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Introduction

The IMSL Libraries
The IMSL Libraries consist of two separate, but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

• MATH/LIBRARY general applied mathematics and special functions

• STAT/LIBRARY statistics

The IMSL MATH/LIBRARY User’s Manual has two parts: MATH/LIBRARY and
MATH/LIBRARY Special Functions.

Most of the routines are available in both single and double precision versions.
The same user interface is found on the many hardware versions that span the
range from personal computer to supercomputer. Note that some IMSL routines
are not distributed for FORTRAN compiler environments that do not support
double precision complex data. The names of the IMSL routines that return or
accept the type double complex begin with the letter “Z” and, occasionally, “DC.”

Getting Started
The IMSL STAT/LIBRARY is a collection of FORTRAN subroutines and
functions useful in research and statistical analysis. Each routine is designed and
documented to be used in research activities as well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN (or
possibly some other language) to call the STAT/LIBRARY routine. Each routine
conforms to established conventions in programming and documentation. We
give first priority in development to efficient algorithms, clear documentation,
and accurate results. The uniform design of the routines makes it easy to use more
than one routine in a given application. Also, you will find that the design
consistency enables you to apply your experience with one STAT/LIBRARY
routine to all other IMSL routines that you use.
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Finding the Right Routine
The STAT/LIBRARY is organized into chapters; each chapter contains routines
with similar computational or analytical capabilities. To locate the right routine
for a given problem, you may use either the table of contents located in each
chapter introduction, or one of the indexes at the end of this manual. GAMS
index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, and
J.L. Springmann 1990, Guide to Available Mathematical Software , National
Institute of Standards and Technology NISTIR 90-4237). Use the GAMS index to
locate which STAT/ LIBRARY  routines pertain to a particular topic or problem.

Often the quickest way to use the STAT/LIBRARY is to find an example similar
to your problem and then to mimic the example. Each routine document has at
least one example demonstrating its application. The example for a routine may
be created simply for illustration, it may be from a textbook (with reference to the
source) or it may be from the statistical literature, in which case IMSL routine
GDATA retrieves the data set.

Organization of the Documentation
This manual contains a concise description of each routine, with at least one
demonstrated example of each routine, including sample input and results. You
will find all information pertaining to the IMSL STAT/LIBRARY in this manual.
Moreover, all information pertaining to a particular routine is in one place within
a chapter.

Each chapter begins with an introduction followed by a table of contents that lists
the routines included in the chapter. Documentation of the routines consists of the
following information.

• IMSL Routine Name

• Purpose: a statement of the purpose of the routine

• Usage: the form for referencing the subprogram with arguments listed. There are
two usage forms:
– CALL sub(argument-list) for subroutines
– fun(argument-list) for functions

• Arguments: a description of the arguments in the order of their occurrence. Input
arguments usually occur first, followed by input/output arguments, with output
arguments described last. For functions, the function symbolic name is described
after the argument descriptions.

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through
this argument; cannot be a constant or an expression.
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Input or Output Select appropriate option to define the argument as either input
or output. See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The
routine returns output through this argument.

• Remarks: details pertaining to code usage and workspace allocation

• Algorithm: a description of the algorithm and references to detailed information.
In many cases, other IMSL routines with similar or complementary functions are
noted.

• Programming notes: an optional section that contains programming details not
covered elsewhere

• Example: at least one application of this routine showing input and required
dimension and type statements

• Output: results from the example(s)

• References: periodicals and books with details of algorithm development

Naming Conventions
The names of the routines are mnemonic and unique. Most routines are available
in both a single precision and a double precision version, with names of the two
versions sharing a common root. The name of the double precision version begins
with a “D.” The single precision version is generally just the mnemonic root, but
sometimes a letter “S” or “A” is used as a prefix. For example, the following pairs
are names of routines in the two different precisions: CORVC/DCORVC (the root is
“CORVC,” for “correlations, variances, and covariances”), ANORDF/DNORDF (the
root is “NORDF,” for “normal distribution function”), and SADD/DADD (the root is
“ADD”).

Except when expressly stated otherwise, the names of the variables in the
argument lists follow the FORTRAN default type for integer and floating point.
In other words, a variable whose name begins with one of the letters “I” through
“N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION,
depending on the precision of the routine.

An array with more than one dimension that is used as a FORTRAN argument
can have an assumed-size declarator for the last dimension only. In the
STAT/LIBRARY routines, this information is passed by a variable with the
prefix “LD” and with the array name as the root. For example, the argument LDA

contains the leading dimension of array A.

Where appropriate, the same variable name is used consistently throughout a
chapter in the STAT/LIBRARY. For example, in the routines for random number
generation, NR denotes the number of random numbers to be generated, and R or
IR denotes the array that stores the numbers.

When writing programs accessing the STAT/LIBRARY, the user should choose
FORTRAN names that do not conflict with names of IMSL subroutines,
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functions, or named common blocks. The careful user can avoid any conflicts
with IMSL names if, in choosing names, the following rules are observed:

• Do not choose a name that appears in the Alphabetical Summary of Routines, at
the end of the User’s Manual.

• Do not choose a name consisting of more than three characters with a numeral in
the second or third position.

For further details, see the section on “Reserved Names” in the Reference
Material.

Programming Conventions
In general, the STAT/LIBRARY codes are written so that computations are not
affected by underflow, provided the system (hardware or software) places a zero
value in the register. In this case, system error messages indicating underflow
should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensioning.

In many cases, the documentation for a routine points out common pitfalls that
can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat
them accordingly. This error-handling capability provides automatic protection
for the user without requiring the user to make any specific provisions for the
treatment of error conditions. See the section on “User Errors” in the Reference
Material for further details.

Error Handling
The routines in the IMSL STAT/LIBRARY attempt to detect and report errors
and invalid input. Errors are classified and are assigned a code number. By
default, errors of moderate or worse severity result in messages being
automatically printed by the routine. Moreover, errors of worse severity cause
program execution to stop. The severity level as well as the general nature of the
error is designated by an “error type” with numbers from 0 to 5. An error type 0 is
no error; types 1 through 5 are progressively more severe. In most cases, you
need not be concerned with our method of handling errors. For those interested, a
complete description of the error-handling system is given in the Reference
Material, which also describes how you can change the default actions and access
the error code numbers.
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Work Arrays
A few routines in the STAT/LIBRARY require work arrays. On most systems, the
workspace allocation is handled transparently, but on some systems, workspace is
obtained from a large array in a COMMON block. On these systems, when you have
a very large problem, the default workspace may be too small. The routine will
print a message telling you the statements to insert in your program in order to
provide the needed space (using the common block WORKSP for integer or real
numbers, or the common block WKSPCH for characters). The routine will then
automatically halt execution. See “Automatic Workspace Allocation” in the
Reference Material for details on common block names and default sizes.

For each routine that uses workspace, a second routine is available that allows
you to provide the workspace explicitly. For example, the routine LSLRG

(IMSL MATH/LIBRARY) uses workspace and automatically allocates the
required amount, if available. The routine L2LRG does the same as LSLRG, but
has a work array in its argument list, which the user must declare to be of
appropriate size. The “Automatic Workspace Allocation” section in the
Reference Material contains further details on this subject.

Printing Results
Several routines in the IMSL STAT/LIBRARY have an option for printing
results. These routines have an argument, IPRINT, to control the printing. In any
routine that allows printing, if IPRINT = 0, then no printing is done (except
possibly error messages). Some routines allow various amounts of printing; one
value of IPRINT might result in printing only summary statistics, while another
value might cause more detailed statistics or intermediate results to be printed.
Other routines in the STAT/LIBRARY do not print any of the results. In all
routines, of course, the output is returned in FORTRAN variables, so if the
routine does not do printing, or if you set IPRINT 0, you can print the results
yourself. The STAT/LIBRARY contains some special routines just for printing
arrays. For example, WRRRN and WRRRL are two convenient routines for printing
matrices. See Chapter 19, “Utilities,” for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL routine UMACH, which
retrieves the FORTRAN device unit number for printing the results. Because this
routine obtains device unit numbers, it can be used to redirect the input or output.
The section on “Machine- Dependent Constants” in the Reference Material
contains a description of the routine UMACH.

Missing Values
Many of the routines in the IMSL STAT/LIBRARY allow the data to contain
missing values. These routines recognize as a missing value the special value
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referred to as ‘not a number,’ or NaN. The actual value is different on different
computers, but it can be obtained by reference to the IMSL routines AMACH or
DMACH, described in the “Machine-Dependent Constants” section of the
Reference Material. In routines that allow missing values, two common
arguments are NMISS and NRMISS. The definitions of these arguments vary
somewhat depending on the specific routine. However, in a data structure where
the rows represent observations and the columns represent variables, NRMISS is
the number of rows containing missing values and NMISS is the total number of
missing values.

The way that missing values are treated depends on the individual routine, and is
described in the documentation for the routine.

Routines that Accumulate Results over Several
Calls

Often in statistical analyses, not all of the data are available in computer memory
at once. Many of the routines in the STAT/LIBRARY accept a part of the data,
accumulate some statistics, and continue accepting data and accumulating
statistics until all of the data have been processed. The routines that allow the data
to be processed a little at a time have an argument called “IDO.” For the simple
cases, these “IDO routines” are easy to use; for more complicated cases, you need
to be aware of some things that are discussed in the “Automatic Workspace
Allocation” section of the Reference Material.

This introduction has acquainted you with a few general characteristics of IMSL
STAT/LIBRARY. If you are using the STAT/LIBRARY at a computer center,
the computer center consultant will provide the details necessary to use the IMSL
routines on your computer sys tem. Also, additional general information for all
users is available in the Reference Material at the end of this manual.
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Chapter 1: Basic Statistics

Routines
1.1. Frequency Tabulations

One-way frequency table ...................................................OWFRQ 3
Two-way frequency table ................................................... TWFRQ 7
Frequencies in multivariate data ............................................FREQ 13

1.2. Univariate Summary Statistics
Moments and inferences for normal distribution ..................UVSTA 16

1.3. Ranks and Order Statistics
Numerical ranking ................................................................RANKS 24
Letter value summary .......................................................... LETTR 29
Order statistics .................................................................... ORDST 31
Empirical quantiles................................................................ EQTIL 35

1.4. Parametric Estimates and Tests (See also Univariate Summary
Statistics)
Two-sample t tests and F tests ..........................................TWOMV 37
Estimate the parameter in a binomial distribution ................. BINES 44
Estimate the parameter in a Poisson distribution..................POIES 46
Estimation in censored normal data.................................... NRCES 48

1.5. Grouped Data
Statistics for grouped data .................................................. GRPES 51

1.6. Continuous Data in a Table
Compute cell means and sums of squares..........................CSTAT 54
Median polish of a two-way table.........................................MEDPL 59

Usage Notes

Frequency Tabulations

The routines for frequency tabulations accept raw data in the form of vectors or
matrices and produce counts. Two of these routines assume generally that the



2 • Chapter 1: Basic Statistics IMSL STAT/LIBRARY

data are continuous and tally the observations into groups based on grouping
information that the user supplies. Another routine for frequency tabulations
assumes basically that the data are discrete and counts the number of observations
with each value. Other analyses of discrete data or count data can be performed
using IMSL routines in Chapter 5, “Categorical and Discrete Data Analysis.”

Univariate Summary Statistics

The routine UVSTA (page 16) computes the sample mean, variance, minimum,
maximum, and other basic statistics for each variable in a data set. It also
computes confidence intervals for the mean and variance if the sample is assumed
to be from a normal distribution.

Ranks and Order Statistics

The routines for ranks and order statistics accept data from a single sample stored
in a vector. Ranks, order statistics, and sample quantiles form the basis for many
nonparametric and robust statistical techniques (see Conover 1980 and Hoaglin et
al. 1983). Letter values, computed by the routine LETTR (page 29), are a special
set of order statistics particularly useful in exploratory data analysis (see Hoaglin
1983).

Parametric Estimates and Tests

The routines described in this section compute statistics for simple inferences
about the parameters in normal, binomial, and Poisson distributions. General
discussions of estimation techniques for these distributions can be found in
Johnson and Kotz (1969, 1970a, 1970b). The routine UVSTA (page 16), for
univariate summary statistics, also computes statistics for simple inferences about
the parameters in a single normal distribution.

Grouped Data

The routine GRPES (page 51) computes several basic statistics, such as arithmetic
means, geometric means, harmonic means, and moments about the arithmetic
mean for grouped data. The second, third, and fourth moments are computed both
with and without Sheppard’s corrections.

Continuous Data in a Table

The routine CSTAT (page 54) accepts data sets with both classification variables
and response variables. The classification variables define cells in a table.
Within each cell, means and sums of squares are computed for the response
variables. Further analysis of the response variables, in particular, assessment of
the effects of the classification variables, may be performed using the routines
described in Chapter 4 on analysis of variance. An alternative for two-way tables
is median polish, which is more resistant to outliers, but which is more
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exploratory. That is, no test is performed to confirm statistically that row and/or
column effects are present. The routine MEDPL (page 59) in this section performs
median polish. (See Tukey, 1977; Velleman and Hoaglin, 1981; and Emerson and
Hoaglin, 1983.) For count data (frequencies), the routines described in Chapter 5,
“Categorical and Discrete Data Analysis,” are appropriate for determining the
amount of association among the rows and columns.

OWFRQ/DOWFRQ (Single/Double precision)
Tally observations into a one-way frequency table.

Usage
CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the data.   (Input)

K — Number of intervals.   (Input)

IOPT — Tallying option.   (Input)

IOPT Action

0 Intervals of equal length, determined from the data, are used. Let XMIN

and XMAX be the minimum and maximum values in X, respectively.
Then, TABLE(1) is the tally of observations less than or equal to XMIN +
(XMAX − XMIN)/K, TABLE(2) is the tally of observations greater than
XMIN + (XMAX − XMIN)/K and less than or equal to XMIN + 2 * (XMAX −
XMIN)/K, and so on. TABLE(K) is the tally of observations greater than
XMAX − (XMAX − XMIN)/K.

1 Intervals of equal length are used just as in the case of IOPT = 0, except
the upper and lower bounds are taken as the user supplied variables XLO

and XHI, instead of the actual minimum and maximum in the data.
Therefore, the first and the last intervals are semi-infinite in length. K
must be greater than 2.

