),J=1, NVAR) /2, 1, 12/

DATA (X(11,J),J=1, NVAR) /2, 2, 13/

DATA (X(12,J),J=1, NVAR) /2, 2, 14/

DATA (H(1,J),J=1, NCOEF) /0, 5, 7, 0, 0, 0, 0, 0, 0/

DATA (H(2,J),J=1, NCOEF) /0, 0, O, 8, 4, 0, 0, 0, 0/

DATA (H(3,J),J=1, NCOEF) /0, 3, 5, 0, 0, 3, 0, 5 0/

DATA (H(4,J),J=1,NCOEF) /0, 2, 2, 0, 0, 0, 2, 0, 2/

DATA (H(5,J),J=1, NCOEF) /0, 0, 0, 3, 2, 3, 2, 0, 0/

DATA (H(6,J),J=1, NCOEF) /0, 0, 0, 5, 2, 0, 0, 5 2/
c

IDO =1

IFRQ =0

IW =0

MODEL = 1

ISB =0

TOL = 100.*AVACH(4)

CALL RGLM (1 DO, NOBS, NVAR, X, LDX, INTCEP, NCLVAR |NDCL, NEF,
& NVEF, |NDEF, |DEP, |INDDEP, |FRQ |W, MODEL, ISUB,
& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)
I NVOKE = 0
IG =0
CALL RLEQU (I NVOKE, NH, NCOEF, H, LDH, IG IDEP, G LDG TO., B,
& LDB, R LDR D, IRANKR DFE, SCPE, LDSCPE, |RANKH)
CALL UMACH (2, NOUT)

WRITE (NOUT,*) 'IRANKR =", IRANKR, ’ IRANKH =, IRANKH

WRITE (NOUT,*) 'DFE =, DFE, ' SCPE(1,1) =’, SCPE(L,1)

RLABEL(1) = 'NONE’

CALL WRRRL (B’, 1, NCOEF, B, 1, 0, '(F7.2)", RLABEL, CLABEL)

CALL WRRRN ('R’, NCOEF, NCOEF, R, LDR, 1)

END

Output
IRANKR = 9 IRANKH = 5
DFE = 8.00000 SCPE(1,1)= 26.2000

B
MU ALPHAl1 ALPHA2 BETAl1 BETA2 GAMMAll GAMMAl12 GAMMAZ21
1342 -0.02 001 021 -0.42 039 -048 -0.24

GAMMA22
0.49

R
1 2 3 4 5 6 7 8 9
3.46 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1

2 -5.00 -7.00 0.00 0.00 0.00 0.00 0.00 0.00
3 -0.80 0.00 0.00 -3.00 0.00 -5.00 0.00
4 -8.00 -4.00 0.00 0.00 0.00 0.00
5 -0.50 -3.00 -2.00 0.00 0.00

6 -3.00 -2.00 -5.00 -2.00

7 10.41 3.20 11.37

8 2456 9.65

9 2.45
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RSTAT/DRSTAT (Single/Double precision)

Compute statistics related to aregression fit given the coefficient estimates
and the R matrix.

Usage

CALL RSTAT (I NTCEP, |EF, IRBEF, B, R LDR DFE, SSE, PRINT,
AOV, S(SS, LDS(SS, CCOEF, LDCCOEF, COvB, LDCOVB)

Arguments

INTCEP — Intercept option. (Input)

I NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

| EF — Effect option. (Input)
The absolute value ofEF is the number of effects (sources of variation) in the
model excluding the error. The signidiF specifies the following options:

| EF M eaning

<0 Each effect corresponds to a single regressor (coefficient) in the model.

>0 Each effect corresponds to one or more regressors. The association
between the effects and the regressors is given by elemé RB&H.

0 There are no effects in the model\lTCEP must equal 1.

IRBEF — Index vector of length EF| + 1. (Input, ifi EF is positive.)
Fori=1, 2,..., || EF|, element numberRBEF(i), | RBEF(i) + 1, ..., | RBEF(i + 1)
-1, of B correspond to thieth effect.

B — Vector of lengtiNCOEF containing a least-squares solution

A

B

for the regression coefficients. (Input)

Here, ifl EF> 0, thenNCOEF = | RBEF(I EF + 1) - 1; and ifl EF < 0, then
NCOEF =1 NTCEP — | EF. If I NTCEP = 1, thenB(1) must be the estimated
intercept.

R — NCOEF by NCCEF upper triangular matrix containing tRematrix. (Input)
The R matrix can come from a regression fit based QRalecomposition of the

matrix of regressors or based on a Cholesky factoriz&i@hof the matrix of

sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element d® that is zero must also be zero. A zero row indicates a
nonfull rank model. For aR matrix that comes from a regression fit with linear
equality restrictions on the parameters, each roR@irresponding to a
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restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of Ris referenced.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

DFE — Degrees of freedom for error. (Input)
SSE — Sum of squares for error. (Input)

PRINT — Printing option. (Input)

PRI NT is a character string indicating what is to be printed. PRINT string is
composed of one character print codes to control printing. These print codes are
given as follows:

PRINT(l : 1) Printing that occurs

‘A All

‘N None

‘1’ AV

2’ SQ8S

‘3 COEF

‘4 CovB

The concatenated print codes,“ N, ‘1’, ..., ‘4’ that comprise th@RI NT string

give the combination of statistics to be printed. Here are a few examples.

PRI NT Printing Action

‘A All

‘N None

13’ AOV andCOEF

‘124"  AQV, SQSS, andCOvB

AQV — Vector of length 15 containing statistics relating to the analysis of
variance. (Output)

AOV(1)
Degrees of freedom for regression
Degrees of freedom for error
Total degrees of freedom
Sum of squares for regression
Sum of squares for error
Total sum of squares
Regression mean square
Error mean square
F-statistic

0 p-value

11 R (in percent)

12 Adjusted®’ (in percent)

13 Estimated standard deviation of the model error
14 Mean of the response (dependent) variable

P OO~NOOODWNE —
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15 Coefficient of variation (in percent)

If I NTCEP = 1, the regression and total are corrected for the mean. If | NTCEP = O,
the regression and total are not corrected for the mean, and AOV(14) and AOV(15)
are set to NaN (not a number).

SQSS — || EF| by 4 matrix containing in columns 1 through 4 the sequential
degrees of freedom, sum of squafestatistic, ang-value. (Output)

Each row corresponds to an effectl. H- = 0, SQSS is not referenced and can be
a vector of length one.

LDSQSS — Leading dimension 8QSS exactly as specified in the dimension
statement in the calling program. (Input)

COEF — NCCEF by 5 matrix containing statistics relating to the regression
coefficients. (Output)

Each row corresponds to a coefficient in the model. REWCEP + |
corresponds to the coefficient for theh independent variable. INTCEP = 1,
the first row corresponds to the intercept. The statistics in the columns are

Col. Description

Coefficient estimate.

Estimated standard error of the coefficient estimate.

t-statistic for the test that the coefficient is zero.

p-value for the two-sidedtest.

Variance inflation factors. The square of the multiple correlation
coefficient for thd -th regressor after all others can be obtained from
CCEF(I , 5) by the formula 1.6 1.0/CCEF(I , 5). If | NTCEP = 0 or

I NTCEP =1 and =1, the “multiple correlation coefficient” is not
adjusted for the mean.

G WDNPF

LDCOEF — Leading dimension afOEF exactly as specified in the dimension
statement in the calling program. (Input)

COVB — NCOEF by NCCEF matrix that is the estimated variance-covariance
matrix of the estimated regression coefficients wR&nonsingular and is from
an unrestricted regression fit. (Output)

See Comments for an explanationoaf/B whenR is singular oR is from a
restricted regression fit. Ris not needed;OvB andR can share the same
storage locations.

LDCOVB — Leading dimension afOvB exactly as specified in the dimension
statement in the calling program. (Input)

Comments

WhenR is nonsingular and comes from an unrestricted regressiQNs, is
the estimated variance-covariance matrix of the estimated regression

coefficients, an®OvB = (SSE/DFE) * (RTR)‘I. Otherwise, variances and
covariances of estimable functions of the regression coefficients can be obtained

usingCovB, andCOVB = (SSE/DFE) * GDG/. Here,D is the diagonal matrix
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with diagonal elements equal to O if the corresponding rows of R are restrictions
and with diagonal elements equal to one otherwise. Also, G isa particular
generalized inverse of R. See the Algorithm section.

Algorithm

Routine RSTAT computes summary statistics from afitted general linear model.
The model isy = Xp + € whereyisthen x 1 vector of responses, Xisthen x p
matrix of regressors, 3 isthe p x 1 vector of regression coefficients, and € isthe
n x 1 vector of errors whose elements are each independently distributed with

mean 0 and variance 6>. Routine RG VN (page 107) or routine RGLM(page 117)
can be used to compute the fit of the model. Next, RSTAT uses the results of this
fit to compute summary statistics, including analysis of variance, sequential sum
of squares, t tests, and estimated variance-covariance matrix of the estimated
regression coefficients.

Some generalizations of the general linear model are allowed. If thei-th element

of & has variance o°/w; and the weightsw; are used in the fit of the model, RSTAT
produces summary statistics from the weighted least-squares fit. More generaly,

if the variance-covariance matrix of € is 6°V, RSTAT can be used to produce
summary statistics from the generalized |least-squares fit. (RoutineRG VN can be

used to perform a generalized |east-squares fit, by regressingy” on X where

y =T HTy, X =(T") X and T satisfies T’ T = V. Routines for computing y* and
X" can befound in the IMSL MATH/LIBRARY )

If the general linear model hastherestriction H 3 = g on the regression
parameters, and thisrestriction is used in thefit of the model by routine RLEQU

(page 131), RSTAT produces summary statistics from this restricted least-squares
fit.

The sequential sum of squares for thei-th regression parameter is given by

(RB)?

The regression sum of squares is given by the sum of the sequential sums of
sguares. If anintercept isin the model, the regression sum of squaresis adjusted
for the mean, i.e.,

02
(RB)1
isnot included in the sum.
The estimate of o” is s’ (stored in AOV(8)) that is computed as SSE/DFE.

If Risnonsingular, the estimated variance-covariance matrix of

A

B

(stored in COVB) is computed by SR (R™)”.
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If Rissingular, corresponding to rank (X) < p, ageneralized inverse is used. For a
matrix Gtobeag,(i = 1, 2, 3, or 4) inverse of amatrix A, G must satisfy
conditionsj (for j <i) for the Moore-Penrose inverse but generally must fail
conditionsk (for k > i). The four conditions for G to be a Moore-Penrose inverse
of Aareasfollows:

1. AGA=A
2. GAG=G
3. AG is symmetric
4. GA is symmetric

In the case where Ris singular, the method for obtaining COvB follows the
discussion of Maindonald (1984, pages 101-103). Let Z be the diagonal matrix
with diagonal elements defined by

1 if Fii 0
z; = :
" 0 if Fii =0
Let G be the solution to RG = Z obtained by setting thei-th ({i : r;; = 0}) row of G

to zero. COVBis set to GG . (Gisag; inverse of R. For any g; inverse of R,
represented by

Rgs
the result

RBR®BT

isasymmetric g, inverse of R'R = XX. See Sdllasand Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable
functions of the regression coefficients, i.e., nonestimable functions (linear
combinations of the regression coefficients not in the space spanned by the
nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages
166-168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in
column 2 of COEF) are computed as square roots of the corresponding diagonal
entriesin COVB.

For the case where an intercept isin the model, put

R

equal to the matrix R with the first row and column deleted. Generally, the
variance inflation factor (VIF) for the i-th regression coefficient is computed as

the product of the i-th diagonal element of R’Rand thei-th diagonal element of
its computed inverse. If an intercept isin the model, the VIF for those coefficients
not corresponding to the intercept uses the diagonal elements of

R'R

IMSL STAT/LIBRARY

Chapter 2: Regression « 145



(see Maindonald 1984, page 40).

The preceding discussion can be modified to include the restricted | east-squares
problem. The modification is based on the work of Stirling (1981). Let the matrix
D =diag(d;, d,, ..., d,) be adiagona matrix with elementsd; = 0 if the i-th row
of R corresponds to restriction. In the unrestricted case, D is simply the

p x p identity matrix. The formulafor COvB isGDG”. Theformulafor the
sequential sum of squares for thei-th ({i : r;; > 0}) regression parameter is given
by
A\ 2
(DRB)
|
Sequentia sums of squaresfor {i : r;; < 0} are set to zero.

For the restricted least-squares problem, the sequential and regression sums of
squares correspond to those from afitted reduced model obtained by first
substituting the restriction H3 = g into the model. In general, the reduced model
is not unique. Care must be taken to interpret the sequential sums of squaresin
the context of the particular reduced model indicated by the R matrix. If g =0,
any of the reduced models that could be computed from the restrictions will
produce the same regression sum of sguares. However, if g # 0, different reduced
model s resulting from the same restricted model can have different regressands,
and hence, different total and regression sums of squares.

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629—
630). This data set is put into the matrix X by routine GDATA (page 1302). There
are 4 independent variables and 1 dependent variable. Routine RG VN (page 107)
isinvoked to fit the regression model and RSTAT isinvoked to compute summary
statistics.