2 K − 1 cutpoints are input in DIV. The tally in TABLE(1) is the number of
observations less than or equal to DIV(1). For I greater than 1 and less
than K, the tally in TABLE(I) is the number of observations greater than
DIV(I − 1) and less than or equal to DIV(I). The tally in TABLE(K) is the
number of observations greater than DIV(K − 1). K must be greater than
1.

3 Class marks are input in DIV and a constant class half-width is input in
CLHW. The total of the elements in TABLE may be less than NOBS. The
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tally in TABLE(I) is the number of observations between
DIV(I) − CLHW and DIV(I) + CLHW.

XLO — If IOPT = 1, XLO is the lower bound at which to begin forming the class
intervals.   (Input)
XLO is used only if IOPT = 1.

XHI — If IOPT = 1, XHI is the upper bound to use in forming the class intervals.
(Input)
XHI is used only if IOPT = 1.

CLHW — If IOPT = 3, CLHW is the half-width of the class intervals.   (Input)
CLHW is not used if IOPT is not equal to 3.

DIV — Vector of varying length and contents depending on IOPT.   (Input if
IOPT= 2 or 3; output if IOPT = 0 or 1.)
The contents of DIV are in ascending order.

IOPT Contents
0 DIV is of length K containing interval midpoints. (DIV is output.)
1 DIV is of length K containing interval midpoints. Since the first and last

intervals are semi-infinite in length, DIV(1) contains XLO minus half the
interval length, and DIV(K) contains XHI plus half the interval length.
(DIV is output.)

2 DIV is a vector of length K − 1 containing cutpoints. (DIV is input.)
3 DIV is of length K containing classmarks. (DIV is input.)

TABLE — Vector of length K containing the counts.   (Output)

Algorithm

The routine OWFRQ groups numerical data into categories, which can be defined
in any of four different ways as chosen by IOPT. If IOPT = 0, K intervals of equal
length are formed between the minimum and maximum values in the data, and
then the data are tallied in these intervals. The midpoints of the intervals are
output in DIV.

If IOPT = 1, K − 2 intervals of equal length are formed between XLO and XHI, and
then the data are tallied in these intervals. In this option, there is one group that
consists of data less than XLO and one group of data greater than XHI. This option
is similar to IOPT = 0, except with this option, the midpoints of the classes are
under control of the user. The midpoints of the intervals are output in DIV. The
first and last values of DIV, respectively, contain XLO minus half the class width
and XHI plus half the class width.

For IOPT = 2 or 3, the intervals need not be equally spaced. If IOPT = 2, the
intervals need not be equal in length. In this case, the intervals are defined by
their boundaries, the “cutpoints”, which are input in DIV. The number of
cutpoints is one less than the number of intervals. The first cutpoint defines the
upper bound of the first interval, and the last cutpoint defines the lower bound of
the last interval.
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If IOPT= 3, the intervals are all of length twice CLHW, and they are centered on
the class marks input in DIV. This option can be used to exclude portions of the
data.

The examples use all of these options with the same data set.

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin
(1981). They are the measurements (in inches) of precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years. In the first example, we
set IOPT = 0. This option may be appropriate if we do not know the range of the
data. Notice that the midpoints of the class intervals, output in DIV, are not
“pretty” numbers.

      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHW, DIV(K), TABLE(K), X(NOBS), XHI, XLO
      EXTERNAL   OWFRQ, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C
      CALL UMACH (2, NOUT)
      IOPT = 0
C
      CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (’  Midpoints: ’, 10F5.2, /, ’     Counts: ’, 10F5.0)
      END

Output
Midpoints:  0.54 0.98 1.43 1.87 2.31 2.76 3.20 3.64 4.09 4.53
   Counts:    4.   8.   5.   5.   3.   1.   3.   0.   0.   1.

Example 2

In this example, we set IOPT = 1 and choose XLO and XHI  so that the intervals
will be 0.0 to 0.5, 0.5 to 1.0, and so on. This means that the midpoints of the class
intervals, output in DIV , will be 0.25, 0.75, and so on.

      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHW, DIV(K), TABLE(K), X(NOBS), XHI, XLO
      EXTERNAL   OWFRQ, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
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C
      CALL UMACH (2, NOUT)
      IOPT = 1
      XLO  = 0.5
      XHI  = 4.5
C
      CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (’  Midpoints:  ’, 10F5.2, /, ’     Counts: ’, 10F5.0)
      END

Output
Midpoints:   0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
   Counts:    2.   7.   6.   6.   4.   2.   2.   0.   0.   1.

Example 3

In this example, we input class boundaries in DIV . We choose the same intervals
as in the example above: 0.0 to 0.5, 0.5 to 1.0, and so on. DIV  begins with the
first cutpoint between classes.

      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHW, DIV(K-1), TABLE(K), X(NOBS), XHI, XLO
      EXTERNAL   OWFRQ, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA DIV/0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5/
C
      CALL UMACH (2, NOUT)
      IOPT = 2
C
      CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (’  Cutpoints:    ’, 9F5.1, /, ’     Counts: ’, 10F5.0)
      END

Output
Cutpoints:      0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5
   Counts:    2.   7.   6.   6.   4.   2.   2.   0.   0.   1.

Example 4

In this example, we set IOPT = 3, and set the values in DIV  and CLHW so that the
intervals will be the same as in the previous two examples.

      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHW, DIV(K), TABLE(K), X(NOBS), XHI, XLO
      EXTERNAL   OWFRQ, UMACH
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C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA DIV/0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25,
     &     4.75/
C
      CALL UMACH (2, NOUT)
      IOPT = 3
      CLHW = 0.25
C
      CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (’ Class marks: ’, 10F5.2, /, ’      Counts: ’, 10F5.0)
      END

Output
Class marks:  0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
     Counts:    2.   7.   6.   6.   4.   2.   2.   0.   0.   1.

TWFRQ/DTWFRQ (Single/Double precision)
Tally observations into a two-way frequency table.

Usage
CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI,
            CLHWX, CLHWY, DIVX, DIVY, TABLE, LDTABL)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the data for one variable.   (Input)

Y — Vector of length NOBS containing the data for the other variable.   (Input)

KX — Number of intervals for the variable X.   (Input)

KY — Number of intervals for the variable Y.   (Input)

IOPT — Tallying option.   (Input)

IOPT Action

0 Intervals of equal lengths for each variable, determined from the data,
are used. Let XMIN and XMAX be the minimum and maximum values in X,
respectively, with similar meanings for YMIN and YMAX. Then, TABLE(1,
1) is the tally of observations with the X value less than or equal to XMIN

+ (XMAX − XMIN)/KX, and the Y value less than or equal to YMIN + (YMAX
− YMIN)/KY. The other table entries are determined similarly.
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1 Intervals of equal lengths are used just as in the case of IOPT = 0, except
the upper and lower bounds are taken as the user-supplied variables XLO,
XHI, YLO, and YHI instead of the actual minima and maxima in the data.
Therefore, the first and the last intervals for both variables are semi-
infinite in length. KX and KY must be greater than 2.

2 KX − 1 cutpoints are input in DIVX, and KY − 1 cutpoints are input in
DIVY. The tally in TABLE(1, 1) is the number of observations for which
the X value is less than or equal to DIVX(1), and the Y value is less than
or equal to DIVY(1). For I greater than 1 and less than KX and J greater
than 1 and less than KY, the tally in TABLE(I, J) is the number of
observations with X greater than DIVX(I − 1) and less than or equal to
DIVX(I) and with Y greater than DIVY(J − 1) and less than or equal to
DIVY(J). The tally in TABLE(KX, KY) is the number of observations for
which the X value is greater than DIVX(KX − 1) and the Y value is greater
than DIVY(KY − 1). KX and KY must be greater than 1.

3 Class marks are input in DIVX and DIVY and a constant class half-width
are input in CLHWX and CLHWY. The total of the elements in TABLE may
be less than NOBS. The tally in TABLE(I, J) is the number of
observations with X value between DIVX(I) − CLHWX and DIVX(I) +
CLHWX, and with Y value between DIVY(J) − CLHWY and DIVY(J) +
CLHWY.

XLO — If IOPT = 1, XLO is the lower bound at which to begin forming the class
intervals for X.   (Input)
XLO is only used if IOPT = 1.

YLO — If IOPT = 1, YLO is the lower bound at which to begin forming the class
intervals for Y.   (Input)
YLO is only used if IOPT = 1.

XHI — If IOPT = 1, XHI is the upper bound to use in forming the class intervals
for X.   (Input)
XHI is only used if IOPT = 1.

YHI — If IOPT = 1,  is the upper bound to use in forming the class intervals for
Y.   (Input)
YHI is only used if  IOPT = 1.

CLHWX — If IOPT = 3, CLHWX is the half-width of the class intervals for X.
(Input)
CLHWX is only used if IOPT = 3.

CLHWY —If IOPT = 3, CLHWY is the half-width of the class intervals for Y.
(Input)
CLHWY is only used if IOPT = 3.

DIVX — Vector of varying length and contents depending on IOPT.    (Input if
IOPT= 2 or 3; output if IOPT = 0 or 1)
The contents of DIVX are in ascending order.
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IOPT Contents
0 DIV is of length KX containing interval midpoints for the X variable.

(DIVX is output.)
1 DIV is of length KX containing interval midpoints for the X variable.

Since the first and last intervals are semi-infinite in length, DIVX(1)
contains XLO − half the interval length, and DIV(KX) contains XHI + half
the interval length. (DIVX is output.)

2 DIVX is a vector of length KX − 1 containing cutpoints. (DIVX is input.)
3 DIVX is of length KX containing classmarks. (DIVX is input.)

DIVY — Vector of varying length and contents depending on IOPT.    (Input if
IOPT= 2 or 3; output if IOPT = 0 or 1)
The contents of DIVY are in ascending order. See DIVX.

TABLE — KX by KY matrix containing the counts.   (Output)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

Algorithm

The routine TWFRQ groups bivariate numerical data into categories, which can be
defined in any of four different ways as chosen by IOPT. This routine is very
similar to routine OWFRQ (page 3) for univariate data. If IOPT= 0, KX intervals of
equal length are formed for the first variable (in X) between the minimum and
maximum values in X and similarly KY intervals are formed for the second
variable (in Y). The data are then tallied in these intervals. The midpoints of the
intervals for the first variable are output in DIVX and those of the second in DIVY.

If IOPT = 1, K − 2 intervals of equal length are formed between XLO and XHI for
the data in X and likewise for Y. The data are then tallied in these intervals. In this
option, there is one group that consists of data less than XLO and one group of
data greater than XHI. This option is similar to IOPT = 0, except in this case, the
midpoints of the classes are under control of the user. The midpoints of the
intervals are output in DIVX and DIVY.

For IOPT = 2 or 3, the intervals need not be equally spaced. If IOPT = 2, the
intervals need not be equal in length. In this case, the intervals are defined by
their boundaries, the “cutpoints”, which are input in DIVX and DIVY. The number
of cutpoints is one less than the number of intervals. The first cutpoint defines the
upper bound of the first interval, and the last cutpoint defines the lower bound of
the last interval.

If IOPT = 3, the intervals are all of length twice CLHWX for X and twice CLHWY for
Y, and they are centered on the class marks input in DIVX and DIVY. This option
can be used to exclude portions of the data. The examples use all of these options
with the same data set.
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Example 1

The data for X in these examples are the same as those used in the routine for one-
way frequency tabulation, OWFRQ (page 3). The data for Y were created by adding
small integers to the data in X. In the first example, we set IOPT = 0. This option
may be appropriate if we do not know the range of the data. Notice that the
midpoints of the class intervals, output in DIVX and DIVY, are not “pretty”
numbers. Routine WRRRN (page 1248) is used to print the frequencies. This
printing routine puts column and row numbers above and to the left of the matrix
being printed. For example, the “4” in the second row and second column of the
output is the first number that represents a frequency. That frequency is the
number of occurrences of pairs of observations in which both values are in the
lowest groups.

      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHWX, CLHWY, DIVX(KX), DIVY(KY), TABLE(LDTABL,KY),
     &           X(NOBS), XHI, XLO, Y(NOBS), YHI, YLO
      EXTERNAL   TWFRQ, UMACH, WRRRN
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
     &     3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
     &     2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
     &     5.05/
C
      CALL UMACH (2, NOUT)
      IOPT = 0
C
      CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI, CLHWX,
     &            CLHWY, DIVX, DIVY, TABLE, LDTABL)
      WRITE (NOUT,99999) DIVX, DIVY
99999 FORMAT (’  Midpoints for X (Rows):    ’, 5F5.2, /, ’  Midpoints ’
     &       , ’for Y (Columns): ’, 6F5.2)
      CALL WRRRN (’Frequencies’, KX, KY, TABLE, LDTABL, 0)
      END

Output
Midpoints for X (Rows):     0.76 1.65 2.53 3.42 4.31
Midpoints for Y (Columns):  1.88 2.69 3.51 4.33 5.14 5.96

                  Frequencies
        1       2       3       4       5       6
1   4.000   2.000   4.000   2.000   0.000   0.000
2   0.000   4.000   3.000   2.000   1.000   0.000
3   0.000   0.000   1.000   2.000   0.000   1.000
4   0.000   0.000   0.000   0.000   1.000   2.000
5   0.000   0.000   0.000   0.000   0.000   1.000
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Example 2

In this example, we set IOPT = 1 and choose XLO, XHI, YLO, and YHI so that the
intervals will be 0 to 1, 1 to 2, and so on for X, and 1 to 2, 2 to 3, and so on for Y.
This means that the midpoints of the class intervals, output in DIVX and DIVY,
will be 0.5, 1.5, 2.5, and so on. The “5” in the third row and fourth column of the
printed output below, (i.e., the second row and the third column of the
frequencies TABLE) represents five pairs of observations with the X value between
1.0 and 2.0 and the Y value between 3.0 and 4.0.

      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHWX, CLHWY, DIVX(KX), DIVY(KY), TABLE(LDTABL,KY),
     &           X(NOBS), XHI, XLO, Y(NOBS), YHI, YLO
      EXTERNAL   TWFRQ, UMACH, WRRRN
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
     &     3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
     &     2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
     &     5.05/
C
      CALL UMACH (2, NOUT)
      IOPT = 1
      XLO  = 1.0
      XHI  = 4.0
      YLO  = 2.0
      YHI  = 6.0
C
      CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI, CLHWX,
     &            CLHWY, DIVX, DIVY, TABLE, LDTABL)
      WRITE (NOUT,99999) DIVX, DIVY
99999 FORMAT (’  Midpoints for X (Rows):    ’, 5F5.2, /, ’  Midpoints ’
     &       , ’for Y (Columns): ’, 6F5.2)
      CALL WRRRN (’Frequencies’, KX, KY, TABLE, LDTABL, 0)
      END

Output
Midpoints for X (Rows):     0.50 1.50 2.50 3.50 4.50
Midpoints for Y (Columns):  1.50 2.50 3.50 4.50 5.50 6.50

                  Frequencies
        1       2       3       4       5       6
1   3.000   2.000   4.000   0.000   0.000   0.000
2   0.000   5.000   5.000   2.000   0.000   0.000
3   0.000   0.000   1.000   3.000   2.000   0.000
4   0.000   0.000   0.000   0.000   0.000   2.000
5   0.000   0.000   0.000   0.000   1.000   0.000
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Example 3

In this example, we input class boundaries in DIVX and DIVY. We choose the
same intervals as in the example above: 0 to 1, 1 to 2, and so on. DIVX and DIVY
begins with the first cutpoint between classes.

      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHWX, CLHWY, DIVX(4), DIVY(5), TABLE(LDTABL,KY),
     &           X(NOBS), XHI, XLO, Y(NOBS), YHI, YLO
      EXTERNAL   TWFRQ, UMACH, WRRRN
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
     &     3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
     &     2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
     &     5.05/
      DATA DIVX/1.0, 2.0, 3.0, 4.0/
      DATA DIVY/2.0, 3.0, 4.0, 5.0, 6.0/
C
      CALL UMACH (2, NOUT)
      IOPT = 2
C
      CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI, CLHWX,
     &            CLHWY, DIVX, DIVY, TABLE, LDTABL)
      WRITE (NOUT,99999) DIVX, DIVY
99999 FORMAT (’  Cutpoints for X (Rows):    ’, 4F5.2, /, ’  Cutpoints ’
     &       , ’for Y (Columns): ’, 5F5.2)
      CALL WRRRN (’Frequencies’, KX, KY, TABLE, LDTABL, 0)
      END

Output
Cutpoints for X (Rows):     1.00 2.00 3.00 4.00
Cutpoints for Y (Columns):  2.00 3.00 4.00 5.00 6.00

                  Frequencies
        1       2       3       4       5       6
1   3.000   2.000   4.000   0.000   0.000   0.000
2   0.000   5.000   5.000   2.000   0.000   0.000
3   0.000   0.000   1.000   3.000   2.000   0.000
4   0.000   0.000   0.000   0.000   0.000   2.000
5   0.000   0.000   0.000   0.000   1.000   0.000

Example 4

In this example, we set IOPT = 3, and set the values in DIVX, DIVY, CLHWX, and
CLHWY so that the intervals will be the same as in the previous two examples.

      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
C
      INTEGER    IOPT, NOUT
      REAL       CLHWX, CLHWY, DIVX(KX), DIVY(KY), TABLE(LDTABL,KY),
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     &           X(NOBS), XHI, XLO, Y(NOBS), YHI, YLO
      EXTERNAL   TWFRQ, UMACH, WRRRN
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
     &     3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
     &     2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90,
     &     5.05/
      DATA DIVX/0.5, 1.5, 2.5, 3.5, 4.5/
      DATA DIVY/1.5, 2.5, 3.5, 4.5, 5.5, 6.5/
C
      CALL UMACH (2, NOUT)
      IOPT  = 3
      CLHWX = 0.5
      CLHWY = 0.5
C
      CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI, CLHWX,
     &            CLHWY, DIVX, DIVY, TABLE, LDTABL)
      WRITE (NOUT,99999) DIVX, DIVY
99999 FORMAT (’  Class marks for X (Rows):    ’, 5F5.2, /, ’  Class ’,
     &       ’marks for Y (Columns): ’, 6F5.2)
      CALL WRRRN (’Frequencies’, KX, KY, TABLE, LDTABL, 0)
      END

Output
Class marks for X (Rows):     0.50 1.50 2.50 3.50 4.50
Class marks for Y (Columns):  1.50 2.50 3.50 4.50 5.50 6.50

                  Frequencies
        1       2       3       4       5       6
1   3.000   2.000   4.000   0.000   0.000   0.000
2   0.000   5.000   5.000   2.000   0.000   0.000
3   0.000   0.000   1.000   3.000   2.000   0.000
4   0.000   0.000   0.000   0.000   0.000   2.000
5   0.000   0.000   0.000   0.000   1.000   0.000

FREQ/DFREQ (Single/Double precision)
Tally multivariate observations into a multiway frequency table.

Usage
CALL FREQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL,
           MAXTAB, MAXCL, NCLVAL, CLVAL, TABLE)

Arguments

IDO — Processing option.   (Input)

IDO Action
1 This is the first (or the only) invocation of FREQ for this data set.

Initialization and updating for the data in X are performed.
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2 This is an additional invocation of FREQ, and updating for the data in X
is performed.

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.

NCLVAR — Number of classification variables.   (Input)
NCLVAR must be greater than one.

INDCL — Index vector of length NCLVAR containing the column numbers in X

that are the classification variables.   (Input)

MAXTAB — An upper bound for the total number of cells in the frequency table.
(Input)
This is the product of the number of distinct values taken by all of the
classification variables since the table includes the empty cells.

MAXCL — An upper bound for the sum of the number of distinct values taken by
all of the classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Output, if IDO = 1;
Input/Output, if IDO = 2.)
Each variable must have more than one level.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the values of the classification variables.   (Output, if IDO= 1;
input/output, if IDO = 2.)
Since in general the length of CLVAL will not be known in advance, MAXCL is an
upper bound for this length. The first NCLVAL(1) elements of CLVAL contain the
values for the first classification variable. The next NCLVAL(2) contain the values
for the second variable. The last NCLVAL(NCLVAR) positions contain the values
for the last classification variable.

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the frequencies in the cells of the table to be fit.   (Output, if IDO = 1;
input/output, if IDO = 2)
Since, in general, the length of TABLE will not be known in advance, MAXTAB is
an upper bound for this length. Empty cells are included in TABLE, and each
element of TABLE is nonnegative. The cells of TABLE are sequenced so that the
first variable cycles from 1 to NCLVAL(1) one time, the second variable cycles
from 1 to NCLVAL(2) NCLVAL(1) times, and so on, up to the NCLVAR-th variable,
which cycles from 1 to NCLVAL(NCLVAR) most rapidly (NCLVAL(1) * NCLVAL(2)
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* … * NCLVAL(NCLVAR − 1) times). That is to say, the second element of TABLE
is the count for the first value for each classification variable except the last one
and the second value of the last classification variable (assuming that variable
takes more than one distinct value).

Comments

1. Automatic workspace usage is

FREQ 2 * NCLVAR units, or
DFREQ 3 * NCLVAR units.

Workspace may be explicitly provided, if desired, by use of
F2EQ/DF2EQ. The reference is

CALL F2EQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR,
           INDCL, MAXTAB, MAXCL, NCLVAL, CLVAL,
           TABLE, IWK, WK)

The additional arguments are as follows:

IWK — Workspace of length NCLVAR.

WK — Workspace of length NCLVAR.

2. Informational errors
Type Code
   4    1 MAXCL is too small. Increase the length of CLVAL.
   4    2 MAXTAB is too small. Increase the length of TABLE.

Algorithm

The routine FREQ determines the distinct values in multivariate data and
computes frequencies for the data. The routine accepts the data in the matrix X,
but performs computations only for the variables (columns) in X specified in
INDCL. In general, the variables for which frequencies should be computed are
discrete; that is, they should take on a relatively small number of different values.
Variables that are continuous can be grouped first.

The routine OWFRQ (page 3) or TWFRQ (page 7) can be used to group variables
and determine the frequencies of groups. The routine FREQ fills the vector CLVAL
with the unique values of the variables and tallies the number of unique values of
each variable in the vector NCLVAL. Each combination of one value from each
variable forms a cell in a multiway table. The frequencies of these cells are
entered in TABLE so that the first variable cycles through its values exactly once
and the last variable cycles through its values most rapidly. Some cells may not
correspond to any observation in the data; that is, “missing cells” are included and
have 0’s in TABLE.

The length of the vectors CLVAL and TABLE depend on the data. The parameters
MAXCL and MAXTAB are used as checks that the arrays sizes are not exceeded.
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Example

The data for this example are taken from the examples used in routine TWFRQ
(page 7), but modified so that the values of all points within a given interval of
Example 2 for TWFRQ are exactly equal to the class mark for that interval. The
results from this example, therefore, are the same as for Example 2 for TWFRQ,
except that TABLE is a vector. (The elements of the vector are sequenced as the
columns of the matrix.)

      INTEGER    LDX, MAXCL, MAXTAB, NCLVAR, NCOL
      PARAMETER  (LDX=30, MAXCL=15, MAXTAB=40, NCLVAR=2, NCOL=2)
C
      INTEGER    I, IDO, IFRQ, INDCL(NCLVAR), NCLVAL(NCLVAR), NOBS,
     &           NOUT, NVAL1, NVAL2
      REAL       CLVAL(MAXCL), TABLE(MAXTAB), X(LDX,NCOL)
      EXTERNAL   FREQ, UMACH
C
      DATA X/0.50, 1.50, 0.50, 1.50, 1.50, 1.50, 0.50, 1.50, 3.50,
     &       2.50, 2.50, 3.50, 1.50, 2.50, 0.50, 1.50, 1.50, 0.50,
     &       0.50, 0.50, 2.50, 1.50, 1.50, 1.50, 4.50, 2.50, 0.50,
     &       1.50, 0.50, 2.50,
     &       1.50, 3.50, 3.50, 2.50, 3.50, 4.50, 1.50, 3.50, 6.50,
     &       3.50, 4.50, 6.50, 2.50, 4.50, 3.50, 2.50, 3.50, 3.50,
     &       1.50, 2.50, 5.50, 2.50, 3.50, 4.50, 5.50, 4.50, 3.50,
     &       2.50, 2.50, 5.50/
C
      CALL UMACH (2, NOUT)
      IDO      = 1
      NOBS     = 30
      IFRQ     = 0
      INDCL(1) = 1
      INDCL(2) = 2
      CALL FREQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL, MAXTAB,
     &           MAXCL, NCLVAL, CLVAL, TABLE)
      NVAL1 = NCLVAL(1)
      NVAL2 = NCLVAL(2)
      WRITE (NOUT,99999) (CLVAL(J),J=NVAL1+1,NVAL1+NVAL2),
     &   (CLVAL(I),(TABLE((I-1)*NVAL2+J),J=1,NVAL2),I=1,NVAL1)
99999 FORMAT (’     Frequencies for All Combinations of Values’, /,
     &        8X,6F7.2,/,5(F7.2,6F7.0,/))
      END

Output
Frequencies for All Combinations of Values
        1.50   2.50   3.50   4.50   5.50   6.50
0.50     3.     2.     4.     0.     0.     0.
1.50     0.     5.     5.     2.     0.     0.
2.50     0.     0.     1.     3.     2.     0.
3.50     0.     0.     0.     0.     0.     2.
4.50     0.     0.     0.     0.     1.     0.

UVSTA/DUVSTA (Single/Double precision)
Compute basic univariate statistics.
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Usage
CALL UVSTA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT,
            CONPRM, CONPRV, IPRINT, STAT, LDSTAT, NRMISS)

Arguments

IDO — Processing option.   (Input)

IDO Action

0 This is the only invocation of UVSTA for this data set, and all the data are
input at once.

1 This is the first invocation, and additional calls to UVSTA will be made.
Initialization and updating for the data in X are performed. The means
are output correctly, but the other quantities output in STAT are
intermediate quantities.

2 This is an intermediate invocation of UVSTA, and updating for the data in
X is performed.

3 This is the final invocation of this routine. If NROW is not zero, updating
is performed. The wrap-up computations for STAT are performed.

NROW — The absolute value of NROW is the number of rows of data currently
input in X.   (Input)
NROW may be positive, zero, or negative. Negative NROW means that the −NROW
rows of data are to be deleted from some aspects of the analysis, and this should
be done only if IDO is 2 or 3 and the wrap-up computations for STAT have not
been performed. When a negative value is input for NROW, it is assumed that each
of the −NROW rows of X has been input (with positive NROW) in a previous
invocation of UVSTA. Use of negative values of NROW should be made with care
and with the understanding that some quantities in STAT cannot be updated
properly in this case. In particular, the minima, maxima, and ranges are not
updated because of deletion. It is also possible that a constant variable in the
remaining data will not be recognized as such.

NVAR — Number of variables (not including the weight or frequency variable, if
used).   (Input)

X — |NROW| by NVAR + m matrix containing the data, where m is 0, 1, or 2
depending on whether any column(s) of X correspond to weights and/or
frequencies.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.
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IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X
contains the weights.

MOPT — Missing value option.   (Input)
NaN (not a number from routine AMACH(6)) is interpreted as the missing value
code and any value in X equal to NaN is excluded from the computations.

MOPT Action
0 The exclusion is listwise. (The entire row of X is excluded if any of the

values of the row is equal to the missing value code.)
1 The exclusion is elementwise. (Statistics for variables with nonmissing

values are updated.)

CONPRM — Confidence level for two-sided interval estimate of the means
(assuming normality), in percent.   (Input)
If CONPRM ≤ 0, no confidence interval for the mean is computed; otherwise, a
CONPRM percent confidence interval is computed, in which case CONPRM must be
between 0.0 and 100.0. CONPRM is often 90.0, 95.0, or 99.0. For a one-sided
confidence interval with confidence level ONECL, set CONPRM = 100.0 − 2.0 *
(100.0 − ONECL).

CONPRV — Confidence level for two-sided interval estimate of the variances
(assuming normality), in percent.   (Input)
The confidence intervals are symmetric in probability (rather than in length). See
also the description of CONPRM.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Statistics in STAT are printed if IDO = 0 or 3.
2 Intermediate means, sums of squares about the mean, minima, maxima,

and counts are printed when IDO = 1 or 2, and all statistics in STAT are
printed when IDO = 0 or 3.