C SPECI FI CATI ONS FOR LOCAL VARI ABLES
INTEGER  |NTCEP, LDB, LDCOEF, LDCOVB, LDR LDSCPE, LDSQSS,
& LDX, NCOEF, NDEP, NDX, NI ND
PARAMETER (I NTCEP=1, LDX=13, NDEP=1, NDX=5, NI ND=4,
& LDSCPE=NDEP, LDSQSS=NI ND, NCOEF=| NTCEP+NI ND,
& LDB=NCOEF, LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCCEF)
C
INTEGER  IDEP, IDO, IEF, IFRQ IIND, I|NDDEP(1), INDINX1),
& | RANK, |RBEF(1), ISUB, |W, NCOL, NRM SS, NROW
REAL AVACH, AOV(15), B(LDB, NDEP), COEF(LDCCEF,5),
& COVB(LDCOVB, 5), D(NCOEF), DFE, R(LDR, NCOEF),
& SCPE( LDSCPE, NDEP), SQSS(LDSGQSS, 4), SSE, TA.,
& X(LDX, NDX), XMAX( NCOEF), XM N( NCOEF)
CHARACTER PRI NT*5
EXTERNAL  AMACH, GDATA, RG VN, RSTAT
C
CALL GDATA (5, 0, NROW NCOL, X, LDX, NDX)
IDO =0
[IND = - NI ND
| DEP = - NDEP
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>RrOO0

MACH( 4) * 100. 0
CALL RG VN (I DO, NROW NCOL, X, LDX, INTCEP, |IND, |NDIND, IDEP,
& INDDEP, |FRQ |W, ISUB, TOL, B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)
PRINT = 'A’
IEF =-NIND
SSE = SCPE(1,1)

CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV,
& SQSS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)

C
END

Output
R-squared Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Model Error Mean Var. (percent)
98.238 97.356 2.446 95.42 2.563

*** Analysis of Variance * * *
Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Regression 4  2667.9 667.0 111.479 0.0000
Residual 8 47.9 6.0
Corrected Total 12 2715.8

* * * Sequential Statistics * * *
Indep. Degrees of Sum of Prob. of
Variable Freedom Squares F-statistic Larger F
1 1450.1 242.368 0.0000
1 1207.8 201.870 0.0000
1 9.8 1.637 0.2366
1 0.2 0.041 0.8441

ArWONER

* * * Inference on Coefficients * * *
Standard Prob. of Variance
Coef. Estimate Error t-statistic Larger [t| Inflation
1 62.41 70.07 0.891 0.3991 10668.5
2 1.55 0.74 2.083 0.0708 38.5
3 0.51 0.72 0.705 0.5009 254.4
4 0.10 0.75 0.135 0.8959 46.9
5 -0.14 0.71 -0.203 0.8441 282.5

* ** \Variance-Covariance Matrix for the Coefficient Estimates * * *
1 2 3 4 5

1 4909.95 -50.51 -50.60 -51.66 -49.60
2 0.55 0.51 0.55 0.51
3 0.52 0.53 0.51
4 0.57 0.52
5 0.50
Example 2

A one-way analysis of covariance model isfitted to the turkey data discussed by
Draper and Smith (1981, pages 243-249). The response variable isturkey
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weight y (in pounds). Three groups of turkeys corresponding to the three states
where they were reared are used. The age of aturkey (in weeks) is the covariate.
The explanatory variables are age, group, and interaction. The model is

Yij =

U+BX11+C( +BZXI tE;

i=1,2,3j=12,..,n

where a; = 0 and 3; = 0. Routine RGLM(page 117) is used to fit the model with
the option | DUMMY = 2. Then, RSTAT is used to compute summary statistics. The
fitted model gives three separate lines with slopes 0.506, 0.470, and 0.445. The F
test for interaction (the last effect) suggests omitting the interaction from the
model and using a model with identical slopesfor each group.

C SPECI FI CATI ONS FOR PARANMETERS
INTEGER  |DEP, |EF, INTCEP, LDB, LDCOEF, LDCOVB, LDR LDSCPE,
& LDSQSS, LDX, MAXB, MAXCL, NCLVAR NCOL, NROW
PARAMETER (I DEP=1, |EF=3, |NTCEP=1, LDX=13, MAXB=6, MAXCL=3,
& NCLVAR=1, NCOL=3, NROW:13, LDB=MAXB, LDCOEF=MAXB,
& LDCOVB=MAXB, LDR=MAXB, LDSCPE=I DEP, LDSQSS=|EF)

C
INTEGER DO, | DUMMY, |FRQ |NDCL(NCLVAR), | NDDEP(I DEP),
& INDEF(4), |RANK, |RBEF(IEF+1), |SUB, |WT,
& NCLVAL(NCLVAR), NRM SS, NVEF( | EF)
REAL AVACH, AOV(15), B(LDB, |DEP), CLVAL(MAXCL),
& COEF( LDCOEF, 5), COVB(LDCOVB, MAXB), D( MAXB), DFE,
& R(LDR, MAXB), SCPE(LDSCPE, | DEP), SQSS(LDSGSS, 4), SSE,
& TOL, X(LDX, NCOL), XNMAX(MAXB), XM N( MAXB)
CHARACTER PRI NT*1
EXTERNAL  AMACH, RGLM RSTAT

C
DATA (X(1,J),J=1,3)/25, 13.8, 3/
DATA (X(2,J),J=1,3)/28, 13.3, 1/
DATA (X(3,J),J=1,3)/20, 8.9, 1/
DATA (X(4,J),J=1,3)/32, 15.1, 1/
DATA (X(5,J),J=1,3)/22, 10.4, 1/
DATA (X(6,J),J=1,3)/29, 13.1, 2/
DATA (X(7,3),Jd=1,3)/27, 12.4, 2/
DATA (X(8,J),J=1,3)/28, 13.2, 2/
DATA (X(9,J),J=1,3)/26, 11.8, 2/
DATA (X(10,J),J=1,3)/21, 11.5, 3/
DATA (X(11,J),J=1,3)/27, 14.2, 3/
DATA (X(12,J3),J=1,3)/29, 15.4, 3/
DATA (X(13,J),J=1,3)/23, 13.1, 3/
DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/1, 3, 1, 3/, |NDDEP/2/

c
IDO =0
IFRQ =0
IW =0
| DUMWY = 2
ISslB =1
TOL = 100. 0* AVACH( 4)
CALL RGLM (1DO, NROW NCOL, X, LDX, INTCEP, NCLVAR I|NDCL, I|EF,
& NVEF, |NDEF, |DEP, |NDDEP, |FRQ |W, |DUMW, I SUB,
& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)

C
SSE = SCPE(1, 1)

PRINT = 'A’
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CALL RSTAT (| NTCEP,

| EF, IRBEF, B, R LDR, DFE, SSE, PRINT, AOQvV,

& S@SS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)
C
END
Output
R- squar ed Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Mdel Error Mean Var. (percent)
98. 208 96. 929 0. 3176 12.78 2.484
* * * Anal ysis of Variance * * *
Sum of Mean Prob. of
Sour ce DF Squar es Square Overall F Larger F
Regr essi on 5 38.71 7.742 76. 744 0. 0000
Resi dual 7 0.71 0.101
Corrected Tot al 12 39.42
* * * Sequential Statistics * * *
Degr ees of Sum of Prob. of
Ef f ect Freedom Squares F-statistic Larger F
1 1 26. 20 259. 728 0. 0000
2 2 12. 40 61. 477 0. 0000
3 2 0.11 0. 520 0. 6156
* * * |nference on Coefficients * * *
St andard Prob. of Vari ance
Coef . Estimate Error t-statistic Larger |t] Inflation
1 2.475 1.264 1. 959 0. 0910 205.7
2 0. 445 0. 050 8. 861 0. 0000 3.8
3 -3.454 1.531 -2.257 0. 0586 64. 3
4 -2.775 4,109 -0.675 0. 5211 463. 4
5 0. 061 0. 060 1.013 0. 3447 68.1
6 0. 025 0. 151 0. 166 0. 8729 472. 3
* * * Variance-Covariance Mtrix for the Coefficient Estinmates * * *
1 2 3 4 5
1 1. 5965 -0. 0631 -1. 5965 -1. 5965 0. 0631
2 0. 0025 0. 0631 0. 0631 -0. 0025
3 2.3425 1. 5965 -0.0913
4 16. 8801 -0. 0631
5 0. 0036
6
1 0. 0631
2 -0. 0025
3 -0.0631
4 -0.6179
5 0. 0025
6 0. 0227

Example 3

A two-way analysis-of-variance model is fitted to balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
weight gains (in grams) of rats fed diets varying in two components—Ilevel of
protein and source of protein. The model is
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Yk =M+ +B +y gy i=1,2)=1,2,3 k=12, ...,10
where

2 3 2
a; :O;ZBJ :O;ZVH =0forj =123 and
=1 j= i=1

3
yjj =0fori=12
=1

Routine RGLM(page 117) is used to fit the model with thel DuMwy = 0 option.
Then, RSTAT is used to compute summary statistics.

| NTEGER | DEP, |EF, LDB, LDCCEF, LDCOVB, LDR, LDSCPE, LDSQSS,
LDX, LINDEF, MAXB, MAXCL, NCLVAR, NCOL, NEF, NROW

PARAMETER (1 DEP=1, LI NDEF=4, MAXB=12, MAXCL=5, NCLVAR-=2,
NCOL=3, NEF=3, NROWE60, | EF=NEF, LDB=NMAXB,
LDCOEF=MAXB, LDCOVB=NMAXB, LDR=NMAXB, LDSCPE=| DEP,
LDSQSS=NEF, LDX=NROW

RoRoRo R

INTEGER DO, | DUMMY, |FRQ |NDCL(NCLVAR), | NDDEP(I DEP),

| NDEF(LI NDEF), | NTCEP, |RANK, |RBEF(NEF+1), ISUB,

I WI, NCLVAL(NCLVAR), NRM SS, NVEF( NEF)

AVACH, AOV(15), B(LDB, |DEP), CLVAL(MAXCL),

COEF( LDCOEF, 5), COVB(LDCOVB, MAXB), D( MAXB), DFE,
R(LDR, MAXB), SCPE(LDSCPE, | DEP), SQSS(LDSGSS, 4), SSE,
TOL, X(LDX, NCOL), XNMAX(MAXB), XM N( MAXB)

CHARACTER PRI NT*1

EXTERNAL  AMACH, RGLM RSTAT

RoRoRo R0 Ro
py)
L
~

DATA X/ 73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0,
77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0,
51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0,
10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/

DATA INDCL/ 2, 3/, NVEF/1, 1, 2/, INDEF/ 2, 3, 2, 3/, | NDDEPF/ 1/

Ro Ro Ro Ro Ro Ro Ro

| DO
| NTCEP
| FRQ
| WI
| DUMMY
| SUB
TOL 100. 0* AVACH( 4)
CALL RGLM (1DO, NROW NCOL, X, LDX, INTCEP, NCLVAR |NDCL, NEF,
& NVEF, |NDEF, |DEP, |INDDEP, |FRQ |W, |DUMW, I SUB,
& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R LDR D
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)

POOORrO

SSE = SCPE(1,1)
PRINT = 'A’
CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV,
& SQSS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)
C
END
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Output

R- squar ed Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Mdel Error Mean Var. (percent)
28. 477 21.854 14. 65 87.87 16. 67
* * * Analysis of Variance * * *
Sum of Mean Prob. of
Sour ce DF Squar es Square Overall F Larger F
Regr essi on 5 4612.9 922.6 4.300 0. 0023
Resi dual 54 11586. 0 214.6
Reduced Mddel Tot al 59 16198. 9
* * * Sequential Statistics * * *
Degr ees of Sum of Prob. of
Ef f ect Freedom Squares F-statistic Larger F
1 1 3168. 3 14.767 0. 0003
2 2 266. 5 0.621 0.5411
3 2 1178. 1 2.746 0.0732
* * * |nference on Coefficients * * *
St andard Prob. of Vari ance
Coef . Estimate Error t-statistic Larger |t] Inflation
1 87. 87 1.891 46. 47 0. 0000 1. 000
2 7.27 1.891 3.84 0. 0003 NaN
3 -7.27 1.891 -3.84 0. 0003 1. 000
4 1.73 2.674 0. 65 0.5196 NaN
5 -2.97 2.674 -1.11 0.2722 1.333
6 1.23 2.674 0. 46 0. 6465 1.333
7 3.13 2.674 1.17 0. 2465 NaN
8 -6.27 2.674 -2.34 0. 0228 NaN
9 3.13 2.674 1.17 0. 2465 NaN
10 -3.13 2.674 -1.17 0. 2465 NaN
11 6. 27 2.674 2.34 0. 0228 1.333
12 -3.13 2.674 -1.17 0. 2465 1.333
* * * Variance-Covariance Matrix for the Coefficient Estimtes * * *
1 2 3 4 5
1 3.57593 0. 00000 0. 00000 0. 00000 0. 00000
2 3.57593 -3.57593 0. 00000 0. 00000
3 3.57593 0. 00000 0. 00000
4 7.15185 -3.57592
5 7.15185
6 7 8 9 10
1 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000
2 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000
3 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000
4 -3.57593 0. 00000 0. 00000 0. 00000 0. 00000
5 -3.57593 0. 00000 0. 00000 0. 00000 0. 00000
6 7.15185 0. 00000 0. 00000 0. 00000 0. 00000
7 7.15185 -3.57592 -3.57593 -7.15185
8 7.15185 -3.57593 3.57592
9 7.15185 3.57593
10 7.15185
11 12
1 0. 00000 0. 00000
2 0. 00000 0. 00000
3 0. 00000 0. 00000
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RCOVB/DRCOVB (Single/Double precision)

Compute the estimated variance-covariance matrix of the estimated regression
coefficients given the R matrix.