STAT — 15 by NVAR matrix containing in each row statistics on all of the
variables.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)
The columns of STAT correspond to the columns of X, except for the columns of
X containing weights or frequencies. (The columns beyond the weights or
frequencies column are shifted to the left.)

I STAT(I, *)
1 contains means
2 contains variances
3 contains standard deviations
4 contains coefficients of skewness
5 contains coefficients of excess (kurtosis)
6 contains minima
7 contains maxima
8 contains ranges



IMSL STAT/LIBRARY Chapter 1: Basic Statistics • 19

9 contains coefficients of variation, when they are defined. If the
coefficient of variation is not defined for a given variable, STAT(9, *)
contains a zero in the corresponding position.

10 contains numbers (counts) of nonmissing observations
11 is used only when CONPRM is positive, and, in this case, contains the

lower confidence limit for the mean (assuming normality)
12 is used only when CONPRM is positive, and, in this case, contains the

upper confidence limit for the mean (assuming normality)
13 is used only when CONPRV is positive, and, in this case, contains the

lower confidence limit for the variance (assuming normality).
14 is used only when CONPRV is positive, and, in this case, contains the

upper confidence limit for the variance (assuming normality).
15 is used only when weighting is used (IWT is nonnegative), and, in this

case, contains the sums of the weights.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of data encountered in calls to UVSTA that contain
any missing values.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)
Rows with a frequency of zero are not counted.

Comments

Automatic workspace usage is

if IPRINT ≠ 2

UVSTA 2 * NVAR units, or
DUVSTA 4 * NVAR units;

if IPRINT = 2

UVSTA 7 * NVAR units, or
DUVSTA 14 * NVAR units.

Workspace may be explicitly provided, if desired, by use of U2STA/DU2STA. The
reference is
CALL U2STA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT,
            CONPRM, CONPRV, IPRINT, STAT, LDSTAT, NRMISS,
            WK)

The additional argument is

WK — Real work vector of length specified above. WK should not be changed
between calls to U2STA.

Algorithm

For the data in each column of X, except the columns containing frequencies or
weights, UVSTA computes the sample mean, variance, minimum, maximum, and
other basic statistics. It also computes confidence intervals for the mean and
variance if the sample is assumed to be from a normal population.
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Missing values, that is, values equal to NaN (not a number, the value returned by
routine AMACH(6)), are excluded from the computations. If MOPT is positive, the
exclusion is listwise; that is, the entire observation is excluded and no
computations are performed even for the variables with valid values. If
frequencies or weights are specified, any observation whose frequency or weight
is missing is excluded from the computations.

Frequencies are interpreted as multiple occurrences of the other values in the
observations. That is, a row of X with a frequency variable having a value of 2 has
the same effect as two rows with frequencies of 1. The total of the frequencies is
used in computing all of the statistics based on moments (mean, variance,
skewness, and kurtosis). Weights are not viewed as replication factors. The sum
of the weights is used only in computing the mean (of course, then the weighted
mean is used in computing the central moments). Both weights and frequencies
can be zero, but neither can be negative. In general, a zero frequency means that
the row is to be eliminated from the analysis; no further processing, counting of
missing values, or error checking is done on the row. Although it is not required
that frequencies be integers, the logic of their treatment implicitly assumes that
they are. Weights, on the other hand, are allowed to be continuous. A weight of
zero results in the row being counted, and updates are made of statistics and of
the number of missing values. A missing value for the frequency or a missing
value for the weight when the frequency is nonzero results in the row being
deleted from the analysis; but even in that case, if one is nonmissing, it is an error
for that nonmissing weight or frequency to be negative.

The definitions of some of the statistics are given below in terms of a single
variable x. The i-th datum is xL, with corresponding frequency fL and weight wL. If
either frequencies or weights are not specified, fL and/or wL are identically one.
The summation in each case is over the set of valid observations, based on the
setting of MOPT and the presence of missing values in the data.

Number of nonmissing observations, STAT(10, *)

n fi= ∑
Mean, STAT(1, *)
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i i i
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Coefficient of Variation, STAT(9, *)
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The arguments IDO and NROW allow data to be input a few at a time and even to
be deleted after having been included in the analysis. The minima, maxima, and
ranges are not updated when observations are deleted.

Example 1

This example uses data from Draper and Smith (1981). There are 5 variables and
13 observations.

      INTEGER    LDSTAT, LDX, NVAR
      PARAMETER  (LDSTAT=15, LDX=13, NVAR=5)
C
      INTEGER    IDO, IFRQ, IPRINT, IWT, MOPT, NR, NRMISS, NROW, NV
      REAL       CONPRM, CONPRV, STAT(LDSTAT,NVAR), X(LDX,NVAR)
      EXTERNAL   GDATA, UVSTA
C                                 Get data for example.
      CALL GDATA (5, 0, NR, NV, X, LDX, NVAR)
C                                 All data are input at once.
      IDO  = 0
      NROW = NR
C                                 No unequal frequencies or weights
C                                 are used.
      IFRQ = 0
      IWT  = 0
C                                 Get 95% confidence limits.
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      CONPRM = 95.0
      CONPRV = 95.0
C                                 Delete any row containing a missing
C                                 value.
      MOPT = 0
C                                 Print results.
      IPRINT = 1
      CALL UVSTA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
      END

Output
Univariate Statistics from UVSTA

Variable      Mean       Variance    Std. Dev.       Skewness      Kurtosis
   1        7.4615        34.6026      5.8824         0.68768       0.07472
   2       48.1538       242.1410      15.5609       -0.04726      -1.32257
   3       11.7692        41.0256       6.4051        0.61064      -1.07916
   4       30.0000       280.1667      16.7382        0.32960      -1.01406
   5       95.4231       226.3136      15.0437       -0.19486      -1.34244

Variable    Minimum       Maximum        Range       Coef. Var.       Count
   1         1.0000       21.0000      20.0000          0.7884      13.0000
   2        26.0000       71.0000      45.0000          0.3231      13.0000
   3         4.0000       23.0000      19.0000          0.5442      13.0000
   4         6.0000       60.0000      54.0000          0.5579      13.0000
   5        72.5000      115.9000      43.4000          0.1577      13.0000

Variable  Lower CLM     Upper CLM    Lower CLV      Upper CLV
   1         3.9068       11.0162      17.7930        94.2894
   2        38.7505       57.5572     124.5113       659.8163
   3         7.8987       15.6398      21.0958       111.7918
   4        19.8852       40.1148     144.0645       763.4335
   5        86.3322      104.5139     116.3726       616.6877

Example 2

In this example, we use some simple data to illustrate the use of frequencies,
missing values, and the parameters IDO and NROW. In the data below, “NaN”
represents a missing value.

 f  x  y
2 3.0 5.0
1 9.0 2.0
3 1.0 NaN

We bring in the data one observation at a time in this example. Also, we bring in
one false datum and then delete it on a subsequent call to UVSTA.

      INTEGER    LDSTAT, NVAR
      PARAMETER  (LDSTAT=15, NVAR=2)
C
      INTEGER    IDO, IFRQ, IPRINT, IWT, LDX, MOPT, NRMISS, NROW
      REAL       AMACH, CONPRM, CONPRV, STAT(LDSTAT,NVAR), X1(1,NVAR+1)
      EXTERNAL   AMACH, UVSTA
C                                 All data are input one observation
C                                 at a time in the vector X1.
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      NROW = 1
      LDX  = 1
C                                 Frequencies are in the first
C                                 position.  No weights are used.
      IFRQ = 1
      IWT  = 0
C                                 Get 95% confidence limits.
      CONPRM = 95.0
      CONPRV = 95.0
C                                 Elementwise deletion of missing
C                                 values.
      MOPT = 1
C                                 Print results, intermediate as well.
      IPRINT = 2
C                                 Bring in the first observation.
      IDO   = 1
      X1(1,1) = 2.0
      X1(1,2) = 3.0
      X1(1,3) = 5.0
      CALL UVSTA (IDO, NROW, NVAR, X1, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
C                                 Bring in the second observation.
      IDO   = 2
      X1(1,1) = 1.0
      X1(1,2) = 9.0
      X1(1,3) = 2.0
      CALL UVSTA (IDO, NROW, NVAR, X1, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
C                                 Bring in a false observation.
      X1(1,1) = 3.0
      X1(1,2) = 6.0
      X1(1,3) = 3.0
      CALL UVSTA (IDO, NROW, NVAR, X1, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
C                                 Delete the false observation.
C                                 This may make the mimina, maxima,
C                                 and range incorrect.
      NROW  = -1
      X1(1,1) = 3.0
      X1(1,2) = 6.0
      X1(1,3) = 3.0
      CALL UVSTA (IDO, NROW, NVAR, X1, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
      NROW = 1
C                                 Bring in the final observation.
      IDO   = 3
      X1(1,1) = 3.0
      X1(1,2) = 1.0
      X1(1,3) = AMACH(6)
      CALL UVSTA (IDO, NROW, NVAR, X1, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
      END

Output
                   Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           3.0000        0.0000        3.0000        3.0000      2.0000
   2           5.0000        0.0000        5.0000        5.0000      2.0000
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                       Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           5.0000       24.0000        3.0000        9.0000      3.0000
   2           4.0000        6.0000        2.0000        5.0000      3.0000

                       Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           5.5000       25.5000        3.0000        9.0000      6.0000
   2           3.5000        7.5000        2.0000        5.0000      6.0000

                       Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           5.0000       24.0000        3.0000        9.0000      3.0000
   2           4.0000        6.0000        2.0000        5.0000      3.0000

                        Univariate Statistics from UVSTA
Variable         Mean      Variance     Std. Dev.      Skewness    Kurtosis
   1           3.0000        9.6000        3.0984        1.4142      0.5000
   2           4.0000        3.0000        1.7321       -0.7071     -1.5000

Variable      Minimum       Maximum         Range    Coef. Var.       Count
   1           1.0000        9.0000        8.0000        1.0328      6.0000
   2           2.0000        5.0000        3.0000        0.4330      3.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1          -0.2516        6.2516        3.7405       57.7470
    2          -0.3027        8.3027        0.8133      118.4935

RANKS/DRANKS (Single/Double precision)
Compute the ranks, normal scores, or exponential scores for a vector of
observations.

Usage
CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the observations to be ranked.   (Input)

FUZZ — Value used to determine ties.   (Input)
If |X(I) − X(J)| is less than or equal to FUZZ, then X(I) and X(J) are said to be
tied.

ITIE — Option for determining the method used to assign a score to tied
observations.   (Input)

ITIE Method
0 The average of the scores of the tied observations is used.
1 The highest score in the group of ties is used.
2 The lowest score in the group of ties is used.
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3 The tied observations are to be randomly untied using an IMSL random
number generator.

ISCORE — Option for specifying the type of values returned in SCORE.   (Input)

ISCORE Type
0 Ranks
1 Blom version of normal scores
2 Tukey version of normal scores
3 Van der Waerdan version of normal scores
4 Expected value of normal order statistics (For tied observations, the

average of the expected normal scores are used.)
5 Savage scores (the expected value of exponential order statistics)

SCORE — Vector of length NOBS containing the rank or a transformation of that
rank of each observation.   (Output)
X and SCORE may occupy the same memory.

Comments

1. Automatic workspace usage is

RANKS NOBS units, or
DRANKS NOBS units.

Workspace may be explicitly provided, if desired, by use
R2NKS/DR2NKS. The reference is
CALL R2NKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE, IWK)

The additional argument is

IWK — Integer work vector of length NOBS.

2. The routine RNSET (page 1166) can be used to initialize the seed of the
random number generator used to break ties. If the seed is not initialized
by RNSET; different runs of the same program can yield different results
if there are tied observations and ITIE = 3.

Algorithm

The routine RANKS determines the ranks, or various transformations of the ranks
of the data in X. Ties in the data can be resolved in four different ways, as
specified in ITIE.

ISCORE = 0: Ranks

For this option, the values output in SCORE are the ordinary ranks of the data in X.
If X(I) has the smallest value among those in X and there is no other element in X

with this value, then SCORE(I) = 1. If both X(I) and X(J) have the same
smallest value, then

if ITIE = 0, SCORE(I) = SCORE(J) = 1.5
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if ITIE = 1, SCORE(I) = SCORE(J) = 2.0
if ITIE = 2, SCORE(I) = SCORE(J) = 1.0
if ITIE = 3, SCORE(I) = 1.0 and SCORE(J) = 2.0

or SCORE(I) = 2.0 and SCORE(J) = 1.0.

When the ties are resolved by use of routine RNUNF (page 1172) to generate
random numbers, different results may occur when running the same program at
different times unless the “seed” of the random number generator is set explicitly
by use of the routine RNSET (page 1166). Ordinarily, there is no need to call the
routine to set the seed, even if there are ties in the data.

ISCORE = 1: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of
order statistics from a normal distribution. The simplest approximations are
obtained by evaluating the inverse cumulative normal distribution function
(routine ANORIN, page 1124) at the ranks scaled into the open interval (0, 1). In
the Blom version (see Blom 1958), the scaling transformation for the rank rL(1 ≤
rL ≤ n, where n is the sample size, NOBS) is (rL − 3/8)/(n + 1/4). The Blom normal
score corresponding to the observation with rank rL is
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where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if
X(I) equals X(J) (within FUZZ) and their value is the k-th smallest in the data set,
the Blom normal scores are determined for ranks of k and k + 1, and then these
normal scores are averaged or selected in the manner specified by ITIE.
(Whether the transformations are made first or ties are resolved first makes no
difference except when averaging is done.)

ISCORE = 2: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank rL
is (rL − 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation
with rank rL is
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Ties are handled in the same way as discussed above for the Blom normal scores.
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ISCORE = 3: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling
transformation for the rank rL�is rL/(n + 1). The Van der Waerden normal score
corresponding to the observation with rank rL�is
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Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 4: Expected Value of Normal Order Statistics
For this option, the values output in SCORE are the expected values of the normal
order statistics from a sample of size NOBS. If the value in X(I) is the k-th
smallest, then the value output in SCORE(I) is E(ZN), where E(⋅) is the expectation
operator and ZN is the k-th order statistic in a sample of size NOBS from a standard
normal distribution. Such expected values are computed by the routine ENOS
(page 1314). Ties are handled in the same way as discussed above for the Blom
normal scores.

ISCORE = 5: Savage Scores

For this option, the values output in SCORE are the expected values of the
exponential order statistics from a sample of size NOBS. These values are called
Savage scores because of their use in a test discussed by Savage (1956) (see
Lehman 1975). If the value in X(I) is the k-th smallest, then the value output in
SCORE(I) is E(YN), where YN is the k-th order statistic in a sample of size NOBS
from a standard exponential distribution. The expected value of the k-th order
statistic from an exponential sample of size n (NOBS) is

1 1

1

1

1n n n k
+

−
+ ⋅ ⋅ ⋅ +

− +
Ties are handled in the same way as discussed above for the Blom normal scores.

The example uses all of these options with the same data set, which contains some
ties. The ties are handled different ways in this example.

Example

The data for this example, from Hinkley (1977), are the same used in several
examples in this chapter. There are 30 observations. Note that the fourth and sixth
observations are tied and that the third and twentieth are tied.

      INTEGER    NOBS
      PARAMETER  (NOBS=30)
C
      INTEGER    ISCORE, ISEED, ITIE, NOUT
      REAL       FUZZ, SCORE(NOBS), X(NOBS)
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      EXTERNAL   RANKS, RNSET, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C
      CALL UMACH (2, NOUT)
C                                 Ranks.
      ISCORE = 0
C                                 Average ties.
      ITIE = 0
      FUZZ = 0.0
C
      CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
      WRITE (NOUT,99994) SCORE
99994 FORMAT (’   Ranks’, /, (1X,10F7.1))
C                                 Blom normal scores.
      ISCORE = 1
C                                 Take largest ranks for ties.
      ITIE = 1
      FUZZ = 0.0
C
      CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
      WRITE (NOUT,99995) SCORE
99995 FORMAT (/, ’   Blom normal scores’, /, (1X,10F7.3))
C                                 Tukey normal scores.
      ISCORE = 2
C                                 Take smallest ranks for ties.
      ITIE = 2
      FUZZ = 0.0
C
      CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
      WRITE (NOUT,99996) SCORE
99996 FORMAT (/, ’   Tukey normal scores’, /, (1X,10F7.3))
C                                 Van der Waerden scores.
      ISCORE = 3
C                                 Randomly resolve ties.
      ISEED = 123457
      CALL RNSET (ISEED)
      ITIE = 3
      FUZZ = 0.0
C
      CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
      WRITE (NOUT,99997) SCORE
99997 FORMAT (/, ’   Van der Waerden scores’, /, (1X,10F7.3))
C                                 Expected value of normal O. S.
      ISCORE = 4
C                                 Average ties.
      ITIE = 0
      FUZZ = 0.0
C
      CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
      WRITE (NOUT,99998) SCORE
99998 FORMAT (/, ’   Expected values of normal order statistics’, /,
     &       (1X,10F7.3))
C                                 Savage scores.
      ISCORE = 5
C                                 Average ties.
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      ITIE = 0
      FUZZ = 0.0
C
      CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
      WRITE (NOUT,99999) SCORE
99999 FORMAT (/, ’   Expected values of exponential order statistics’,
     &       /, (1X,10F7.2))
      END

Output
Ranks
  5.0   18.0    6.5   11.5   21.0   11.5    2.0   15.0   29.0   24.0
 27.0   28.0   16.0   23.0    3.0   17.0   13.0    1.0    4.0    6.5
 26.0   19.0   10.0   14.0   30.0   25.0    9.0   20.0    8.0   22.0

Blom normal scores
 1.024  0.209 -0.776 -0.294  0.473 -0.294 -1.610 -0.041  1.610  0.776
 1.176  1.361  0.041  0.668 -1.361  0.125 -0.209 -2.040 -1.176 -0.776
 1.024  0.294 -0.473 -0.125  2.040  0.893 -0.568  0.382 -0.668  0.568

Tukey normal scores
-1.020  0.208 -0.890 -0.381  0.471 -0.381 -1.599 -0.041  1.599  0.773
 1.171  1.354  0.041  0.666 -1.354  0.124 -0.208 -2.015 -1.171 -0.890
 1.020  0.293 -0.471 -0.124  2.015  0.890 -0.566  0.381 -0.666  0.566

 Van der Waerden scores
-0.989  0.204 -0.753 -0.287  0.460 -0.372 -1.518 -0.040  1.518  0.753
 1.131  1.300  0.040  0.649 -1.300  0.122 -0.204 -1.849 -1.131 -0.865
 0.989  0.287 -0.460 -0.122  1.849  0.865 -0.552  0.372 -0.649  0.552

 Expected values of normal order statistics
-1.026  0.209 -0.836 -0.338  0.473 -0.338 -1.616 -0.041  1.616  0.777
 1.179  1.365  0.041  0.669 -1.365  0.125 -0.209 -2.043 -1.179 -0.836
 1.026  0.294 -0.473 -0.125  2.043  0.894 -0.568  0.382 -0.669  0.568

Expected values of exponential order statistics
 0 18   0.89   0.24   0.47   1.17   0.47   0.07   0.68   2.99   1.54
 2.16   2.49   0.74   1.40   0.10   0.81   0.56   0.03   0.14   0.24
 1.91   0.98   0.40   0.61   3.99   1.71   0.35   1.07   0.30   1.28

LETTR/DLETTR (Single/Double precision)
Produce a letter value summary.

Usage
CALL LETTR (NOBS, X, NUM, SUMRY, NMISS)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the data.   (Input)
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NUM — Number of summary values.   (Input)
NUM must be an odd integer greater than or equal to 3. A common value for NUM is
5.

SUMRY — Vector of length NUM containing the summary letter values.   (Output)
If NUM is 5, for example, SUMRY contains the minimum, the lower hinge (quartile),
the median, the upper hinge, and the maximum, in that order.

NMISS — Number of missing values.   (Output)

Comments

1. Automatic workspace usage is

LETTR NOBS units, or
DLETTR 2 * NOBS units.

If X is sorted in ascending order, no workspace is used. Workspace may
be explicitly provided, if desired, by use of L2TTR/DL2TTR. The
reference is
CALL L2TTR (NOBS, X, NUM, SUMRY, NMISS, WK)

The additional argument is

WK — Work vector of length NOBS.

2. Informational errors
Type  Code
   3     3 The results are likely not to be meaningful if NUM is

larger than the number of valid observations,
(NOBS − NMISS).

   4    4 The number of valid observations (NOBS − NMISS) is
not greater than zero.

Algorithm

The routine LETTR computes the median (“M”), the minimum, the maximum, and
other depths or “letter values”—hinges (“H”), eighths (“E”), sixteenths (“D”),
etc.—as specified by NUM. If NUM = 9, for example, the values in SUMRY

correspond to min, D, E, H, M, H, E, D, and max, in that order. The use of letter
values in summarizing a set of data is due to Tukey. Examples and discussion of
the use of letter values are given by Tukey (1977, Chapter 2) and by Velleman
and Hoaglin (1981, Chapter 2).

Example

In this example, LETTR is used to compute a letter value summary of the
measurements (in inches) of precipitation in Minneapolis/St. Paul during the
month of March for 30 consecutive years. These data were studied by Hinkley
(1977) and by Velleman and Hoaglin (1981), pages 50−53.

      INTEGER    I, NMISS, NOBS, NOUT, NUM
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      REAL       SUMRY(11), X(30)
      EXTERNAL   LETTR, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C
      CALL UMACH (2, NOUT)
      NOBS = 30
      NUM  = 11
C
      CALL LETTR (NOBS, X, NUM, SUMRY, NMISS)
      WRITE (NOUT,99998) SUMRY(6), (SUMRY(6-I),SUMRY(6+I),I=1,5)
99998 FORMAT (’         Letter Values’, /, ’       Lower      Upper’,
     &       /, ’  M         ’, F6.3, /, ’  H  ’, F6.3, 6X, F6.3, /,
     &       ’  E  ’, F6.3, 6X, F6.3, /, ’  D  ’, F6.3, 6X, F6.3, /,
     &       ’  C  ’, F6.3, 6X, F6.3, /, ’ m/M ’, F6.3, 6X, F6.3)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (’  There are ’, I2, ’ missing values.’)
      END

Output
    Letter Values
     Lower       Upper
 M          1.470
 H   0.900       2.100
 E   0.680       2.905
 D   0.495       3.230
 C   0.395       4.060
m/M  0.320       4.750
There are  0 missing values.

ORDST/DORDST (Single/Double precision)
Determine order statistics.

Usage
CALL ORDST (NOBS, X, NOS, IOPT, IOS, OS, NMISS)

Arguments

NOBS — Number of observations.   (Input)
NOBS must be greater than or equal to one.

X — Vector of length NOBS containing the data.   (Input)

NOS — Number of order statistics.   (Input)
NOS must be greater than or equal to one and less than or equal to NOBS.

IOPT — Option to choose the order statistics to be calculated.   (Input)

IOPT Action
0 Calculate the NOS order statistics listed in IOS.
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1 Calculate the first NOS order statistics.
2 Calculate the last NOS order statistics.

IOS — If IOPT = 0, IOS is a vector of length NOS containing the ranks of the
order statistics.   (Input)
The elements of IOS must be greater than or equal to one and less than or equal
to NOBS. If IOPT = 1 or 2, IOS is unreferenced and can be defined as a vector of
length 1.

OS — Vector of length NOS containing the order statistics.   (Output)

NMISS — Number of missing values.   (Output)

Comments

1. Automatic workspace usage is

ORDST NOBS units, or
DORDST 2 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
O2DST/DO2DST. The reference is
CALL O2DST (NOBS, X, NOS, IOPT, IOS, OS, NMISS, WK)

The additional argument is as follows:

WK — Work vector of length NOBS.

2. Informational errors
Type Code
   3    1 All of the observations are missing values. The

elements of OS have been set to NaN (not a number).
   3    2 NOS order statistics have been requested, but there are

only NOBS − NMISS valid observations. Order
statistics greater than NOBS − NMISS have been set to
NaN (not a number).

   3    3 Each value of IOS must be greater than 0 and less than
or equal to the number of valid observations. The
values of OS that are not defined have been set to NaN.

3. Missing values (NaN) are excluded from the analysis. Order statistics
are based on the NOBS — NMISS nonmissing elements of X.

Algorithm

The routine ORDST determines order statistics from the data in X and returns
them in the vector OS. The routine ORDST first checks to see if X is sorted, in
which case the order statistics are merely picked from X. If X is not sorted,
ORDST does either a complete or partial sort, depending on how many order
statistics are requested. Since either the largest few order statistics or the
smallest few are often of interest, the option parameter IOPT allows the user to
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obtain the largest or the smallest order statistics easily; otherwise (when IOPT is
set to 0), the user specifies in the vector IOS exactly which order statistics are to
be returned. If IOS is used, the order statistics returned in OS are in the same
order as the indicators in IOS.

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin
(1981). They are the measurements (in inches) of precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years. In the first example, the
first five order statistics from a sample of size 30 are obtained. Since IOPT is set
to 1, IOS is not used.

      INTEGER    IOPT, NOBS, NOS
      PARAMETER  (IOPT=1, NOBS=30, NOS=5)
C
      INTEGER    IOS(1), NMISS, NOUT
      REAL       OS(NOS), X(NOBS)
      EXTERNAL   ORDST, UMACH, WRRRN
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C
      CALL UMACH (2, NOUT)
      CALL ORDST (NOBS, X, NOS, IOPT, IOS, OS, NMISS)
      CALL WRRRN (’First five order statistics:’, 1, NOS, OS, 1, 0)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (’   There are’, I2, ’ missing values.’)
      END

Output
First five order statistics:
     1        2        3        4        5
0.3200   0.4700   0.5200   0.5900   0.7700
There are 0 missing values.

Example 2

In the second example, the last five order statistics from a sample of size 30 are
obtained. This example uses the same data as in the first example, but this time
the first two observations have been set to a missing value indicator (AMACH(6)).
Note that since there are two missing values in the data set, the indices of the last
five order statistics are numbers 24, 25, 26, 27, and 28. In this example, NMISS

will be returned with a value of 2. The index of the last order statistic can be
determined by NOBS − NMISS.

      INTEGER    IOPT, NOBS, NOS
      PARAMETER  (IOPT=2, NOBS=30, NOS=5)
C
      INTEGER    IOS(1), NMISS, NOUT
      REAL       AMACH, OS(NOS), X(NOBS)
      EXTERNAL   AMACH, ORDST, UMACH, WRRRN
C
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      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C
      CALL UMACH (2, NOUT)
      X(1) = AMACH(6)
      X(2) = AMACH(6)
      CALL ORDST (NOBS, X, NOS, IOPT, IOS, OS, NMISS)
      CALL WRRRN (’Last five order statistics:’, 1, NOS, OS, 1, 0)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (’   There are’, I2, ’ missing values.’)
      END

Output
Last five order statistics:
    1       2       3       4       5
2.810   3.000   3.090   3.370   4.750
There are 2 missing values.

Example 3

In this example, we illustrate the use of IOS to specify exactly which order
statistics are to be computed. We request what would be the last five order
statistics from a sample of size 30, that is, order statistics 26, 27, 28, 29, and 30.
As in example two, the data set has two missing values. Order statistics 29 and 30
are not defined, but since they are specifically requested, a warning message is
issued and OS contains two missing values on return.

      INTEGER    IOPT, NOBS, NOS
      PARAMETER  (IOPT=0, NOBS=30, NOS=5)
C
      INTEGER    IOS(NOS), NMISS, NOUT
      REAL       AMACH, OS(NOS), X(NOBS)
      EXTERNAL   AMACH, ORDST, UMACH, WRRRN
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA IOS/26, 27, 28, 29, 30/
C
      CALL UMACH (2, NOUT)
      X(1) = AMACH(6)
      X(2) = AMACH(6)
      CALL ORDST (NOBS, X, NOS, IOPT, IOS, OS, NMISS)
      CALL WRRRN (’Last five order statistics:’, 1, NOS, OS, 1, 0)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (’   There are’, I2, ’ missing values.’)
      END

Output
*** WARNING  ERROR 3 from ORDST.  Each value of IOS must be greater than 0
***          and less than or equal to the number of valid observations,
***          NOBS-NMISS, which is 28.  IOS contains 2 values outside of
***          this range. The corresponding values of OS have been set to
***          NaN (not a number).
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Last five order statistics:
    1       2       3       4       5
3.090   3.370   4.750     NaN     NaN
There are 2 missing values.