Usage
CALL RCOVB (NCCOEF, R, LDR, S2, COvB, LDCOVB)

Arguments
NCOEF — Number of regression coefficients in the model. (Input)

R — NCOEF by NCOEF upper triangular matrix containing tRematrix. (Input)
TheR matrix can come from a regression fit based @Ralecomposition of the

matrix of regressors or based on a Cholesky factoriz&lghof the matrix of

sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element dR that is zero must also be zero. A zero row indicates a
nonfull rank model. For aR matrix that comes from a regression fit with linear
equality restrictions on the parameters, each roRadfrresponding to a

restriction must have a corresponding diagonal element that is negative. The
remaining rows oR must have positive diagonal elements. Only the upper
triangle ofR is referenced.

LDR — Leading dimension d® exactly as specified in the dimension statement
in the calling program. (Input)

S2 — &, the estimated variance of the error in the regression model. (Input)
< is the error mean square from the regression fit.

COVB — NCCEF by NCOEF matrix that is the estimated variance-covariance
matrix of the estimated regression coefficients wR&nnonsingular and is from
an unrestricted regression fit. (Output)

See Comments for an explanatiorcaf/B whenR is singular oR is from a
restricted regression fit. Ris not needed;OvB andR can share the same storage
locations.

LDCOVB — Leading dimension afOvB exactly as specified in the dimension
statement in the calling program. (Input)
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Comments

When Ris nonsingular and comes from an unrestricted regression fit, COVB is the
estimated variance-covariance matrix of the estimated regression coefficients, and

COVB = sz(RTR)‘ ! Otherwise, variances and covariances of estimable functions

of the regression coefficients can be obtained using COvB, and COVB = $GDG.
Here, D isthe diagonal matrix with diagonal elements equal to O if the
corresponding rows of R are restrictions and with diagonal elements equal to one
otherwise. Also, G isa particular generalized inverse of R. See the Algorithm
section.

Algorithm

Routine RCOVB computes an estimated variance-covariance matrix of estimated
regression parameters from the R matrix in several models. In the simplest
situation, the model is ageneral linear model given by y = X[3 + € wherey isthen
x 1 vector of responses, X isthen x p matrix of regressors, 3 isthe p x 1 vector
of regression coefficients, and € isthen x 1 vector of errors whose elements are
each independently distributed with mean 0 and variance 0. Routine RG N
(page 107) can be used to get the fit of the model and the R matrix.

If thei-th element of & has variance OZ/Wi and the weightsw; are used in the fit of
the model, RCOVB produces the estimated variance-covariance matrix from the R
matrix in the weighted least squares fit. More generaly, if the variance-
covariance matrix of € is 6>V, RCOVB can be used to produce the estimated
variance-covariance matrix from the generalized | east-squares fit. (Routine

RG VN can be used to perform a generalized least-squares fit, by regressing y* on
X wherey” = (T) Ty, X = (T") "X and T satisfies T’ T= V)

If the general linear model has the restriction HP = g on the regression parameters
and this restriction is used in the fit of the model by routine RLEQU (page 131),
RCOVB produces the estimated variance-covariance from the R matrix in the
restricted least squaresfit.

Routine RCOVB computes an estimated variance-covariance matrix for the
estimated regression coefficients,

A

B

in afitted multivariate general linear model. The model isY = XB + EwhereY is
the n x g matrix of responses, X isthe n x p matrix of regressors, B isthe

p x q matrix of regression coefficients, and E isthe n x g matrix of errors whose
rows are each independently distributed as a g-dimensiona multivariate normal
each with mean vector 0 and variance-covariance matrix . Let

8= (Bu.Bon i)
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The estimated covariance matrix
AoA -1
— T
COV(Bl,BJ) —Sij(x X)
Here, s; (input in S2) is the estimate of the ij-th element of Z.

If anonlinear regression model isfit using routine RNLI N (page 280), RCOVB
produces the asymptotic estimated variance-covariance matrix from the R matrix
in that fit.

If Rissingular, corresponding to rank(R) < p, ageneralized inverseis used to
compute COVB. For amatrix Gtobeag,(i = 1, 2, 3, or 4) inverse of amatrix A, G
must satisfy conditionsj(for j < i) for the Moore-Penrose inverse but, generaly,
must fail conditionsk (for k > i). The four conditions for G to be a Moore-Penrose
inverse of A areasfollows:

1 AGA=A
2. GAG=G
3. AG is symmetric
4, GA is symmetric

In the case that Ris singular, the method for obtaining COvB follows the
discussion of Maindonald (1984, pages 101-103). Let Z be the diagonal matrix
with diagonal elements defined by

1 if l z0
z; = :
! 0 if Fii =0
Let G be the solution to RG = Z obtained by setting thei-th ({i : r;= 0}) row of G

to zero. COVBis set to GG (Gisag; inverse of R. For any g; inverse of R,
represented by

Rgs
the result

RBR®BT

isasymmetric g, inverse of R'R = XX. See Sdllasand Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable
functions of the regression coefficients, i.e., nonestimable functions (linear
combinations of the regression coefficients not in the space spanned by the
nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages
166-168) for a discussion of estimable functions.

The preceding discussion can be modified to include the restricted least-squares
problem. The modification is based on the work of Stirling (1981). Let the matrix
D =diag(d;, d,, ..., d,) be adiagonal matrix with elementsd;; = O if the
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i-th row of R corresponds to arestriction and 1 otherwise. In the unrestricted case,
D issimply thep x p identity matrix. The formulafor COvB is $GDG’.

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629-
630). This data set is put into the matrix X by routine GDATA (page 1302). There
are 4 independent variables and 1 dependent variable. Routine RG VN (page 107)
isinvoked to fit the regression model, and RCOVB is invoked to compute summary
statistics.

C SPECI FI CATI ONS FOR LOCAL VARI ABLES
| NTEGER I NTCEP, LDB, LDCCEF, LDCOVB, LDR, LDSCPE, LDX, NCOEF,
& NDEP, NDX, NI ND
PARAMETER (I NTCEP=1, LDX=13, NDEP=1, NDX=5, NI ND=4,
& LDSCPE=NDEP, NCOEF=| NTCEP+NI ND, LDB=NCCEF,
& LDCOEF=NCCEF, LDCOVB=NCCEF, LDR=NCCEF)
C
| NTEGER IDEP, IDO, IFRQ |IND, INDDEP(1), INDI ND(1), | RANK,
& I SUB, |WI, NCCOL, NRM SS, NROW
REAL AMACH, B(LDB, NDEP), COVB(LDCOVB, 5), D(NCOEF), DFE,
& R(LDR, NCOEF), S2, SCPE(LDSCPE, NDEP), TOL, X(LDX, NDX),
& XMAX( NCCEF) , XM N( NCOEF)
CHARACTER CLABEL(6)*10, RLABEL(5)*10
EXTERNAL  AMACH, GDATA, RCOVB, RG VN, WRRRL
C
DATA RLABEL/ Intercept’, 'X1', 'X2', 'X3', 'X4'/
DATA CLABEL/' ', 'Intercept’, 'X1’, 'X2’, 'X3’, "X4'/
C
CALL GDATA (5, 0, NROW, NCOL, X, LDX, NDX)
IDO =0
IIND = -NIND
IDEP = -NDEP
IFRQ =0
IWT =0
ISUB =1
TOL = AMACH(4)*100.0
CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
& INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
& IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
S2 = SCPE(1,1)/DFE
C
CALL RCOVB (NCOEF, R, LDR, S2, COVB, LDCOVB)
CALL WRRRL ('COVB’, NCOEF, NCOEF, COVB, LDCOVB, 0, '(2w10.4)’,
& RLABEL, CLABEL)
C
END
Output
COvVvB
Intercept X1 X2 X3 X4
Intercept  4910.0 -50.51 -50.60 -51.66 -49.60
X1 -50.5 0.55 0.51 0.55 0.51
X2 -50.6 0.51 0.52 0.53 0.51
X3 -51.7 0.55 0.53 0.57 0.52
X4 -49.6 0.51 0.51 0.52 0.50
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Example 2

In this example, routine RNLI N (page 280) isfirst invoked to fit the following
nonlinear regression model discussed by Neter, Wasserman, and Kutner (1983,
pages 475-478):

y =0,%% +e. i=12..,15

Then, RCOVB is used to compute the estimated asymptotic variance-covariance
matrix of the estimated nonlinear regression parameters. Finally, the diagonal
elements of the output matrix from RCOVB are used together with routine TI N
(page 1145,) to compute 95% confidence intervals on the regression parameters.

| NTEGER LDR, NOBS, NPARM
PARAMETER ( NOBS=15, NPARM=2, LDR=NPARM

C
INTEGER |, IDERIV, |RANK, NOUT
REAL A, DFE, R(LDR NPARM), SQRT, SSE, THETA(NPARM), TIN
I NTRINSI C  SQRT
EXTERNAL  EXAMPL, RCOVB, RNLIN, TIN, UMACH, WRRRN
c
DATA THETA/ 60.0, -0.03/
c
CALL UMACH (2, NOUT)
c
IDERIV = 1
CALL RNLIN (EXAMPL, NPARM |IDERV, THETA, R LDR |RANK, DFE,
& SSE)
c

CALL RCOVB (NPARM R, LDR, SSE/DFE, R, LDR)
C Pri nt
CALL WROPT (-6, 2, 0)
CALL WRRRN (Estimated Asymptotic Variance-Covariance Matrix’,
& NPARM, NPARM, R, LDR, 0)
C Compute and print 95 percent
C confidence intervals.
WRITE (NOUT,*)
WRITE (NOUT,*)’ 95% Confidence Intervals
WRITE (NOUT,*) ' Estimate Lower Limit Upper Limit’
DO 10 I=1, NPARM
A = TIN(0.975,DFE)*SQRT(R(I,1))
WRITE (NOUT,'(1X, F10.3, 2F13.3)") THETA(I), THETA(I) - A,
& THETA(I) + A
10 CONTINUE
END
C
SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE,
& IEND)
INTEGER NPARM, IOPT, IOBS, IEND
REAL  THETA(NPARM), FRQ, WT, E, DE(NPARM)

INTEGER NOBS
PARAMETER (NOBS=15)

REAL  EXP, XDATA(NOBS), YDATA(NOBS)
INTRINSIC EXP

DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0,
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& 13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
DATA XDATA/ 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
& 38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
C
IF (10BS .LE. NOBS) THEN
WIr = 1. 0EO
FRQ = 1.0E0
IEND = 0O
IF (1OPT .EQ 0) THEN
E = YDATA(I OBS) - THETA(1)* EXP( THETA( 2) * XDATA( | OBS))
ELSE
DE(1) = - EXP( THETA( 2) * XDATA( | OBS))
DE(2) = - THETA(1) * XDATA( | OBS) * EXP( THETA( 2) * XDATA( | OBS) )
END | F
ELSE
IEND = 1
END I F
RETURN
END
Output

Esti mat ed Asynptotic Variance-Covariance Matrix
1

1 2.16701E+00
2 -1.78121E-03

2
-1. 78121E- 03
2. 92786E- 06

95% Confi dence Intervals

Estimate Lower

58. 603 55.
-0.040 - 0.

Limt Upper Limt
423 61. 784
043 -0.036

CESTI/DCESTI (Single/Double precision)

Construct an equivalent completely testable multivariate general linear hypothesis
H BU = G from apartially testable hypothesisH,BU = G,,.

Usage
CALL CESTI (NHP, NCCEF, HP, LDHP, NDEP, NU, GP, LDGP, R,

LDR, I RANKP, NH, H, LDH, G LDQ
Arguments
NHP — Number of rows in the hypothesis. (Input)
NCOEF — Number of regression coefficients in the model. (Input)

HP — NHP by NCOEF matrixH,, with each row corresponding to a row in the

hypothesis and containing the constants that specify a linear combination of the
regression coefficients. (Input)

LDHP — Leading dimension afP exactly as specified in the dimension
statement of the calling program. (Input)

NDEP — Number of dependent (response) variables. (Input)
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NU — U matrix option. (Input)

For positiveNU, NU is the number of linear combinations of the dependent
variables to be considered.Nt = 0, the hypothesis 4,B =G, andU is
automatically taken to be the identiyy must be less than or equalNDEP .

GP — Matrix G, containing the null hypothesis values. (Input)
If NU = 0, thenGP is NHP by NDEP; otherwise GP is NHP by NU.

LDGP — Leading dimension dafP exactly as specified in the dimension
statement in the calling program. (Input)

R — NCOEF by NCCEF upper triangular matrix containing tRematrix. (Input)
The R matrix can come from a regression fit based QRalecomposition of the

matrix of regressors or based on a Cholesky factoriz&i@hof the matrix of

sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element d® that is zero must also be zero. A zero row indicates a
nonfull rank model. For aR matrix that comes from a regression fit with linear
equality restrictions on the parameters, each roR@irresponding to a

restriction must have a corresponding diagonal element that is negative. The
remaining rows oR must have positive diagonal elements. Only the upper
triangle ofR is referenced.

LDR — Leading dimension d® exactly as specified in the dimension statement
in the calling program. (Input)

IRANKP — Rank ofH,. (Output)

NH — Number of rows in the completely testable hypothesis (also, the degrees of
freedom for the hypothesis). (Output)

The degrees of freedom for the hypothesig) ¢lassify the hypothesis

H, BU = G, as nontestableNti = 0), partially testable (0 KH <1 RANKP), or

completely testable (O KH =1 RANKP).

H — NH by NCOEF matrixH with each row corresponding to a row in the
completely testable hypothesis and containing the constants that specify an
estimable linear combination of the regression coefficients. (Output)

If HP is not neededy andHP can occupy the same storage locations.

LDH — Leading dimension df exactly as specified in the dimension statement
of the calling program. (Input)

G — Matrix G containing the null hypothesis values for the completely testable
hypothesis. (Output)

If NU = 0, thenG is NH by NDEP, otherwiseG is NH by NU. If GP is not neededs
andGP can occupy the same storage locations.

LDG — Leading dimension af exactly as specified in the dimension statement
in the calling program. (Input)
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Comments

1 Automatic workspace usage is

CESTI  NCOEF * m+ NCOEF*+ NHP*+ n* 1 + n’+2* m+max{2* m,
n+r+ max(n, r) —1} units, or

DCESTI 2* NCOEF * m+ 2* NCOEF’+2* NHP+2* n* r+2* n’+3
*m+2max{2* m,n+r +max(n, r) — 1} units,

where m = max(NHP, NCOEF), n = min(NHP, NCOEF), r = rank(R).

Workspace may be explicitly provided, if desired, by use of

C2STI /DC2STI . Thereferenceis

CALL C2STI (NCOEF, NHP, HP, LDHP, NDEP, NU, GCP,
LDGP, R, LDR |RANKP, NH H, LDH G
LDG VK, WK)

The additional arguments are as follows:

WK — Work vector of length max{HP, NCOEF}.

WK — Work vector of lengthNCOEF * m + NCOEF” + NHP™+ n * 1 + n’
+m+ max{2* m, n+r + max, r) -1}.

2. Informational errors
Type Code
4 1 There is inadequate space to store the completely

testable hypothesis. IncreddeH or LDG so that it is
greater than or equal t¢H.
3 2 The hypothesld, BU =G, is inconsistent.

Algorithm

Once a general linear modek XB + € is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressris not full rank (as evidenced
by the fact that some diagonal elements oRlneatrix output from the fit are
equal to zero), methods that use the results of the fitted model to compute the
hypothesis sum of squares (see rouRiRSS, page 163) require one to specify in
the hypothesis only linear combinations of the regression parameters that are

estimable. A linear combination of regression paramelreﬁsis estimable means

that there exists some vector a suchthat a’X, i.e.,c’ is in the space spanned

by the rows oiX. For a further discussion of estimable functions, see Maindonald
(1984, pages 164.68) and Searle (1971, pages 18088). RoutineCESTI is

only useful in the case of nonfull rank regression models, i.e., when the problem
of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the
context of a general linear hypothesis té§t = g is overly restrictive. He

extended the notion of a testable hypothesis (a hypothesis composed of estimable
functions of the regression parameters) to include partially testable and
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completely testable hypotheses. A hypothesisH 3 = g is partially testable means
that the intersection of the row space of H (denoted by R(H)) and the row space
of X(R(X)) isnot essentially empty and is a proper subset of R(H), i.e.,

{0} O R(H) n R(X) O R(H). A hypothesisH (3 = g is completely testable means
that{ 0} O R(H) O R(X). Peixoto also demonstrated a method for converting a
partially testable hypothesis to one that is completely testable so that the usual
method for obtaining the sum of squares for the hypothesis from the results of the
fitted mode! can be used. The method replaces H,, in the partialy testable
hypothesisH,, B = g, by a matrix H whose rows are abasis for the intersection of
the row space of H,, and the row space of X. A corresponding conversion of the
null hypothesis values from g, to g is also made. A sum of squares for the
completely testable hypothesis can then be computed (see routine RHPSS). The
sum of squares that is computed for the hypothesisH 3 = g equals the difference
in the error sums of squares from two fitted models the restricted model with the
partially testable hypothesisH,, = g,, adjoined to the model as linear equality
restrictions (see routine RLEQU on page 131) and the unrestricted model.

Routines RGLM(page 117), R@ VN (page 107), RLEQU (page 131), and RCOV
(page 104) can be used to compute the fit of the general linear model prior to
invoking CESTI . The R matrix isrequired for input to CESTI . After converting a
partially testable hypothesisto a completely testable hypothesis, RHPSS (page
163) can be invoked to compute the sum of sguares for the hypothesis.

For the general case of the multivariate general linear model Y = XB + E (see the
chapter introduction, page 67) with possible linear equality restrictions on the
regression parameters, CESTI convertsthe partially testable hypothesis

H, BU = G, to acompletely testable hypothesisH BU = G. For the case of the
linear model with linear equality restrictions, the definitions of estimable
functions, nontestable hypotheses, partially testable hypotheses, and completely
testable hypothesis are similar to those previously given for the unrestricted
model with the exception that R(X) is replaced by R(R) where R is the upper
triangular matrix output from RLEQU. The nonzero rows of R form abasis for the
rowspace of the matrix (XT , AT) T The rows of H form an orthonormal basis for
the intersection of two subspaces: the subspace spanned by the rows of H,, and the
subspace spanned by the rows of R. The algorithm used by CESTI for computing
the intersection of these two subspaces is based on an algorithm for computing
angles between linear subspaces due to to Bjorck and Golub (1973). (See al'so
Golub and Van Loan 1983, pages 429-430). The method is closely related to a
canonical correlation analysis discussed by Kennedy and Gentle (1980, 56-565).
The algorithm is as follows:

1 Compute a QR factorization of
T
H p

with column permutations so that
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Hp =QRP
Here, P, isthe associated permutation matrix that is also an orthogonal
matrix. Determine the rank of H,, as the number of nonzero diagonal
elements of R, say n;. Partition Q, = (Q,;, Q,,) so that Q,,isthe first
n,columns of Q. Set | RANKP = ny.

Compute a QR factorization of the transpose of the R matrix input to
CESTI with column permutations so that

R =QRP,]

Determine the rank of R from the number of nonzero diagonal elements
of R, say n,. Partition Q, = (Q,;, Q,,) so that Q,; isthefirst n, columns

of Q,.
Form

A=Q1Qy

Compute the singular values of A

0120y 22000 o)

and the | eft singular vectors W of the singular value decomposition of A
so that

WTAV = diag(ol' a0 (n:l_an))

'~ 'min

If 0, <1, then the dimension of the intersection of the two subspacesis
s= 0. Otherwise, take the dimension of the intersection to be sif
0,=1>04.SetNH==s.

Let W, bethefirst s columns of W. Set H = (QIWI)T.

Take R; to be a NHP by NHP matrix related to R, asfollows. If

NHP < NCCEF, R,; equalsthefirst NHP rows of R, . Otherwise, R,
contains R, initsfirst NCOEF rows and zerosin the remaining rows.
Compute a solution Z to the linear system

RLZ = PlTGp

using routine G RTS (IMSL MATH/LIBRARY). If thislinear systemiis
declared inconsistent, an error message with error code equal to 2 is
issued.

Partition
2" =(2],23)
so that Z; isthefirst n; rows of Z. Set
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G=W'Z
The degrees of freedom (NH) classify the hypothesisH,, BU = G, as nontestable

(NH=0), partialy testable (0 < NH < | RANKP), or completely testable (0 < NH=
| RANKP).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) isfitted to
some data. The model is

yl]: U + ai + 8I] (I! J) = (1! 1)1 (21 1)! (21 2)
The model isfitted using routine RGLM(page 117). Next, the partialy testable
hypothesis
a,=5
Ho: !
a 2 = 3

is converted to a completely testable hypothesis using CESTI . Sum of squares
associated with the hypothesis are computed using routine RHPSS (page 163).
Finally, the F statistic is computed along with the associated p-value using routine
FDF (page 1137).

| NTEGER LDB, LDG LDGP, LDH LDHP, LDR, LDSCPE, LDSCPH, LDU,

& LDX, LINDEF, MAXB, MAXCL, NCLVAR NCOL, NDEP, NEF,
& NHP, NROW
PARAMETER (LDU=1, LINDEF=1, MAXB=3, MAXCL=2, NCLVAR=1, NCOL=2,
& NDEP=1, NEF=1, NHP=2, NROWE3, LDB=MAXB, LDG=NHP,
& LDGP=NHP, LDH=NHP, LDHP=NHP, LDR=MAXB, LDSCPE=NDEP,
& LDSCPH=NDEP, L DX=NROW
C
INTEGER DO, |DUMMY, |FRQ |NDCL(NCLVAR), | NDDEP(NDEP),
& | NDEF( LI NDEF), | NTCEP, |RANK, |RANKP, | RBEF(NEF+1),
& I'SUB, |W, NCLVAL(NCLVAR), NCOEF, NH, NOUT, NRM SS,
& NU, NVEF( NEF)
REAL AVACH, B(LDB, NDEP), CLVAL(MAXCL), D(MAXB), DFE, DFH,
& F, FDF, G(LDG NDEP), GP(LDGP, NDEP), H(LDH, MAXB),
& HP( LDHP, MAXB), PVALUE, R(LDR, MAXB),
& SCPE( LDSCPE, NDEP),  SCPH( LDSCPH, NDEP), TOL, U(LDU, 1),
& X(LDX, NCOL), XMAX(MAXB), XM N( MAXB)
EXTERNAL ~ AMACH, CESTI, FDF, RGLM RHPSS, UMACH, WRRRN
C
DATA X/ 1.0, 2.0, 2.0, 17.3, 24.1, 26.3/
DATA I NDCL/ 1/, NVEF/ 1/, |NDEF/1/, |NDDEP/2/
DATA (HP(1,J),J=1, MAXB)/ 0.0, 1.0, 0.0/
DATA (HP(2,J), J=1, MAXB)/ 0.0, 0.0, 1.0/
DATA GP/5.0, 3.0/
C
IDO =0
INTCEP = 1
IFRQ =0
IW =0
| DUMWY = 1
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| SUB 1
TOL 100. 0* AMACH( 4)

CALL RGLM (1DO, NRON NCOL, X, LDX, INTCEP, NCLVAR |NDCL, NEF,
& NVEF, | NDEF, NDEP, |NDDEP, |FRQ |W, |DUWWY, | SUB,
& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)

NCOEF = | RBEF(NEF+1) - 1

NU =0
CALL CESTI (NHP, NCCEF, HP, LDHP, NDEP, NU, GP, LDGP, R, LDR,
& | RANKP, NH, H LDH G LDG

CALL UMACH (2, NauT)
IF (NH .EQ 0) THEN

WRITE (NOUT,*) 'Nontestable hypothesis’
ELSE IF (NH .LT. IRANKP) THEN

WRITE (NOUT,*) 'Partially testable hypothesis’
ELSE

WRITE (NOUT,*) 'Completely testable hypothesis’
END IF
CALL WRRRN ('H’, NH, NCOEF, H, LDH, 0)
CALL WRRRN ('G’, NH, NDEP, G, LDG, 0)
CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG,
& R, LDR, DFH, SCPH, LDSCPH)

C
F  =(SCPH(1,1)/DFH)/(SCPE(1,1)/DFE)
PVALUE = 1.0 - FDF(F,DFH,DFE)
WRITE (NOUT,*)
WRITE (NOUT,*) 'Degrees of Sum of Prob. of’
WRITE (NOUT,*)’ Freedom Squares F-statistic Larger F’
WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)

END

Output
Partially testable hypothesis

H
1 2 3
0.0000 0.7071 -0.7071

G
1.414

Degrees of Sum of Prob. of
Freedom Squares F-statistic Larger F
1.0 65.340 27.000 0.1210

RHPSS/DRHPSS (Single/Double precision)

Compute the matrix of sums of squaresand crossproducts for the multivariate
genera linear hypothesisH BU = G given the coefficient estimates

B
and the R matrix.
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Usage

CALL RHPSS (NH, NCCEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G
LDG R, LDR, DFH, SCPH, LDSCPH)

Arguments
NH — Number of rows in the hypothesis. (Input)
NCOEF — Number of regression coefficients in the model. (Input)

H — NH by NCOEF matrixH with each row corresponding to a row in the
hypothesis and containing the constants that specify an estimable linear
combination of the regression coefficients. (Input)

LDH — Leading dimension dfl exactly as specified in the dimension statement
of the calling program. (Input)

NDEP — Number of dependent (response) variables. (Input)
B — NCOEF by NDEP matrix

A

B
containing a least-squares solution for the regression coefficients. (Input)

LDB — Leading dimension d exactly as specified in the dimension statement
in the calling program. (Input)

NU — U matrix option. (Input)

For positiveNU, NU is the number of linear combinations of the dependent
variables to be considered.N8 = 0, the hypothesis 4B =G, i.e.,U is
automatically taken to be the identiju must be less than or equalNDEP.