EQTIL/DEQTIL (Single/Double precision)
Compute empirical quantiles.

Usage
CALL EQTIL (NOBS, X, NQPROP, QPROP, Q, XLO, XHI, NMISS)

Arguments

NOBS — Number of observations.   (Input)
NOBS must be greater than or equal to one.

X — Vector of length NOBS containing the data.   (Input)

NQPROP — Number of quantiles.   (Input)
NQPROP must be greater than or equal to one.

QPROP — Vector of length NQPROP containing the quantile proportions.
(Input)
The elements of QPROP must lie in the interval (0, 1).

Q — Vector of length NQPROP containing the empirical quantiles.   (Output)
Q(i) corresponds to the empirical quantile at proportion QPROP(i). The quantiles
are determined by linear interpolation between adjacent ordered sample values.

XLO — Vector of length NQPROP containing the largest element of X less than or
equal to the desired quantile.   (Output)

XHI — Vector of length NQPROP containing the smallest element of X greater
than or equal to the desired quantile.   (Output)

NMISS — Number of missing values.   (Output)

Comments

1. Automatic workspace is allocated only if X is not sorted on input. The
amount allocated is

EQTIL NOBS units, or
DEQTIL 2 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
E2TIL/DE2TIL. The reference is
CALL E2TIL (NOBS, X, NQPROP, QPROP, Q, XLO, XHI,
            NMISS, WK)

The additional argument is
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WK — Workspace of length NOBS containing the sorted data.   (Output)

If X is sorted in ascending order with all missing values at the end of X,
then X and WK may share the same storage location.

2. Informational error
Type  Code
   3    1 All of the observations are missing values. The

elements of Q, XLO, and XHI have been set to NaN
(not a number).

3. Missing values (NaN) are excluded from the analysis. Empirical
quantiles are based on the NOBS − NMISS nonmissing elements of X.

Algorithm

The routine EQTIL determines the empirical quantiles, as indicated in the vector
QPROP, from the data in X. The routine EQTIL first checks to see if X is sorted; if
X is not sorted, the routine does either a complete or partial sort, depending on
how many order statistics are required to compute the quantiles requested.

The routine EQTIL returns the empirical quantiles and, for each quantile, the two
order statistics from the sample that are at least as large and at least as small as
the quantile. For a sample of size n, the quantile corresponding to the proportion
p is defined as

Q(p) = (1 − f )x(M) + f x(M�+�1)

where j = p(n + 1), f = p(n + 1) − j, and x(M) is the j-th order statistic, if

1 ≤ j < n; otherwise, the empirical quantile is the smallest or largest order statistic.

Example

In this example, five empirical quantiles from a sample of size 30 are obtained.
Notice that the 0.5 quantile corresponds to the sample median. The data are from
Hinkley (1977) and Velleman and Hoaglin (1981). They are the measurements (in
inches) of precipitation in Minneapolis/St. Paul during the month of March for 30
consecutive years.

      INTEGER    NOBS, NQPROP
      PARAMETER  (NOBS=30, NQPROP=5)
C
      INTEGER    I, NMISS, NOUT
      REAL       QPROP(NQPROP), X(NOBS), XEMP(NQPROP), XHI(NQPROP),
     &           XLO(NQPROP)
      EXTERNAL   EQTIL, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
      DATA QPROP/0.01, 0.50, 0.90, 0.95, 0.99/
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C
      CALL UMACH (2, NOUT)
      CALL EQTIL (NOBS, X, NQPROP, QPROP, XEMP, XLO, XHI, NMISS)
      WRITE (NOUT,99997)
99997 FORMAT (’              Smaller     Empirical     Larger’, /,
     &       ’  Quantile     Datum      Quantile      Datum’)
      DO 10  I=1, NQPROP
         WRITE (NOUT,99998) QPROP(I), XLO(I), XEMP(I), XHI(I)
   10 CONTINUE
99998 FORMAT (4X, F4.2, 8X, F4.2, 8X, F4.2, 8X, F4.2)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (/, ’ There are ’, I2, ’ missing values.’)
      END

Output
           Smaller     Empirical     Larger
Quantile     Datum      Quantile      Datum
  0.01        0.32        0.32        0.32
  0.50        1.43        1.47        1.51
  0.90        3.00        3.08        3.09
  0.95        3.37        3.99        4.75
  0.99        4.75        4.75        4.75

There are  0 missing values.

TWOMV/DTWOMV (Single/Double precision)
Compute statistics for mean and variance inferences using samples from two
normal populations.

Usage
CALL TWOMV (IDO, NROWX, X, NROWY, Y, CONPRM, CONPRV,
            IPRINT, STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action

0 This is the only invocation of TWOMV for this data set, and all the data are
input at once.

1 This is the first invocation, and additional calls to TWOMV will be made.
Initialization and updating are performed. The means are output
correctly, but most of the other quantities output in STAT are
intermediate quantities.

2 This is an intermediate invocation of TWOMV, and updating for the data in
X and Y is performed.

3 This is the final invocation of this routine. Updating for the data in X and
Y and wrap-up computations are performed.
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NROWX — Absolute value of NROWX is the number of observations currently
input in X.   (Input)
NROWX may be positive, zero, or negative. Negative NROWX means delete the
−NROWX observations in X from the analysis.

X — Vector of length NROWX containing observations from the first sample.
(Input)

NROWY — Absolute value of NROWY is the number of observations currently
input in Y.   (Input)
NROWY may be positive, zero, or negative. Negative NROWY means delete the
−NROWY observations in Y from the analysis.

Y — Vector of length NROWY containing observations from the second sample.
(Input)

CONPRM — Confidence level for two-sided interval estimate of the mean of X

minus the mean of Y (assuming normality of both populations), in percent.
(Input)
If CONPRM = 0, no confidence interval for the difference in the means is
computed; otherwise, a CONPRM percent confidence interval is computed, in
which case CONPRM must be between 0.0 and 100.0. CONPRM is often 90.0, 95.0,
or 99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPRM = 100.0 − 2.0 * (100.0 − ONECL).

CONPRV — Confidence level for inference on variances.   (Input)
Under the assumption of equal variances, the pooled variance is used to obtain a
two-sided CONPRV percent confidence interval for the common variance in
STAT(13) and STAT(14). Without making the assumption of equal variances, the
ratio of the variances is of interest. A two-sided CONPRV percent confidence
interval for the ratio of the variance of the first population (X) to that of the
second population (assuming normality of both populations) is computed and
stored in STAT(22) and STAT(23). The confidence intervals are symmetric in
probability. See also the description of CONPRM.

IPRINT — Printing option.   (Input)
If IPRINT = 0, no printing is performed; otherwise, various statistics in STAT are
printed when IDO = 0 or 3.

IPRINT Action
0 No printing.
1 Simple statistics (STAT (1) to STAT(6), STAT(24), and STAT(25)).
2 Statistics for means, assuming equal variances.
3 Statistics for means, not assuming equal variances.
4 Statistics for variances.
5 All statistics.

STAT — Vector of length 25 containing the statistics.
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.) These are:
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I STAT(I)
1 Mean of the first sample.
2 Mean of the second sample.
3 Variance of the first sample.
4 Variance of the second sample.
5 Number of observations in the first sample.
6 Number of observations in the second sample.

(STAT(7) through STAT(14) depend on the assumption of equal variances.)
7 Pooled variance.
8 t value, assuming equal variances.
9 Probability of a larger t in absolute value, assuming normality, equal

means, and equal variances.
10 Degrees of freedom assuming equal variances.
11 Lower confidence limit for the mean of the first population minus the

mean of the second, assuming equal variances.
12 Upper confidence limit for the mean of the first population minus the

mean of the second, assuming equal variances.
13 Lower confidence limit for the common variance.
14 Upper confidence limit for the common variance.

(STAT(15) through STAT(19) use approximations that do not depend on
an assumption of equal variances.)

15 t value, assuming unequal variances.
16 Approximate probability of a larger t in absolute value, assuming

normality, equal means, and unequal variances.
17 Degrees of freedom assuming unequal variances, for Satterthwaite’s

approximation.
18 Approximate lower confidence limit for the mean of the first population

minus the mean of the second, assuming equal variances.
19 Approximate upper confidence limit for the mean of the first population

minus the mean of the second, assuming equal variances.
20 F value (greater than or equal to 1.0).
21 Probability of a larger F in absolute value, assuming normality and equal

variances.
22 Lower confidence limit for the ratio of the variance of the first

population to the second.
23 Upper confidence limit for the ratio of the variance of the first

population to the second.
24 Number of missing values of first sample.
25 Number of missing values of second sample.

Algorithm

The routine TWOMV computes the statistics for making inferences about the means
and variances of two normal populations, using independent samples in X and Y.
For inferences concerning parameters of a single normal population, see routine
UVSTA (page 16). For two samples that are paired, see routine ATWOB (page 375),
since the pairs can be considered to be blocks.
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Let µ; and

σ X
2

be the mean and variance, respectively, of the first population, and µ< and

σY
2

be the corresponding quantities of the second population. The routine TWOMV is
used for testing µ; = µ< and

σ σX Y
2 2=

or for setting confidence intervals for µ; − µ< and

σ σX Y
2 2/

The basic quantities in STAT(1) through STAT(4) are
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where n[�and n\�are the respective sample sizes (in STAT(5) and STAT(6)).

Inferences about the Means

The test for the equality of means of two normal populations depends on whether
or not the variances of the two populations can be considered equal. If the
variances are equal, the test is the two-sample t test, which is equivalent to an
analysis of variance test (see Chapter 4). In this case, the statistics returned in
STAT(7) through STAT(12) are appropriate for testing µ; = µ<. The pooled
variance (in STAT(7)) is

s
n s n s

n n
x x y y

x y

2
2 21 1

2
=

− + −
+ −

( ) ( )

The t statistic (in STAT(8)) is

t
x y

s n nx y
= −

+( / ) ( / )1 1

For testing µ; = µ< + c, for some constant c, the confidence interval for µ; − µ<
can be used. (If the confidence interval includes c, the null hypothesis would not
be rejected at the significance level 1 − CONPRM/100.)
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If the population variances are not equal, the ordinary t statistic does not have a t
distribution; and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and Kendall and
Stuart 1979.) The name Fisher-Behrens is associated with this problem, and one
of the earliest tests devised for this situation is the Fisher-Behrens test, based on
Fisher’s concept of fiducial probability. Another test is called Satterthwaite’s
procedure. The routine TWOMV computes the statistics for this approximation,
which was suggested by H.F. Smith and modified by F.E. Satterthwaite
(Anderson and Bancroft 1952, page 83). The test statistic is

′ = −t x y sd0 5 /

where

s s n s nd x x y y= +( / ) ( / )2 2

Under the null hypothesis of equal population means, this quantity has an
approximate t distribution with degrees of freedom f (in STAT(17)), given by

f
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Inferences about the Variances

The F statistic for testing the equality of variances is given by

F s s s= 1
2

2
2

1
2/ ,  where 

is the larger of

s s sx y
2 2

2
2 and ,  and 

is the smaller. If the variances are equal, this quantity has an F distribution with
n[ − 1 and n\ − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide
whether to use the regular t test or the modified t′ on a single set of data. The
more conservative approach is to use the modified t′ (Satterthwaite’s procedure)
if there is doubt about the equality of the variances.

Example 1

This example is taken from Conover and Iman (1983, page 294). It involves
scores on arithmetic tests of two grade school classes. The question is whether a
group taught by an experimental method has a higher mean score. The data are
shown below.
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Scores for
Standard Group

Scores for
Experimental Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

164

169

It is assumed that the variances of the two populations are equal so the statistics
of interest are in STAT(8) and STAT(9). It is seen from the output below that there
is strong reason to believe that the two means are different (t-value of
−4.804). Since the lower 97.5% confidence limit does not include zero, the null
hypothesis that µ [ ≤ µ \ would be rejected at the 0.05 significance level. (The
closeness of the values of the sample variances provides some qualitative
substantiation of the assumption of equal variances.)

      INTEGER    IDO, IPRINT, NROWX, NROWY
      REAL       CONPRM, CONPRV, STAT(25), X(7), Y(9)
      EXTERNAL   TWOMV
C
      DATA X/72., 75., 77., 80., 104., 110., 125./Y/111., 118., 128.,
     &     138., 140., 150., 163., 164., 169./
C
      IDO    = 0
      NROWX  = 7
      NROWY  = 9
      IPRINT = 2
      CONPRM = 95.0
      CONPRV = 0.0
      CALL TWOMV (IDO, NROWX, X, NROWY, Y, CONPRM, CONPRV, IPRINT,
     &            STAT)
      END

Output
Mean Inferences Assuming Equal Variances
Pooled Variance                               434.633
t Value                                        -4.804
Probability of a Larger t in Abs. Value         0.000
Degrees of Freedom                             14.000
Lower Confidence Limit Difference in Means    -73.010
Upper Confidence Limit Difference in Means    -27.942
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Example 2

For a second example, the same data set is used to illustrate the use of the IDO
parameter to bring in the data one observation at a time. Since there are more “Y”
values than “X” values, NROWX is set to zero on the later calls to TWOMV.