U — NDEP by NU matrixU in testH BU = G. (Input, ifNU is positive)
If NU=0,Uis not referenced and can be a vector of length 1.

LDU — Leading dimension af exactly as specified in the dimension statement
in the calling program. (Input)

G — Matrix containing the null hypothesis values. (Input)

If NU = 0, thenG is NH by NDEP; otherwise G is NH by NU.

LDG — Leading dimension ab exactly as specified in the dimension statement
in the calling program. (Input)

R — NCOEF by NCCEF upper triangular matrix containing tRematrix. (Input)
The R matrix can come from a regression fit based QRalecomposition of the

matrix of regressors or based on a Cholesky factoriz&i@hof the matrix of

sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element d® that is zero must also be zero. A zero row indicates a
nonfull rank model. For aR matrix that comes from a regression fit with linear
equality restrictions on the parameters, each roR@irresponding to a
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restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of Ris referenced.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

DFH — Degrees of freedom f@CPH. (Output)
DFH equals the rank df.

SCPH — Matrix containing sums of squares and crossproducts attributable to the
hypothesis. (Output)
If NU = 0,SCPH is aNDEP by NDEP matrix, otherwiseSCPH is aNU by NU matrix.

LDSCPH — Leading dimension 8CPH exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1. Automatic workspace usage is
RHPSS NH* (NDEP + NCOEF + max(NCOEF, NH) + 3) +NH + NU* NDEP

— 1 units, or

DRHPSS 2 * NH* (NDEP + NCOEF + max(NCOEF, NH) + 3) +NH + 2* NU
* NDEP - 2 units.

Workspace may be explicitly provided, if desired, by use of
R2PSS/DR2PSS. The reference is

CALL R2PSS (NCOEF, NH, H, LDH, NDEP, B, LDB, NU, U,
LDU, G LDG R, LDR DFH SCPH, LDSCPH,
WK, VK)

The additional arguments are as follows:
WK — Work vector of lengtiNH.

WK — Work vector of lengtiNH* (NDEP + NCOEF + max(NCOEF, NH) +
3) +NU* NDEP - 1.

2. Informational errors
Type Code
3 1 The hypothesis is not completely testable. Each row of
H must be in the space spanned by the row& of
3 2 The hypothesis is inconsistent. The linear sylsém

U = G combined with any restrictions from a
regression fit with linear equality restrictions must
have a solution foB.

3. SCPH=(HBU-G) (CTDC) (HBU -G)

IMSL STAT/LIBRARY Chapter 2: Regression * 165



where (CTDC)‘ isageneralized inverse of c’bc, Cisasolution to
R’c=H, and D isadiagona matrix with

_[1 ifr; >0
i 0 ifriiSO

Algorithm

Routine RHPSS computes the matrix of sums of squares and crossproducts for the
genera linear hypothesisH BU = G for the multivariate general linear model

Y = XB + E with possible linear equality restrictions AB = Z. (See the chapter
introduction for a description of the multivariate general linear model.) Routines
RG.M(page 117), R@ VN (page 107), RLEQU (page 131), and RCOV (page 104)
can be used to compute the fit of the general linear model prior to invoking

RHPSS. The R matrix and B from any of those routines are required for input to
RHPSS.

The rows of H must be linear combinations of the rows of R, i.e., HB = G must be
completely testable. If the hypothesisis not completely testable, Routine CESTI
(page 157) can be used to construct an equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980,
page 317) that is extended by Sallas and Lionti (1988) for multivariate nonfull
rank models with possible linear equality restrictions. The algorithm is as follows:

1. Form
W=HBU-G

2. Find C as the solution of R“’C=H’ using routine G RTS (IMSL
MATH/LIBRARY). If the equations are declared inconsistent within a
computed tolerance, an error message with code 1 isissued that the
hypothesisis not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negétive
diagonal elements from arestricted least-squares fit using RLEQU, zero
out the corresponding rows of C, i.e., form DC.

4, Decompose DC using Householder transformations and column pivoting
to yield asquare, upper triangular matrix T with diagonal elements of
nonincreasing magnitude and permutation matrix P such that

-
oce =[]

where Q is an orthogonal matrix.
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5. Determinetherank of T, say r. If t;;= 0, then r = 0. Otherwise, the rank
of Tisrif

‘trr [>[tye]e 2 ‘tr+1,r+1‘

where e = 10.0 * AMACH(4) (10.0 * DMACH(4) for the double precision
version). Then, zero out all rows of T below row r. Set the degrees of
freedom for the hypothesis, output in DFH, to r.

6. Find V asasolutionto T 7V =P TWus ng routine G RTS. If the equations
areinconsistent, an error message with code 2 isissued that the hypothesisis
inconsi stent within a computed tolerance, i.e., the linear system

HBU=G
AB=Z
does not have a solution for B.
7. Form V7V, which isthe required matrix of sum of squares and
crossproducts output in SCPH.

In general, the two errors with code 1 and 2 are serious user errors that require the
user to correct the hypothesis before any meaningful sums of squares from this
routine can be computed. However, in some cases, the user may know the
hypothesisis consistent and completely testable, but the checks in RHPSS are too
tight. For this reason, RHPSS continues with the computations.

Routine RHPSS gives a matrix of sums of squares and crossproducts that could
also be obtained from separate fittings of the two models

Y =XB" +E
AB =Z" (1)
HB =G
and
Y =XB" +E
AB =Z" 2

whereY' = YU, B" =BU, E" =EU, and Z' = ZU. The error sum of squares and
crossproduct matrix for (1) minus that for (2) isthe matrix of sum of squares and
crossproducts output in SCPH. Note that this approach avoids entirely the question
of testability.

Example 1

A two-way analysis-of-variance model isfitted to balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
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weight gains (in grams) of rats fed diets varying in two components-level of
protein and source of protein. The model is

ng:H“‘Gi‘*Bj“‘V(/“*sy’k i=1,2j=123k=12..,10
where
2 3 2 3
;=05 ;=0 vy =0forj=123 and ) y; =0fori =12
i=1 j=1 =1 J=1

The model isfitted using routine RGLM(page 117). Next, the sum of squares for
interaction

Y11= Y12 ~ Y21 Y22 =0

Hq:
0 Y11~ Y13 ~ Y21 +Y23 =0

is computed using RHPSS. Finally, the F statistic is computed along with the
associated p-value using routine FDF (page 1137).

| NTEGER LDB, LDG LDH LDR, LDSCPE, LDSCPH, LDU, LDX, LI NDEF,

& MAXB, NMAXCL, NCLVAR, NCOL, NDEP, NEF, NH NROW

PARAMETER (NDEP=1, LDU=1, LINDEF=4, NMAXB=12, MAXCL=5, NCLVAR=2,
NCOL=3, NEF=3, NH=2, NROW:60, LDB=MAXB, LDG=NH,
LDH=NH, LDR=NMAXB, LDSCPE=NDEP, LDSCPH=NDEP, LDX=NROW

R0 Ro

INTEGER DO, |DUMWY, |FRQ |NDCL(NCLVAR), | NDDEP(NDEP),

| NDEF( LI NDEF), | NTCEP, |RANK, |RBEF(NEF+1), ISUB,

I WI, NCLVAL(NCLVAR), NCOEF, NOUT, NRM SS, NU,

NVEF( NEF)

AVACH, B(LDB, NDEP), CLVAL(MAXCL), D(MAXB), DFE, DFH,
F, FDF, G(LDG NDEP), H(LDH, MAXB), PVALUE,

R(LDR, MAXB), SCPE(LDSCPE, NDEP), SCPH(LDSCPH, NDEP)

TOL, U(LDU, 1), X(LDX, NCOL), XMAX(MAXB), XM N( MAXB)

EXTERNAL  AMACH, FDF, RGLM RHPSS, UMACH

R R0 R0 RoRoRo
py)
L
[

DATA X/ 73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0,
77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0,
51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0,
10%1.0, 10*2.0, 10%*3.0, 10*1.0, 10*2.0, 10*3.0/

DATA INDCL/ 2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, |NDDEP/1/

DATA (H(1,J),J=1, MAXB)/6*0.0, 1.0, -1.0, 0.0, -1.0, 1.0, 0.0/

DATA (H(2,J),J=1, MAXB)/6*0.0, 1.0, 0.0, -1.0, -1.0, 0.0, 1.0/

DATA G 2*0. 0/

R0 Ro Ro Ro Ro Ro Ro

| DO

| NTCEP
| FRQ
| WI

| DUMMY
| SUB
TOL 00. 0* AMACH( 4)

CALL RGLM (1 DO, NROW NCOL, X, LDX, |NTCEP, NCLVAR |NDCL, NEF,

0

1
0
0
0
1
1
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& NVEF, | NDEF, NDEP, |NDDEP, |FRQ [|W, |DUMW, | SUB,

& TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R LDR D
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)
C
NCOEF = | RBEF(NEF+1) - 1
NU =0
CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G LDG
& R, LDR DFH, SCPH, LDSCPH)
C
F = (SCPH(1, 1)/ DFH)/ ( SCPE( 1, 1) / DFE)
PVALUE = 1.0 - FDF(F, DFH, DFE)

CALL UMACH (2, NauT)
WRITE (NOUT,*) 'Degrees of Sum of Prob. of’
WRITE (NOUT,*)’ Freedom Squares F-statistic Larger F’
WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
END

Output
Degrees of Sum of Prob. of
Freedom Squares F-statistic Larger F
20 1178.135 2.746 0.0732

Example 2

The data for the second example are taken from Maindonald (1984, pages 203-
204). The data are saved in the matrix X. A multivariate regression model
containing two dependent variables and three independent variablesisfit using
routine RGIVN (page 107). The sum of sgquares and crossproducts matrix is
computed for the third independent variable in the model.

INTEGER INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX,

& NCOEF, NCOL, NDEP, NH, NIND, NROW

PARAMETER (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3,

& NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP,

& LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
C

INTEGER IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1), IRANK,

& ISUB, IWT, NOUT, NRMISS, NU

REAL  AMACH, B(LDB,NDEP), D(NCOEF), DFE, DFH, G(LDG,NDEP),

& H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP),

& SCPH(LDSCPH,NDEP), TOL, U(LDU, 1), X(LDX,NCOL),

& XMAX(NCOEF), XMIN(NCOEF)

EXTERNAL AMACH, RGIVN, RHPSS, UMACH, WRRRN

DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
DATA (X(7.,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
DATA H/3%0.0, 1.0/, G/0.0, 0.0/

IDO =0
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IIND = - NIND
| DEP = - NDEP
IFRQ = 0

W =0

ISUB = 1

TOL = 100. 0* AVACH( 4)

CALL RG VN (1 DO, NROW NCOL, X, LDX, INTCEP, |IND, |NDI ND, |DEP,

& I NDDEP, | FRQ IWr, |1SUB, TO.,, B, LDB, R LDR D,

& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)

NU =0

CALL RHPSS (NH, NCCEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G LDG
& R, LDR, DFH, SCPH, LDSCPH)

CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'DFH =", DFH
CALL WRRRN ('SCPH’, NDEP, NDEP, SCPH, LDSCPH, 0)
END

Output
DFH = 1.00000

SCPH
1 2
1 100.0 -40.0
2 -40.0 16.0

RHPTE/DRHPTE (Single/Double precision)

Perform tests for amultivariate general linear hypothesisH BU = G given the
hypothesis sums of squaresand crossproducts matrix Sy and the error sums of

sguares and crossproducts matrix Sg.

Usage
CALL RHPTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH,

LDSCPH, TEST)
Arguments
DFE — Degrees of freedom for error mat8gPE. (Input)
NDEP — Number of dependent variables. (Input)

SCPE — NDEP by NDEP matrix S; containing sums of squares and crossproducts
for error. (Input)

LDSCPE — Leading dimension 3CPE exactly as specified in the dimension
statement in the calling program. (Input)

NU — U matrix option. (Input)

For positiveNU, NU is the number of linear combinations of the dependent
variables to be considered.Nf) = 0, the hypothesis 4B = G, i.e.,U is
automatically taken to be the identity.
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U — NDEP by NU matrix used to tedt BU = G. (Input, ifNU is positive)
The rank of the matrix) must equal the number of columnsa\if= 0, U is not
referenced and can be a vector of length 1.