      INTEGER    I, IDO, IPRINT, NROWX, NROWY
      REAL       CONPRM, CONPRV, STAT(25), X(7), Y(9)
      EXTERNAL   TWOMV
C
      DATA X/72., 75., 77., 80., 104., 110., 125./Y/111., 118., 128.,
     &     138., 140., 150., 163., 164., 169./
C
      IPRINT = 5
      CONPRM = 95.0
      CONPRV = 95.0
      IDO    = 1
      NROWX  = 1
      NROWY  = 1
      DO 10  I=1, 7
C                                 Bring in first seven observations
C                                 on X and Y, one at a time.
         CALL TWOMV (IDO, NROWX, X(I), NROWY, Y(I), CONPRM, CONPRV,
     &               IPRINT, STAT)
         IDO = 2
   10 CONTINUE
C                                 Now bring in remaining observations
C                                 on Y.
      NROWX = 0
      CALL TWOMV (IDO, NROWX, X(1), NROWY, Y(8), CONPRM, CONPRV,
     &            IPRINT, STAT)
C                                 Set IDO to indicate last observation.
      IDO = 3
      CALL TWOMV (IDO, NROWX, X(1), NROWY, Y(9), CONPRM, CONPRV,
     &            IPRINT, STAT)
      END

Output
               Statistics from TWOMV
First Sample Mean                               91.857
Second Sample Mean                             142.333
First Sample Variance                          435.810
Second Sample Variance                         433.750
First Sample Valid Observations                  7.000
Second Sample Valid Observations                 9.000
First Sample Missing Values                      0.000
Second Sample Missing Values                     0.000

       Mean Inferences Assuming Equal Variances
Pooled Variance                                 434.63
t Value                                          -4.80
Probability of a Larger t in Abs. Value           0.00
Degrees of Freedom                               14.00
Lower Confidence Limit Difference in Means      -73.01
Upper Confidence Limit Difference in Means      -27.94
Lower Confidence Limit for Common Variance      232.97
Upper Confidence Limit for Common Variance     1081.04
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       Mean Inferences Assuming Unequal Variances
t Value                                        -4.8028
Approx. Prob. of a Larger t in Abs. Value       0.0003
Degrees of Freedom                             13.0290
Lower Confidence Limit                        -73.1758
Upper Confidence Limit                        -27.7766

              Variance Inferences
F Value                                        1.00475
Probability of a Larger F in Abs. Value        0.96571
Lower Confidence Limit for Variance Ratio      0.21600
Upper Confidence Limit for Variance Ratio      5.62621

BINES/DBINES (Single/Double precision)
Estimate the parameter p of the binomial distribution.

Usage
CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)

Arguments

N — Total number of Bernoulli trials.   (Input)
N is the parameter N in the binomial distribution from which one observation (K)
has been drawn.

K — Number of successes in the N trials.   (Input)

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
An approximate CONPER percent confidence interval is computed, hence, CONPER

must be between 0.0 and 100.0. CONPER often will be 90.0, 95.0, or 99.0. For a
one-sided confidence interval with confidence level ONECL, set CONPER = 100.0 
− 2.0 * (100.0 − ONECL).

PHAT — Estimate of p.   (Output)

PLOWER — Lower confidence limit for p.   (Output)

PUPPER — Upper confidence limit for p.   (Output)

Comments

1. Informational errors
Type  Code
   3    1 CONPER is 100.0 or too large for accurate

computations. The confidence limits are set to 0.0 and
1.0.

   3    2 CONPER is 0.0 or too small for accurate computations.
The confidence limits are both set to PHAT.
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2. Since the binomial is a discrete distribution, it is not possible to
construct an exact CONPER% confidence interval for all values of
CONPER. Let α = 1 − CONPER/100. Then, the approximate lower and
upper confidence limits p/ and p8 (PLOWER and PUPPER) are solutions
to the equations

N

x
p p

x K

N

L
x

L
N x�

��
�
�� − =

=

−∑ ( )1 2α

N

x
p p

x

K

U
x

U
N x�

��
�
�� − =

=

−∑
0

1 2( ) α

These approximations are not just computational devices.
Approximations to the confidence limits are necessary because the
binomial distribution is discrete.

Algorithm

The routine BINES computes a point estimate and a confidence interval for the
parameter, p, of a binomial distribution, using the number of “successes”, K, in a
sample of size N from a binomial distribution with probability function

f x
N

x
p p x Nx N x

( ) , , ,= �
��

�
�� − =

−
1 0 10 5  for K

The point estimate for p is merely K/N.

The routine BINES makes use of the relationship between the binomial
distribution and the beta distribution (see Johnson and Kotz 1969, Chapter 3) by
solving the following equations equivalent to those in Comment 2:

pL K N K= − +β α, , /1 2

pU K N K= + − −β α1 1 2, , /

where βD,�E,�t is the beta τ critical value with parameters a and b (that is, the

inverse beta distribution function evaluated at 1 − τ). The routine BETIN
(page 1127) is used to evaluate the critical values.

Example

In this example, we assume that the number of defective microchips in a given lot
follows a binomial distribution. We estimate the proportion defective by taking a
sample of 50. In this sample, 3 microchips were found to be defective. The
routine BINES is used to estimate p and to compute a 95% confidence interval.

      INTEGER    K, N, NOUT
      REAL       CONPER, PHAT, PLOWER, PUPPER
      EXTERNAL   BINES, UMACH
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C
      CALL UMACH (2, NOUT)
      N      = 50
      K      = 3
      CONPER = 95.0
      CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)
      WRITE (NOUT,99999) PHAT, PLOWER, PUPPER
99999 FORMAT (’  Point estimate of the proportion:   ’, F5.3, /,
     &       ’  95% confidence interval:   (’, F5.3, ’,’, F5.3,
     &       ’)’)
      END

Output
Point estimate of the proportion:    .060
95% confidence interval:   ( .013, .165)

POIES/DPOIES (Single/Double precision)
Estimate the parameter of the Poisson distribution.

Usage
CALL POIES (NOBS, IX, CONPER, THAT, TLOWER, TUPPER)

Arguments

NOBS — Number of observations.   (Input)

IX — Vector of length NOBS containing the data.   (Input)
The data are assumed to be a random sample from a Poisson distribution; hence,
all elements of IX must be nonnegative.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
An approximate CONPER percent confidence interval is computed; hence, CONPER

must be between 0.0 and 100.0. CONPER often will be 90.0, 95.0, or 99.0. For a
one sided confidence interval with confidence level ONECL, set CONPER = 100.0 −
2.0 * (100.0 − ONECL).

THAT — Estimate of the parameter, theta (the mean).   (Output)

TLOWER — Lower confidence limit for theta.   (Output)

TUPPER — Upper confidence limit for theta.   (Output)

Comments

1. Informational error
Type Code
   3    1 CONPER is 0.0 or too small for accurate computations.

The confidence limits are both set to THAT.

2. Since the Poisson is a discrete distribution, it is not possible to
construct an exact CONPER% confidence interval for all values of
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CONPER. Let α = 1 − CONPER/100, and let k be a single observation.
Then, the approximate lower and upper confidence limits θ/ and θ8
(TLOWER and TUPPER) are solutions to the equations

exp(− =
=

∞

∑θ θ αL L
x

x k

x) / ! 2

exp(− =
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x) / !
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Algorithm

The routine POIES computes a point estimate and a confidence interval for the
parameter, θ, of a Poisson distribution. It is assumed that the vector IX contains a
random sample of size NOBS from a Poisson distribution with probability function

f x e x xx( ) / !, , , ,= =−θθ  for 0 1 2K

The point estimate for θ corresponds to the sample mean.

By exploiting the relationship between the Poisson distribution and the chi-
squared distribution (see Johnson and Kotz, 1969, Chapter 4), the equations in
Comment 2 can be written as

θ χ αL k= 1
2 2 2

2
, /

θ χ αU k= + −
1
2 2 2 1 2

2
, /

where

χ τv,
2

is the chi-squared τ critical value with degrees ν of freedom (that is, the inverse
chi-squared distribution function evaluated at 1 − τ ). The routine CHIIN
(page 1132) is used to evaluate the critical values.

For more than one observation, the estimates are obtained as above and then
divided by the number of observations, NOBS.

Example

It is assumed that flight arrivals at a major airport during the middle of the day
follow a Poisson distribution. It is desired to estimate the mean number of arrivals
per minute and to obtain an upper one-sided 95% confidence interval for the
mean. During a half-hour period, the number of arrivals each minute was
recorded. These data are stored in IX, and POIES is used to obtain the estimates.

      INTEGER    NOBS
      PARAMETER  (NOBS=30)
C
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      INTEGER    IX(NOBS), NOUT
      REAL       CONPER, THAT, TLOWER, TUPPER
      EXTERNAL   POIES, UMACH
C
      DATA IX/2, 0, 1, 1, 2, 0, 3, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
     &     0, 1, 2, 0, 2, 0, 0, 1, 2, 0, 2/
C
      CALL UMACH (2, NOUT)
C                                 For a 95 percent one-sided C.I.,
C                                 CONPER = 100.0 - 2.0*(100.0-95.0)
      CONPER = 90.0
      CALL POIES (NOBS, IX, CONPER, THAT, TLOWER, TUPPER)
      WRITE (NOUT,99999) THAT, TUPPER
99999 FORMAT (’  Point estimate of the Poisson mean:   ’, F5.3, /,
     &       ’  Upper one-sided 95% confidence limit: ’, F5.3)
      END

Output
Point estimate of the Poisson mean: 0.800
Upper one-sided 95% confidence limit: 1.125

NRCES/DNRCES (Single/Double precision)
Compute maximum likelihood estimates of the mean and variance from grouped
and/or censored normal data.

Usage
CALL NRCES (NOBS, XRT, XLT, ICEN, EPSM, EPSSIG, MAXITS,
            INIT, XMEAN, XSIGMA, VXM, VXS, COVXMS, NUMBER)

Arguments

NOBS — Number of observations.   (Input)

XRT — Vector of length NOBS containing either the exact value of the data or the
right endpoint of the censoring interval for interval-censored or right-censored
data.   (Input)
See the argument ICEN.

XLT — Vector of length NOBS containing the left endpoint of the censoring
interval for interval-censored or left-censored data.   (Input)
See the argument ICEN. XLT is not used if there is no left censoring.

ICEN — Vector of length NOBS containing the censoring codes.   (Input)
The values in ICEN indicate the meaning of the values in XRT and/or XLT.

ICEN(I) Censoring
0 Exact response at XRT(I).
1 Right censored. The response is greater than XRT(I).
2 Left censored. The response is less than or equal to XLT(I).
3 Interval censored. The response is greater than XRT(I), but less than or

equal to XLT(I).
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EPSM — Convergence criterion for the mean estimate.   (Input)
See the argument EPSSIG. If EPSM is not positive, EPSM = 0.00001 is assumed.

EPSSIG — Convergence criterion for the variance estimate.   (Input)
Convergence is assumed when the relative change in the mean estimate is less
than EPSM and the relative change in the variance estimate is less than EPSSIG . If
EPSSIG is not positive, EPSSIG = 0.00001 is assumed.

MAXITS — Maximum number of iterations allowed.   (Input)
A typical value of MAXITS is 25.

INIT — Initialization option.   (Input)

INIT Action
0 On input, XMEAN and XSIGMA contain initial estimates of the parameters.
1 If there are enough exactly specified data, initial estimates are obtained

from it; and, if there are not enough such data, fixed starting values
(XRT(1) for the mean and 1.0 for the variance) are used.

XMEAN — Estimate of the mean.   (Input/Output if INIT = 0; output otherwise)

XSIGMA — Estimate of the standard deviation.   (Input/Output if INIT = 0;
output otherwise)

VXM — Estimate of the variance of the mean estimate.   (Output)

VXS — Estimate of the variance of the variance estimate.   (Output)

COVXMS — Estimate of the covariance of the mean and the variance estimates.
(Output)

NUMBER — Vector of length 4 containing the numbers of observations having
the various censoring properties.   (Output)
NUMBER(1) is the number of exact observations. NUMBER(2) is the number of
observations specified by a lower bound (right censored). NUMBER(3) is the
number of observations specified by a upper bound (left censored). NUMBER(4) is
the number of observations specified by an interval.

Algorithm

The routine NRCES computes maximum likelihood estimates of the mean and
variance of a normal population, using a sample that may be censored. An
observation whose value is known exactly is input in XRT, and the corresponding
element in ICEN is set to 0. If an observation is known only by a lower bound, we
say the observation is right censored; the lower bound is input in XRT, and the
corresponding element in ICEN is set to 1. If an observation is known only by an
upper bound, we say the observation is left censored; the upper bound is input in
XLT, and the corresponding element in ICEN is set to 2. If an observation is
known only by two bounds, we say the observation is interval censored; the lower
bound is input in XRT, the upper bound is input in XLT, and the corresponding
element in ICEN is set to 3.
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Newton-Raphson iterations are used to find a stationary point of the likelihood
function, and the Hessian at that point is used to estimate the variances and
covariance of the estimates of the population mean and variance. If the numerical
derivative of the estimate of the variance increases on nine consecutive iterations,
the process is deemed divergent and a terminal error is issued. The iterations
begin at user-supplied values if INIT is set to 0.

Example

This example uses an artificial data set consisting of 18 observations. The first 12
observations are known exactly; the next three are known only by a lower bound;
the next two, by an upper bound; and the last one, by two bounds.

      INTEGER    NOBS
      PARAMETER  (NOBS=18)
C
      INTEGER    ICEN(NOBS), INIT, MAXITS, NOUT, NUMBER(4)
      REAL       COVXMS, EPSM, EPSSIG, VXM, VXS, XLT(NOBS), XMEAN,
     &           XRT(NOBS), XSIGMA
      EXTERNAL   NRCES, UMACH
C
      DATA XRT/4.5, 5.4, 3.9, 5.1, 4.6, 4.8, 2.9, 6.3, 5.5, 4.6, 4.1,
     &     5.2, 3.2, 4.0, 3.1, 0.0, 0.0, 2.2/
      DATA XLT/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
     &     0.0, 0.0, 0.0, 0.0, 5.1, 3.8, 2.5/
      DATA ICEN/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3/
C
      CALL UMACH (2, NOUT)
      EPSM   = 0.01
      EPSSIG = 0.01
      MAXITS = 25
      INIT   = 1
      CALL NRCES (NOBS, XRT, XLT, ICEN, EPSM, EPSSIG, MAXITS, INIT,
     &            XMEAN, XSIGMA, VXM, VXS, COVXMS, NUMBER)
      WRITE (NOUT,99999) XMEAN, XSIGMA, VXM, VXS, COVXMS, NUMBER
99999 FORMAT (’ Estimate of mean:                           ’, F8.4,
     &       /, ’ Estimate of variance:                       ’, F8.4,
     &       /, ’ Estimate of variance of mean estimate:      ’, F8.4,
     &       /, ’ Estimate of variance of variance estimate:  ’, F8.4,
     &       /, ’ Estimate of covariance of mean and variance:’, F8.4,
     &       /, ’ Number of exact observations:               ’, I4,
     &       /, ’ Number of right-censored observations:      ’, I4,
     &       /, ’ Number of left-censored observations:       ’, I4,
     &       /, ’ Number of interval-censored observations:   ’, I4)
      END

Output
Estimate of mean:                             4.4990
Estimate of standard deviation:               1.2304
Estimate of variance of mean estimate:        0.0819
Estimate of variance of variance estimate:   -0.0494
Estimate of covariance of mean and variance: -0.0019
Number of exact observations:                 12
Number of right-censored observations:         3
Number of left-censored observations:          2
Number of interval-censored observations:      1
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GRPES/DGRPES (Single/Double precision)
Compute basic statistics from grouped data.