LDU — Leading dimension af exactly as specified in the dimension statement
in the calling program. (Input)

DFH — Degrees of freedom for hypothesis ma8ix (Input)

SCPH — Matrix Sy containing sums of squares and crossproducts attributable to

the hypothesis. (Input)
If NU=0,Sy is aNDEP by NDEP matrix; otherwiseSy is aNU by NU matrix.

LDSCPH — Leading dimension 8CPH exactly as specified in the dimension
statement in the calling program. (Input)

TEST — Vector of length 8 containing test statistics andalues for the
hypothesidd BU =G. (Output)

Elem. Description

1,5 Wilks’ lambda ang-value

2,6 Roy’s maximum root criterion apevalue
3,7 Hotelling’s trace ang-value

4,8 Pillai’s trace ang-value

Comments

1. Automatic workspace usage is
RHPTE 2* p* + 2* p+ NDEP+ 2* NU units, or
DRHPTE 4 * p” + 4* p+ 2* NDEP+ 4* NU” units,

wherep = NDEP if NU is equal to O angd = NU otherwise. Workspace
may be explicitly provided, if desired, by useRaPTE/DR2PTE. The
reference is
CALL R2PTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU,

DFH, SCPH, LDSCPH, TEST, VK)

The additional argument is

WK — Work vector of length 2 p* + 2* p + NDEP + 2* NU”.

2. Informational errors
Type Code
3 1 UTSEU is singular. Only the Pillai trace statistic can be

computed. Other statistics are set to NaN.

UTSEU + Sy is singular. No tests can be computed.

4 3 Iterations for eigenvalues for the generalized
eigenvalue probler§yx = A(Sy +U TSEU)X failed to
converge. Statistics cannot be computed.

N
N
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Algorithm

Routine RHPTE computes test statistics and p-values for the general linear
hypothesisH BU = G for the multivariate general linear model. See the section
“Multivariate General Linear Model” in the chapter introduction (page 67).

RoutinesRGLM(page 117)RG VN (page 107)RLEQU (page 131), angCov

(page 104) can be used to compute the fit of the general linear model prior to
invoking RHPTE. The error sum of squares and crossproducts m&Iig) is
required for input t&RHPTE. In addition, the hypothesis sum of squares and
crossproducts matrixSCPH), which can be computed using routiRMPSS (page
163), is required for input tBHPTE.

The hypothesis sum of squares and crossproducts matrix irgCRHNS
A T - A
S =(HBU-G) (C'DC) (HBU-G)

whereC is a solution t&R”C = H and wherd is a diagonal matrix with diagonal
elements

_[1 ifr; >0
"0 otherwise

See the section “Linear Dependence andRMatrix” in the chapter introduction
(page 70).

The error sum of squares and crossproducts matrix for the MedeB + E is
(Y - XB) T (Y - XB)

which is input INSCPE. The error sum of squares and crossproducts matrix for the
hypothesidd BU = G computed byYRHPTE is

S: =UT(Y-XB)" (Y- XB)U
Let p equal the order of the matricBgandSy, i.e.,
NU if NU>0
P= {NDEP otherwise

Let g (stored inDFH) be the degrees of freedom for the hypothesisv [(stiored
in DFE) be the degrees of freedom for error. ROUBREPE computes three test
statistics based on eigenvaldesi = 1, 2,..., p) of the generalized eigenvalue

problemSyx = ASgx. These test statistics are as follows:
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Wilks’ lambda
- Oet(Sg)
det(Sy +S¢)
P 1
-1 1+A,

A isoutput in TEST(1). The p-value output in TEST(5) is based on an
approximation discussed by Rao (1973, page 556). The statistic

_ms-pg/2+1 1-AYS
pq /\1/3

has an approximate F distribution with pg and ms — pg/2 + 1 numerator and
denominator degrees of freedom, respectively, where

F

1 ifp=lorgq=1
[ 242 _

rz)q—24 otherwise
p°+q° -5

m=v-(p-q+21)/2

and

The F test isexact if min(p, q) < 2 (Kshirsagar 1972, Theorem 4, pages 299-
300).

Roy’s maximum root
C = MaxA,
|

cisoutput in TEST(2). The p-value output in TEST(6) is based on the
approximeation
v+Qg-—-S
_V*Q-s,
S

where s = max(p, q) has an approximate F distribution withsandv +q-s
numerator and denominator degrees of freedom, respectively. The F test is exact
if s=1, and then the p-value output in TEST(7) is exact. In general, the value
output in TEST(7) is alower bound on the actual p-value.

F

Hotelling’s trace

p
U=MHE5:ZM
Z
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U isoutput in TEST(3). The p-value output in TEST(7) is based on the
approximation of McKeon (1974) that supersedes the approximation of Hughes
and Saw (1972). McKeon’s approximation is also discussed by Seber (1984, page
39). For
+
b=4+ Pq+ 2
(v+q-p-Bv-1) _,
(v=p-3)(v-p)
thep-value output irmTEST(7) is based on the result that
b(v-p-1
_bv=p-1),
(b-2)pq
has an approximate distribution withpg andb degrees of freedom. The test is

exact if minp, ) = 1. Forv< p + 1, the approximation is not valid, ameST(7)
is set to NaN (not a number).

These three test statistics are valid wBgis positive definite. A necessary
condition forS; to be positive definite ig > p. If S;is not positive definite, a

warning error message with error code 1 is issued, and the entriEsTin
corresponding to the computed test statisticspavnalues are set to NaN (not a
number).

Because the requirement p can be a serious drawba&JTPE computes a

fourth test statistic based on eigenval@és= 1, 2,..., p) of the generalized
eigenvalue problerSyw = 6(Sy + Sg)w. This test statistic requires a less

restrictive assumptionSy + Siis positive definite. A necessary condition for

Sy + S to be positive definite i8 + q = p. If Sgis positive definiteRHPTE avoids

the computation of this generalized eigenvalue problem from scratch. In this case,
the eigenvalueB; are obtained from; by

Ai

9i=
1+A,

The fourth test statistic is as follows:

Pillai’'s trace
V=t]S(S + )]
p
= z ei
=1

Visoutput in TEST(4). The p-value output in TEST(8) is based on an
approximation discussed by Pillai (1985). The statistic

174 « Chapter 2: Regression IMSL STAT/LIBRARY



_2n+s+1 V
2m+s+1 s-V

has an approximate F distribution with s(2m+ s+ 1) and s(2n + s + 1) numerator
and denominator degrees of freedom, respectively, where

s =min(p,q)
m=3(p-d-1)
:7(V_ p-1)

TheF test isexact if min(p, ) =1

Example

The data for the example are taken from Maindonald (1984, pages 203-204). The
data are stored in the matrix X. A multivariate regression model containing two
dependent variables and three independent variablesisfit using routine RG VN
(page 107). The sum of sguares and crossproducts matrix is computed for the
third independent variable in the model using RHPSS (page 163). Routine RHPTE
is used to test whether the third independent variable should be included in the

regression.
| NTEGER I NTCEP, LDB, LDG LDH, LDR, LDSCPE, LDSCPH, LDU, LDX,
& NCCEF, NCCL, NDEP, NH, NI ND, NROW

PARAMETER (I NTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NI ND=3,

& NROWE9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP,
& LDX=NROW NCCEF=I NTCEP+NI ND, LDB=NCCEF, LDR=NCOEF)
C
| NTEGER IDEP, IDO, IFRQ |I1ND, |INDDEP(1), INDI ND(1), | RANK,
& ISUB, IWI, NRM SS, NU
REAL AVACH, B(LDB, NDEP), D(NCOCEF), DFE, DFH, G LDG NDEP),
& H( LDH, NCOEF), R(LDR, NCOEF), SCPE(LDSCPE, NDEP),
& SCPH( LDSCPH, NDEP) , TEST(8), TO., U(LDU, 1),
& X(LDX, NCOL), XMAX(NCOEF), XM N( NCCEF)
CHARACTER CLABEL(3)*14, RLABEL(4)*9
EXTERNAL AVACH, RG VN, RHPSS, RHPTE, WRRRL
C
DATA (X(1,J),J=1,NCO)/7.0, 5.0, 6.0, 7.0, 1.0/
DATA (X(2,J),J=1,NcOL)/2.0, -1.0, 6.0, -5.0, 4.0/
DATA (X(3,J),J=1,NCOL) /7. 0 3.0, 5.0, 6.0, 10.0/
DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
DATA (X(5,J),J=1,NCcOL)/2.0, -1.0, 0.0, 5.0, -2.0/
DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
DATA H 3*0.0, 1.0/, G 0.0, 0.0/
DATA RLABEL/'Wilks’, 'Roy’, 'Hotelling’, 'Pillai’/
DATA CLABEL/'’, 'Test statistic’, 'p-value’/
C
IDO =0
IIND = -NIND
IDEP = -NDEP
IFRQ=0
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IWT =0
ISUB = 1
TOL = 100. 0* AMACH( 4)
CALL RA VN (I DO NROW NCOL, X, LDX, INTCEP, 11 ND, |NDI ND, |DEP,
& I NDDEP, |IFRQ |IW, 1SUB, TO., B, LDB, R LDR D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)
NU =0
CALL RHPSS (NH, NCCEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G LDG
& R, LDR, DFH, SCPH, LDSCPH)
CALL RHPTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH,
& LDSCPH, TEST)
CALLWRRRL (', 4, 2, TEST, 4, 0, ’(F14.3,F9.6)’, RLABEL,
& CLABEL)
END
Output
Test statistic  p-value
Wilks 0.003 0.000010
Roy 316.601 0.000010
Hotelling 316.601 0.000010
Pillai 0.997 0.000010

RLOFE/DRLOFE (Single/Double precision)

Compute alack of fit test based on exact replicates for afitted regression model.

Usage

CALL RLOFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ,
IWT, DFE, SSE, IGROUP, NGROUP, TESTLF)

Arguments

NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IREP — Variable option. (Input)
IREP  Meaning

<0 The first-I REP columns ofX contain the variables used to determine
exact replicates.
>0 Thel REP variables used to determine exact replicates are specified by

the column numbers INNDREP.
0 The exact replicates are specified GROUP.

INDREP — Index vector of lengthREP containing the column numbersof
that are the variables used to determine replication. (INgWREH is positive)
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If | REP islessthan or equal to O, | NDREP is not referenced and can be a vector of
length one.

IRSP — Column number RSP of X contains data for the response (dependent)
variable. (Input)

IFRQ — Frequency option. (Input)
I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number
I FRQ of X contains the frequencies.

IWT — Weighting option. (Input)
| WI = 0 means that all weights are 1.0. For positi€, column numberwr of
X contains the weights.

DFE — Degrees of freedom for error from the fitted regression. (Input)
SSE — Sum of squares for error from the fitted regression. (Input)

| GROUP — Vector of lengtiNOBS specifying group numbers. (Outputl REP

is nonzero; input, if REP = 0)

On output] GROUP(1 ) =J means row of X is in theJ-th group of replicates)(=

0, 1, 2,..., NGROUP). Here,J = 0 indicates the group of observations not used in
the analysis because NaN (not a number) was input for one of more of the values
of the response, replication, frequency, or weight variables. On input,

I GROUP(I') =1 GROUP(K), K # 1, indicates that row and rowk of X are in the

same groupl. GROUP(I ) must equal O if row of X has NaN as one or more of the
values of the response, replication, frequency, or weight variables.

NGROUP — Number number of groups in the lack of fit test. (Output)

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model. (Output)

Elem. Description

1 Degrees of freedom for lack of fit
2 Degrees of freedom for pure error
3 Degrees of freedom for errofFESTLF(1)+ TESTLF(2))
4 Sum of squares for lack of fit

5 Sum of squares for pure error

6 Sum of squares for error

7 Mean square for lack of fit

8 Mean square for pure error

9 F statistic

10 p-value

If there are no replicates in the data set, a test for lack of fit cannot be performed.
In this case, elements 8, 9, and 10BSTLF are set to NaN (not a number).
Comments

1. Automatic workspace usage is
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RLOFE If | REP =0, 3* NOBS units; otherwise 3* m+ 2.8854 * In(m)
+ || REP| + 3* NOBS + 5 units.

DRLOFE If | REP =0, 3 * NOBS units; otherwise 5* m+ 2.8854 * In(m)
+ || REP| + 3* NOBS+ 3 units.

Here, m = max{ NOBS, NCOL}.

Workspace may be explicitly provided, if desired, by use of

R2OFE/DR2CFE. Thereferenceis

CALL R2OFE (NOBS, NCOL, X, LDX, | REP, |NDREP, |RSP,
| FRQ W, DFE, SSE, |GROUP, NGROUP,
TESTLF, WK WK)

The additional arguments are as follows:

WK — Work vector. Ifl REP = 0, the length of WK is 3* NOBS;
otherwise, the length oMK is | REP| + m + 2.8854* In(m) + 3*
NOBS + 5.

WK — Work vector. Ifl REP= 0, WK is not referenced and can be a
vector of length 1; otherwis@K is of length 2 m.

2. Informational errors
Type Code

3 1 DFE is less than the degrees of freedom for pure error.
The degrees of freedom for lack of fit is set to zero.

3 2 SSE is less than the sum of squares for pure error. The
sum of squares for lack of fit is set to zero.

4 3 An invalid weight or frequency is encountered.
Weights and frequencies must be nonnegative.

4 4 An element iK contains NaN (not a number), but the

corresponding element irGROUP is not zero. When
| REP = 0, missing values in a row Kfare indicated
by setting the corresponding rowIagfROUP to zero.

Algorithm

RoutineRLOFE computes a lack of fit test based on exact replicates for a fitted
regression model. The data need not be sorted prior to invBKIDEE. The
column indices oK for determining exact replicates can be inputNBREP. If

the groups of exact replicates are known prior to invoRIN@FE, the option

I REP = 0 allowsRLOFE to bypass the computation of the groups. This option is
particularly useful for computing a second lack of fit for a different dependent
variable that uses the same columnx fifr determining exact replicates as the
first test.

If I REP is nonzero, routin8ROVR (page 1280) is used to compute a permutation
vector that specifies the sort&dilong with then;’s, the number of rows ofin

178 « Chapter 2: Regression IMSL STAT/LIBRARY



| NTEGER
PARAMETER

| NTEGER
&

REAL

EXTERNAL

DATA (X(1,
DATA (X(2,
DATA (X(3,
DATA (X(4,
DATA (X(5,
DATA (X(6,

each group. If | REP is zero, the permutation vector and the n;’s are computed from
I GROUP.

Let n, be the number of rows &fin thei-th group of replicates € 1, 2,..., k).
Lety;; be the response for tixth row within thei-th group. Letw;; andf;; be the

associated weight and frequency, respectively. The pure error (within group) sum
of squares is

k n
! _\2
SSPE=% % w fj (vi - %)
i=1j=1
The associated degrees of freedom are
k n
DFPE = zz flj -k
i=] j=1

The lack of fit sum of squares is SSISSPE and the lack of fit degrees of
freedom are DFE DFPE.

TheF statistic for the test of the null hypothesis of no lack of fit is
_ (SSE - SSPE) / (DFE - DFPE)
SSPE / DFPE

Under the hypothesis of no lack of fit, the compRdths arf distribution with
numerator and denominator degrees of freedom BDBEPE and DFPE,
respectively. Th@-value for the test is computed as the probability that a random
variable with this distribution is greater than or equal to the compustatistic.

Example 1

This example uses data from Draper and Smith (1981, page 374), which is input
in X. A multiple linear regression of column 6Xbn an intercept and columns 1,

3, and 4 has already been computed. The fit gave a residual sum of squares
SSE = 163.93 withDFE = 16 degrees of freedom. A test for lack of fit is

computed using routineLOFE.

LDX, NCOL, NOBS, NREP

(NCOL=6, NOBS=20, NREP=3, LDX=NOBS)

| FRQ | GROUP(NOBS), | NDREP(NREP), |REP, |RSP, |WT,
NGROUP, NOUT

DFE, SSE, TESTLF(10), X(LDX, NCOL)

RLOFE, UMACH, WRI RN

).J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
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DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0,
DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0,
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0,
DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0,
DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0,
DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0,
DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0,
DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0,
DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0,
DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0,
DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0,
DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0,
DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0,
DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0,
DATA | NDREP/ 1, 3,

| REP = NREP

IRSP = 6

IFRQ = 0

W =0

DFE = 16.0

SSE = 163.93

CALL RLOFE (NOBS, NCOL, X, LDX, |REP, | NDREP,
& DFE, SSE, | GROUP, NGROUP, TESTLF)
CALL UMACH (2, NouT

WRITE (NOUT,*) ' NGROUP =, NGROUP
CALL WRIRN (IGROUP’, 1, NOBS, IGROUP, 1, 0)
WRITE (NOUT*) "’

WRITE (NOUT,99999) *

& 'Fit’
WRITE (NOUT,99999) ’
& ’ Prob. of’

WRITE (NOUT,99999) ' Source of Error DF Squares Square '//

&

WRITE (NOUT,99999) ’ Lack of Fit

&

WRITE (NOUT,99999) ’ Original model’, TESTLF(3), TESTLF(6)

' F Larger F

Test for Lack of '//

Sum of

TESTLF(7), TESTLF(9), TESTLF(10)
WRITE (NOUT,99999) ’ Expanded model ’, TESTLF(2), TESTLF(5),
&

TESTL

F(8)

99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)

END

Output
NGROUP = 6

IGROUP
123 456 7 8 910111213 1415161
666 45456 244462626414

Test for Lack of Fit
Sumof Mean Prob. of

Source of Error DF Squares Square  F Larger F

Expanded model 14.0 143.4 10.24
Original model 16.0 163.9

Mean

", TESTLF(1),

v

TESTLF(4),

7 18 19 20
4 3

210. o/
247. 0/
120. 0/

171.
167.
172.
247.
252.
248.
169.
104.
166.
168.
148.

| RSP,

| FRQ | WT,

180 « Chapter 2: Regression

IMSL STAT/LIBRARY



Example 2

This example uses the same data as in Example 1. Here, the option | REP=0is
used because | GROUP is known before invoking routine RLOFE. Routine SROAR
(page 1280) is used to compute the group numbers contained in | GROUP.

INTEGER  LDX, NOOL, NKEY, NOBS
PARAMETER (NCOL=6, NKEY=3, NOBS=20, LDX=NOBS)
C
INTEGER |, | COMP, |FRQ | GROUP(NOBS), | NDKEY(NKEY),
& I NDREP(1), | ORDR, | PERM(NOBS), |REP, |RET, |RSP,
& K, NGROUP, NI (NOBS), NOUT, NRM SS
REAL DFE, SSE, TESTLF(10), X(LDX, NCOL)
EXTERNAL  RLOFE, SROWR, UMACH, VRl RN
DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
DATA | NDKEY/ 1, 3, 4/
| COWP = 0
| ORDR = 0
IRET =1
CALL SROAR (NOBS, NCOL, X, LDX, |COWP, |ORDR, |RET, NKEY,
& I NDKEY, | PERM NGROUP, NI, NRM SS)
K=1
DO 20 1=1, NGROUP
DO 10 J=1, Ni(I)
| GROUP(| PERM(K)) = |
K=K+ 1
CONTI NUE

20 CONTI NUE
IREP = 0
IRSP = 6
IFRQ = 0
IW =0
DFE = 16.0
SSE = 163.93
CALL RLOFE (NOBS, NCOL, X, LDX, I|REP, INDREP, IRSP, |FRQ
& DFE, SSE, | GROUP, NGROUP, TESTLF)
CALL UMACH (2, NOUT)

WRITE (NOUT,*)’ NGROUP = ', NGROUP

| WI,

| WI',
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CALL WRIRN (IGROUP’, 1, NOBS, IGROUP, 1, 0)
WRITE (NOUT,*) "’

WRITE (NOUT,99999) ’ Test for Lack of '//

& Fit’

WRITE (NOUT,99999) ’ Sum of Mean '//

& ’ Prob. of’

WRITE (NOUT,99999) ' Source of Error DF Squares Square '//
& ' F Larger F

WRITE (NOUT,99999) ' Lack of Fit ’, TESTLF(1), TESTLF(4),

& TESTLF(7), TESTLF(9), TESTLF(10)

WRITE (NOUT,99999) ' Expanded model ’, TESTLF(2), TESTLF(5),
& TESTLF(8)

WRITE (NOUT,99999) ’ Original model’, TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)

END
Output
NGROUP = 6
IGROUP
123 456 7 8 910 11 12 13 14 15 16 17 18 19 20
666 4545624446664 1443

Test for Lack of Fit
Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lack of Fit 2.0 20.5 10.25 1.001 0.393
Expanded model 14.0 143.4 10.24
Original model 16.0 163.9

RLOFN/DRLOFN (Single/Double precision)

Compute alack of fit test based on near replicates for afitted regression model.

Usage
CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,

IFRQ, IWT, B, R, LDR, DFE, SSE, ICLUST, MAXIT,
TOL, NGROUP, IGROUP, TESTLF)

Arguments

NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

INTCEP — Intercept option. (Input)

| NTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.
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IIND — Independent variable option. (Input)

I[IND Meaning

<0 The first=I I ND columns ofX contain the independent (explanatory)
variables.

>0 Thel | ND independent variables are specified by the column numbers in
| NDI ND.

=0 There are no independent variables.

There areNCOEF = | NTCEP + | | ND| regressors—the intercept I(iNTCEP = 1)
and the independent variables.

INDIND — Index vector of lengthl ND containing the column numbers)of
that are the independent variables. (Input] ND is positive)

If 1 1 NDis nonnegative, NDI ND is not referenced and can be a vector of length
one.

IRSP — Column number RSP of X contains data for the response (dependent)
variable. (Input)

IFRQ — Frequency option. (Input)
I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number
| FRQ of X contains the frequencies.

IWT — Weighting option. (Input)
| WI = 0 means that all weights are 1.0. For positw&, column number W of
X contains the weights.

B — Vector of lengtiNCOEF containing a least-squares solution

A

B

for the regression coefficients. (Input)

R — NCOEF by NCOEF upper triangular matrix containing tRematrix. (Input)
TheR matrix can come from a regression fit based @Ralecomposition of the

matrix of regressors or based on a Cholesky factoriz&ighof the matrix of

sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element dR that is zero must also be zero. A zero row indicates a
nonfull rank model. For aR matrix that comes from a regression fit with linear
equality restrictions on the parameters, each roRadfrresponding to a

restriction must have a corresponding diagonal element that is negative. The
remaining rows oR must have positive diagonal elements. Only the upper
triangle ofRis referenced.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

DFE — Degrees of freedom for error from the fitted regression. (Input)

SSE — Sum of squares for error from the fitted regression. (Input)
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| CLUST — Clustering option. (Input)
| CLUST Meaning

0 Cluster groups are input iIlGROUP.
1 Cluster groups are obtained using Euclidean distance.
2 Cluster groups are obtained using Mahalanobis distance.

MAXIT — Maximum number of iterations for the cluster analysis to determine
near replicates. (Input, ifCLUST is positive, otherwiseyaXI T is not

referenced)

MAXI T = 30 is usually sufficient for convergence.

TOL — Tolerance used in determining linear dependence for the one-way
analysis of covariance model using clusters as the groups. (Input)

TaL = EPS”” is a good choice. F®LOFN, EPS = AVACH(4), and forDRLOFN,
EPS = DMACH(4). See documentation favACH/DVACH (Reference Material).

NGROUP — Number of groups. (Input)
A cluster analysis based 6IGROUP groups is performed. A good choice for
NGROUP is the number of groups of near replicates in the data set.

| GROUP — Vector of lengtiNOBS specifying group numbers. (Input, if

I CLUST = 0; output, ifil CLUST = 1)

I GROUP(I ) =J means row of X is in theJ-th group of near replicates € 0, 1,

2, ..., NGROUP). Here,J = 0 indicates the group of observations not used in the
analysis because NaN (not a number) was input for one or more of the values of
the response, independent, frequency, or weight variables.

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model. (Output)

Elem. Description

1 Degrees of freedom for lack of fit.

2 Degrees of freedom for error from the expanded model (one-way
analysis of covariance model using clusters of near replicates as the
groups).

Degrees of freedom for errddHE = TESTLF(1) + TESTLF(2)).
Sum of squares for lack of fit.
Sum of squares for error from the expanded model.
Sum of squares for errd8$E = TESTLF(4) + TESTLF(5)).
Mean square for lack of fit.
Mean square for error from the expanded model.
F statistic.
0 p-value.

P OoO~NO O W

Comments
1. Automatic workspace usage is

RLOFN LWK+ 1 CL* (3* NOBS + || | ND| + NGROUP + 3 + maxjn +
2.8854* 1n(m) + 2, 3* NGROUP, NCCEF}) units, or
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DRLOFN 2* LVK+ | CL * (3* NOBS+ |l | ND| + NGROUP+ 3 + max{ m+
2.8854 * In(m) + 2, 3 NGROUP, NCOEF}) units.

Here, m=max(NOBS , NCOL), and | CL and LWK depend on | CLUST and
are defined as follows.

ICLUST ICL LW

0
1

0 NGROUP* NOOEF+ (NGROUP + 1)° + NCOEF + NGROUP

1 NGROUP* NCOEF +(NGROUP + 1) + max(NCOEF * NGROUP +
NGROUP + NOBS, 2 * NOBS, 2 * NCOL)

1 NOBS* (NCCEF + | FRQ+ | WI) + NGROUP * NOCEF +
(NGROUP + 1)*+ max(2 * NOBS, 2* NCOL, NCOEF * NGROUP
+ NGROUP + NOBS)

Workspace may be explicitly provided, if desired, by use of
R2COFN/DR2OFN. The referenceis

CALL R2OFN (NOBS, NCOL, X, LDX, | NTCEP, |1 ND,
INDIND, IRSP, FRQ IW, B, R LDR
DFE, SSE, |CLUST, MAXIT, TCOL, NGROUP,
| GROUP, TESTLF, WK, WK)

The additional arguments are as follows.

IWK — Work array of length 3 NOBS + | | ND| + NGROUP + 3 +
max{m + 2.8854* In(m) + 2, 3* NGROUP, NCOEF}, if | CLUST is
positive. Ifl CLUST = 0,1 WK can be an array of length 1.

WK — Work array of lengtih K.

Informational errors

Type Code
3 1 Convergence did not occur in the cluster analysis for
the lack of fit test withinvAXI T iterations. Better
results may be obtained by increagimel T.
4 2 An invalid weight or frequency is encountered.
Weights and frequencies must be nonnegative.
3 3 The matrix of sum of squares and crossproducts

computed for the within cluster model for testing lack

of fit is not nonnegative definite within the tolerance
defined byTQL.

4 4 At least one element in the columns containing the
independent variablesRSP, | FRQ, or | WI of X
contains NaN (not a number), but the corresponding
element in GROUP is not zero. WhehCLUST =0,
missing values in a row ofare indicated by setting
the corresponding row ¢fGROUP to zero.
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Algorithm

Routine RLOFN computes a lack of fit test based on near replicates for afitted
regression model. The data need not be sorted prior to invoking RLOFN. The column
indices of X for determining near replicates must correspond to the independent
variablesin the original fitted model. If the groups of near replicates are known prior
to invoking RLOFN, the option | CLUST = 0 alows RLOFN to bypass the computation
of the groups.

The data can contain missing values indicated by NaN. (NaN is AVACH(6) in the single
precision version or DMACH(6) in the double precision version. Routines AMACH and

DMACH are described in the section “Machine-Dependent Constants” in the Reference
Material. Forl CLUST equal to 1 or 2, any row of containing NaN as a value for the
response, weight, frequency, or independent variables is omitted from the analysis.
Forl CLUST equal to 0, if thé-th row ofX contains NaN for one of the variables in

the analysis, thieth element of GROUP must be 0 on input.

RoutineKMEAN (page 900) is used to computelusters or groups of near replicates.

Prior to invokingKMEAN, a detached sort of the independent variables in the

regression model is performed using rousREMR (page 1280). If there are fewer
thanNGROUP distinct observations, a warning message is issuetl iaragt equal to

the number of distinct observations. OtherwksequalSNGROUP. For purposes of the
cluster analysig,CLUST = 1 specifies Euclidean distance ar UST = 2 specifies
Mahalanobis distance. For Mahalanobis distance, the data are transformed before
invoking KMEAN so that the Euclidean metric appliedKWEAN for the transformed

data is equivalent to the sample Mahalanobis distance for the original (untransformed)
data.

Let X be then x p matrix of regressors, and IRtbe the upper triangular matrix

computed from the fitted regression model. The m&can be computed by routines
RG.M(page 117)RG VN (page 107), oRLEQU (page 131) for fitting the regression
model. A linear equality restriction on the regression parameters corresponds to a row
of Rwith a negative diagonal element. Debe ap x p diagonal matrix with diagonal

elements
3 {1 if ; >0
"7 10 otherwise
Let
X

be thei-th row ofX, and lett; = Ds; wheres; satisfies
RTS[ =X

Then, the Mahalanobis distance frapto X; equals the Euclidean distance frgm
tot; because
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o‘ZVar[(Xi ~Xj )Té} = 0_2\/3{(3 ") )T Rﬁ}

Once the clusters are identified by KMEAN an expanded regression model—a one-
way analysis of covariance model-is fitted to the original (untransformed) data.
Denote the original model hy= X + € and the expanded model ¥ Xp + Zy

+ €. The added regressors that are contained in thematrixZ in the expanded
model are indicator variables specifying cluster membership. The lack of fit test
that is computed is an exact test of the hypothesiy théitin the expanded

model. This test was proposed as a lack of fit test by Christensen (1989).

Let SSEK, Z) be the error sum of squares from the fit of the expanded model and
let SSEK) be the error sum of squares from the fit of the original model. The lack
of fit sum of squares is SSE(— SSEK, Z) and the lack of fit degrees of freedom
are DFEK) — DFE (X, Z2). TheF statistic for the test of the null hypothesis of no
lack of fit is

= _ (SSE(X) - SSE(X, 2)) / (DFE(X) -~ DFE(X, 2))
B SSE(X,Z) / DFE(X, Z)

Under the hypothesis of no lack of fit, the compRdths arf distribution with
numerator and denominator degrees of freedom RFEDFE(X, Z) and

DFEC(X, 2), respectively. The-value for the test is computed as the probability
that a random variable with this distribution is greater than or equal to the
computed statistic.

The error degrees of freedom and error sum of squares from the fit of the
expanded model are computed as the error degrees of freedom and sum of
squares from the reduced model whéandy have been adjusted fr Routine
RCOV (page 104) is used to fit the reduced model.ellet the vector of residuals
from the original fitted model, |&/ be the diagonal matrix whos¢h diagonal
element is the product of the weight and frequency foi-th@bservation. The
sum of squares and crossproducts matrix for the adjdsaedy in the reduced
model, which is input int&Cov, is

Z'TWzZ-ATA ZTwe
e'We

whereA is a solution oR’A = DX'Wz.

IMSL STAT/LIBRARY

Chapter 2: Regression « 187



Example 1

This example uses data from Draper and Smith (1981, page 374), which isinput
in X. A multiple linear regression of column 6 of X on an intercept and columns 1,
3, and 4 is computed using routine RG VN (page 107). Tests for lack of fit are
computed for choices of NGROUP equal to 4 and 6 using routine RLOFN. Note that
for NGROUP equal to 6 the results are exactly the same as for routine RLOFE

(page 176). (If there are exact replicates in the data and the number of clusters
used by RLOFN equals the number of distinct cases of the independent variables,

then RLOFN and RLOFE produce the same output.)

INTEGER  INTCEP, LDB, LDR LDSCPE, LDX, NCOEF, NCOL, NDEP,
& NI ND, NOBS
PARAMETER (I NTCEP=1, NCOL=6, NDEP=1, NI ND=3, NOBS=20,
& LDSCPE=NDEP, LDX=NOBS, NCOEF=I NTCEP+NI ND, LDB=NCOEF,
& L DR=NCOEF)
C
INTEGER | CLUST, IDEP, I1DO |FRQ | GROUP(NOBS), IIND,
& | NDDEP(NDEP), | NDI ND(NIND), | RANK, |RSP, |SUB, |WT,
& MAXI T, NGROUP, NOUT, NRM SS, NROW
REAL AVACH, B(LDB, NDEP), D(NCOEF), DFE, R(LDR, NCOEF),
& SCPE( LDSCPE, NDEP) , SSE, TESTLF(10), TOL, X(LDX, NCOL),
& XMAX( NCOEF) , XM N( NCOEF)
EXTERNAL  AVACH, RG VN, RLOFN, UMACH, WRI RN
C
DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
DATA (X(7,3),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
DATA INDIND/'1, 3, 4/, |NDDEP/6/
IDO =0
NROW = NOBS
IIND = NI ND
| DEP = NDEP
IFRQ = 0
W =0
ISUB = 1
TOL = 100. 0* AVACH( 4)
CALL RG VN (1 DO, NROW NCOL, X, LDX, INTCEP, IIND, | NDIND, IDEP,

&

| NDDEP,

| FRQ | W,

ISUB, TOL, B, LDB, R LDR D,
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& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)

SSE = SCPE(1,1)
IRSP = 6

| CLUST = 2

MAXIT = 30

TOL =

AMACH( 4) ** (2. 0/ 3. 0)
DO 10 NGROUP=4, 6, 2
CALL RLOFN (NOBS, NCOL, X, LDX, |NTCEP, IIND,

I NDI ND, | RSP,

& IFRQ IW, B, R LDR DFE, SSE, |CLUST, NMAXIT,

& TOL, NGROUP, | GROUP, TESTLF)
CALL UMACH (2, NOUT)

WRITE (NOUT %) "

WRITE (NOUT,*) 'NGROUP =, NGROUP

CALL WRIRN (IGROUP’, 1, NOBS, IGROUP, 1, 0)

WRITE (NOUT %) "

WRITE (NOUT,99999) ’ Test for Lack of '//
& "Fit’
WRITE (NOUT,99999) ’ Sum of Mean ’//
& ' Prob. of’
WRITE (NOUT,99999) ’ Source of Error DF Squares Square '//
& ' F Larger F’
WRITE (NOUT,99999) ’ Lack of Fit ', TESTLF(1), TESTLF(4),
& TESTLF(7), TESTLF(9), TESTLF(10)

WRITE (NOUT,99999) ’ Expanded model ', TESTLF(2), TESTLF(5),
& TESTLF(8)
WRITE (NOUT,99999) * Original model ’, TESTLF(3), TESTLF(6)
10 CONTINUE
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)

END
Output
NGROUP = 4
IGROUP
123 456 7 8 910 11 12 13 14 15 16 17 18 19 20
444 4 2 42 42 4 4 4 44441443

Test for Lack of Fit
Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lackof Fit 1.0 0.4 0.38 0.035 0.855
Expanded model 15.0 163.6 10.90
Original model 16.0 163.9

NGROUP = 6

IGROUP
123 456 7 8 91011 12 13 14 15 16 17 18 19 20
666 4545624446626 41443

Test for Lack of Fit
Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lackof Fit 2.0 20.5 10.25 1.001 0.393
Expanded model 14.0 143.4 10.24
Original model 16.0 163.9
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Example 2

This example uses the same data and model from Example 1. Here, the option
I CLUST = Oisinput so that the group numbers for performing the lack of fit test

areinput.
| NTEGER | NTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
& NI ND, NOBS
PARAMETER (| NTCEP=1, NCOL=6, NDEP=1, NI ND=3, NOBS=20,
& LDSCPE=NDEP, LDX=NOBS, NCOEF=| NTCEP+NI ND, LDB=NCOEF,
& L DR=NCOEF)
C
| NTEGER | CLUST, IDEP, I1DO |FRQ |GROUP(NOBS), |IND,
& | NDDEP( NDEP), | NDI ND( NI ND), | RANK, I RSP, |SUB, |W,
& MAXI T, NGROUP, NOUT, NRM SS, NROW
REAL AVACH, B(LDB, NDEP), D(NCCEF), DFE, R(LDR, NCCEF),
& SCPE( LDSCPE, NDEP), SSE, TESTLF(10), TOL, X(LDX, NCOL),
& XNMAX( NCOEF) , XM N( NCOEF)
EXTERNAL AMACH, RG VN, RLOFN, UVMACH, WRI RN
C
DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
DATA I NDINDY 1, 3, 4/, | NDDEP/ 6/
DATA | GROUP/ 4*4, 2, 4, 2, 4, 2, 7*4, 1, 2*4, 3/
IDO =0
NROW = NOBS
II'ND = NI ND
| DEP = NDEP
IFRQ = 0
IWI =20
ISUB = 1
TOL = 100. 0* AVACH( 4)
CALL RG VN (1 DO, NROW NCOL, X, LDX, INTCEP, |IND, |NDIND, |DEP,
& I NDDEP, |IFRQ IWr, 1SUB, TO., B, LDB, R LDR, D,
& | RANK, DFE, SCPE, LDSCPE, NRM SS, XM N, XMAX)
SSE = SCPE(1, 1)
| RSP =6
| CLUST = 0
MAXIT = 30
TOL = AMACH(4) **(2.0/ 3. 0)
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NGROUP = 4
CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, |NDIND, IRSP,
& IFRQ IWr, B, R LDR DFE, SSE, |CLUST, MAXIT, TOL,
& NGROUP, | GROUP, TESTLF)
CALL UMACH (2, NOUT)

WRITE (NOUT *) "

WRITE (NOUT,*) 'NGROUP =, NGROUP

CALL WRIRN (IGROUP’, 1, NOBS, IGROUP, 1, 0)

WRITE (NOUT *) "

WRITE (NOUT,99999) ’ Test for Lack of '//

& 'Fit’

WRITE (NOUT,99999)’ Sum of Mean '/

& ’ Prob. of’

WRITE (NOUT,99999) ’ Source of Error DF Squares Square '//
& " F Larger F

WRITE (NOUT,99999) ' Lack of Fit ', TESTLF(1), TESTLF(4),

& TESTLF(7), TESTLF(9), TESTLF(10)

WRITE (NOUT,99999) ' Expanded model ’, TESTLF(2), TESTLF(5),
& TESTLF(8)

WRITE (NOUT,99999) ’ Original model’, TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)

END
Output
NGROUP = 4
IGROUP
123 456 7 8 910 11 12 13 14 15 16 17 18 19 20
444 4 2 42 42 4 4 4 44441443

Test for Lack of Fit
Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lackof Fit 1.0 0.4 0.38 0.035 0.855
Expanded model 15.0 163.6 10.90
Original model 16.0 163.9

RCASE/DRCASE (Single/Double precision)

Compute case statistics and diagnostics given data points, coefficient estimates

A

B

and the R matrix for afitted general linear model.

Usage

CALL RCASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF, NCLVAR,
INDCL, NCLVAL, CLVAL, NVEF, INDEF, IDUMMY,
IRS