Usage
CALL GRPES (NGROUP, TABLE, CLOW, CWIDTH, IPRINT, STAT)

Arguments

NGROUP — Number of groups.   (Input)

TABLE — Vector of length NGROUP containing the frequencies within the
groups.   (Input)
The entries in TABLE are interpreted as counts. They must be nonnegative.

CLOW — The center (class mark) of the lowest class interval.   (Input)

CWIDTH — The class width.   (Input)
CWIDTH must be positive.

IPRINT — Printing option.   (Input)
If IPRINT = 0, no printing is performed; and if IPRINT = 1, the statistics in STAT
are printed.

STAT — Vector of length 13 containing the statistics.    (Output)

I STAT(I)
1 The sum of the frequencies in TABLE.
2 Mean (arithmetic mean, first moment).
3 Sample standard deviation. (Uses STAT(1) − 1 as divisor).
4 Second moment about the mean, uncorrected for grouping. (Uses

STAT(1) as divisor.)
5 Second moment about the mean, adjusted using Sheppard’s correction.
6 Third moment about the mean, uncorrected for grouping.
7 Third moment about the mean, adjusted using Sheppard’s correction.
8 Fourth moment about the mean, uncorrected for grouping.
9 Fourth moment about the mean, adjusted using Sheppard’s correction.
10 Median.
11 Geometric mean; defined only if CLOW − CWIDTH/2 is nonnegative.
12 Harmonic mean; defined only if CLOW − CWIDTH/2 is nonnegative.
13 Mode; defined only if one element of TABLE is strictly greater than all

other elements of TABLE.

Algorithm

The routine GRPES computes various statistics using data from equally spaced
groups. The second, third, and fourth moments are computed both with and
without Sheppard’s corrections. These corrections for grouped data are most
useful for distributions whose densities tail off smoothly (such as the normal
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distribution). Kendall, Stuart, and Ord (1987, Chapters 2 and 3) discuss these
corrections.

The moments are computed using the sum of the frequencies as the divisor. The
standard deviation (STAT(3)), on the other hand, is computed using as the divisor
the sum of the frequencies minus one.

If any of the class marks are negative, the geometric and harmonic means are not
computed, and NaN (not a number) is stored as the value of STAT(11). Likewise,
if the mode does not exist (no group has a frequency greater than that of all other
groups), NaN is stored as the value of STAT(13).

Example 1

This example is taken from Conover and Iman (1983, page 119). The objective is
to compute some basic statistics relating to test scores, using the following data:

Score Frequency

91−100 7

81−90 13

71−80 11

61−70 5

≤ 60 4

      INTEGER    IPRINT, NGROUP
      REAL       CLOW, CWIDTH, STAT(13), TABLE(5)
      EXTERNAL   GRPES
C
      NGROUP   = 5
      CLOW     = 55.5
      CWIDTH   = 10.0
      TABLE(1) = 4.0
      TABLE(2) = 5.0
      TABLE(3) = 11.0
      TABLE(4) = 13.0
      TABLE(5) = 7.0
      IPRINT   = 1
      CALL GRPES (NGROUP, TABLE, CLOW, CWIDTH, IPRINT, STAT)
      END

Output
Statistics from GRPES
Sum freqs.        40.0
Mean              79.0
Std. dev.         12.1
2nd moment       142.8
2nd, adj.        134.4
3rd moment      -741.8
3rd, adj.      -2716.8
4th moment     48242.3
4th, adj.      47929.0
Median            80.5
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Geometric         78.0
Harmonic          77.0
Mode              85.5

Example 2

In this example, there are negative values of some class marks, and there is no
modal class.

Class Marks Frequency

−2.0 2

−1.0 5

0.0 7

1.0 7

2.0 2

      INTEGER    NGROUP, IPRINT
      REAL       TABLE(5), CLOW, CWIDTH, STAT(13)
      EXTERNAL   GRPES
C
      NGROUP = 5
      CLOW = -2.0
      CWIDTH = 1.0
      TABLE(1) = 2.0
      TABLE(2) = 5.0
      TABLE(3) = 7.0
      TABLE(4) = 7.0
      TABLE(5) = 2.0
      IPRINT = 1
      CALL GRPES (NGROUP, TABLE, CLOW, CWIDTH, IPRINT, STAT)
      END

Output
Statistics from GRPES
Sum freqs.     23.0000
Mean            0.0870
Std. dev.       1.1246
2nd moment      1.2098
2nd, adj.       1.1265
3rd moment     -0.2293
3rd, adj.      -0.2510
4th moment      3.3292
4th, adj.       2.7960
Median          0.1429

The mode is not defined, since no class has higher
frequency than all others.
The geometric and harmonic means are not defined, since
the lower bound is negative.
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CSTAT/DCSTAT (Single/Double precision)
Compute cell frequencies, cell means, and cell sums of squares for multivariate
data.

Usage
CALL CSTAT (IDO, NROW, NCOL, X, LDX, NR, IRX, IFRQ, IWT,
            MOPT, KMAX, K, CELIF, LDCELI)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of CSTAT for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to CSTAT will be made.

Initialization and updating for the data in X are performed.
2 This is an intermediate invocation of CSTAT, and updating for the data in

X is performed.

NROW — The absolute value of NROW is the number of rows of data currently
input in X.   (Input)
NROW may be positive or negative. Negative NROW means that the −NROW rows of
data are to be deleted from some aspects of the analysis, and this should be done
only if IDO is 2. When a negative value is input for NROW, it is assumed that each
of the −NROW rows of X has been input (with positive NROW) in previous
invocations of CSTAT.

NCOL — Number of columns in X.   (Input)

X — |NROW| by NCOL matrix containing the data.   (Input)
Each column of X represents either a classification variable, a response variable, a
weight, or a frequency.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NR — Number of response variables.   (Input)
NR = 0 means no response variables are input. Otherwise, cell means and sums of
squares are computed for the response variables.

IRX — Vector of length NR.   (Input if NR is greater than 0.)
The IRX(1), …, IRX(NR) columns of X contain the response variables for which
cell means and sums of squares are computed.

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.
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IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X
contains the weights.

MOPT — Missing value option.   (Input)
If MOPT is zero, the exclusion is listwise. If MOPT is positive, the following occurs:
(1) if a classification variable’s value is missing, the entire case is excluded, (2) if
IFRQ > 0 and the frequency variable’s value is missing, the entire case is
excluded, (3) if IWT > 0 and the weight variable’s value is missing, the case is
classified and the cell frequency updated, but no information with regard to the
response variables is computed, and (4) if only some response variables’ values
are missing, all computations are performed except those pertaining to the
response variables with missing values.

KMAX — Maximum number of cells.   (Input)
This quantity does not have to be exact, but must be at least as large as the actual
number of cells, K.

K — Number of cells or an upper bound for this number.   (Input/Output)
On the first call K must be input K = 0. It should not be changed between calls to
CSTAT. K is incremented by one for each new cell up to KMAX cells. Once KMAX
cells are encountered, K is incremented by one for each observation that does not
fall into one of the KMAX cells. In this case, K is an upper bound on the number of
cells and can be used for KMAX in a subsequent run.

CELIF — Matrix with min(KMAX, K) columns containing cell information.
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)
The number of rows in CELIF depends on the eight cases tabled below.

Case Description                                   Rows in CELIF
1 MOPT ≤ 0, IFRQ = 0 and IWT = 0         NCOL + NR + 1
2 MOPT ≤ 0, IFRQ > 0 and IWT = 0        NCOL + NR
3 MOPT ≤ 0, IFRQ = 0 and IWT > 0        NCOL + NR + 1
4 MOPT ≤ 0, IFRQ > 0 and IWT > 0        NCOL + NR
5 MOPT > 0, IFRQ = 0 and IWT = 0        NCOL + 2 * NR + 1
6 MOPT > 0, IFRQ > 0 and IWT = 0        NCOL + 2 * NR
7 MOPT > 0, IFRQ = 0 and IWT > 0        NCOL + 3 * NR
8 MOPT > 0, IFRQ > 0 and IWT > 0         NCOL + 3 * NR − 1

Each column contains information on each unique combination of values of the
m classification variables that occurs in the data. The first m rows give the
values of the classification variables. Row m + 1 gives the number of
observations that are in this cell. (For cases 2, 4, 6 and 8, this is the sum of the
frequencies.) For case 3 and 4, row m + 2 contains the sum of the weights. For
NR greater than zero, the remaining rows (beginning with row m + 3 in case 3
and 4 and with row m + 2 otherwise) contain information concerning the
response variables. For cases 1, 2, 3 and 4, there are 2 * NR remaining rows with
the cell (weighted) mean and cell (weighted) sum of squares for each of the NR

response variables. For cases 5 and 6, there are 3 * NR remaining rows with the
sample size, the mean and sum of squares for each of the NR response variables.



56 • Chapter 1: Basic Statistics IMSL STAT/LIBRARY

For case 7 and 8, there are 4 * NR remaining rows with the sample size, the sum
of weights, weighted means, and weighted sum of squares for each of the NR
response variables.

LDCELI — Leading dimension of CELIF exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. If no nonmissing observations with positive weights or frequencies exist
in a cell for a particular response variable, the mean and sum of squares
are set to NaN (not a number).

2. In cases 3 and 6, if a zero weight is encountered, there is no contribution
to the means or sums of squares, but the sample sizes are implemented
by one for that observation.

Algorithm

The routine CSTAT computes cell frequencies, cell means, and cell sums of
squares for multivariate data in X. The columns of X can contain data for four
types of variables: classification variables, a frequency variable, a weight
variable, and response variables. The frequency variable, the weight variable, and
the response variables are all designated by indicators in IFRQ, IWT, and IRX. All
other variables are considered to be classification variables; hence, there are m
classification variables, where m = NCOL − NR if there is no weight or frequency
variable, m = NCOL − NR − 1 if there is a weight or frequency variable but not
both, and m = NCOL − NR − 2 if there are weight and frequency variables.

Each combination of values of the classification variables is stored in the first m
rows of CELIF. For each combination of values of the classification variables, the
frequencies are stored in the next row of CELIF. Then, for each combination,
means and sums of squares for each of the response variables are computed and
stored in the remaining rows of CELIF. If a weighting variable is specified, the
sum of the weights for each combination is computed and stored. If missing
values are deleted elementwise (that is, if MOPT is positive), the frequencies and
sums of weights for each of the response variables are stored in the rows of
CELIF .

Example 1

In this example, there are two classification variables, C1 and C2, and two
response variables, R1 and R2. Their values are shown below.
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C1

1 2

R1 R2 R1 R2

C2
1 5.0

7.0
3.4
2.6

3.8
5.2
4.9

2.4
6.3
1.2

R1 R2 R1 R2

2 4.3
3.2
1.7

9.8
7.1
6.3

6.5
3.1

3.4
5.1

      INTEGER    KMAX, LDCELI, LDX, NR, NCOL
      PARAMETER  (KMAX=4, LDCELI=15, LDX=10, NR=2, NCOL=4)
C
      INTEGER    IDO, IFRQ, IRX(NR), IWT, K, MIN0, MOPT, NROW
      REAL       CELIF(LDCELI,KMAX), X(LDX,NCOL)
      CHARACTER  CLABEL(1)*6, FMT*7, RLABEL(7)*6
      INTRINSIC  MIN0
      EXTERNAL   CSTAT, WRRRL
C                                 Get data for example
      DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0,
     &     1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3,
     &     3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 3.1, 3.4, 2.6, 9.8, 7.1, 6.3,
     &     2.4, 6.3, 1.2, 3.4, 5.1/
C                                 All data are input at once
      IDO  = 0
      NROW = 10
      K    = 0
C                                 No unequal frequencies or weights
C                                 are used
      IFRQ = 0
      IWT  = 0
C                                 Response variables are in 3rd and 4th
C                                 columns
      IRX(1) = 3
      IRX(2) = 4
C                                 Delete any row containing a missing
C                                 value
      MOPT = 0
C
      CALL CSTAT (IDO, NROW, NCOL, X, LDX, NR, IRX, IFRQ, IWT, MOPT,
     &            KMAX, K, CELIF, LDCELI)
C                                 Print the results
      CLABEL(1) = ’NONE’
      RLABEL(1) = ’ ’
      RLABEL(2) = ’ ’
      RLABEL(3) = ’Freq.’
      RLABEL(4) = ’Mean 1’
      RLABEL(5) = ’SS 1’
      RLABEL(6) = ’Mean 2’
      RLABEL(7) = ’SS 2’
      FMT       = ’(W10.4)’
      CALL WRRRL (’Statistics for the Cells’, NCOL+NR+1, MIN0(KMAX,K),
     &            CELIF, LDCELI, 0, FMT, RLABEL, CLABEL)
      END
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Output
             Statistics for the Cells
              1.00        1.00        2.00        2.00
              1.00        2.00        1.00        2.00
Freq.         2.00        3.00        3.00        2.00
Mean 1        6.00        3.07        4.63        4.80
SS 1          2.00        3.41        1.09        5.78
Mean 2        3.00        7.73        3.30        4.25
SS 2          0.32        6.73       14.22        1.44

Example 2

This example uses the same data as in the first example, except some of the data
are set to missing values. Also, a frequency variable is used. It is in the fourth
column of X. The frequency variable indicates that the values of the classification
and response variables in the first observation occur 3 times and that all other
frequencies are 1. Since MOPT is greater than zero, statistics on one response
variable are accumulated even if the other response variable has a missing value.
If the frequency variable has a missing value, however, the entire observation is
omitted.

The missing value is NaN (not a number) that can be obtained with the argument
of 6 in the routine AMACH (Reference Material). For this example, we set the first
response variable in the first cell (C1 = 1, C2 = 1) to a missing value; we set the
second response variable in the (2, 1) cell to a missing value; and we set the
frequency variable in the (1, 2) cell to a missing value. The data are now as
shown below, with “NaN” in place of the missing values.

C1

1 2

R1 R2 R1 R2

C2
1 NaN

NaN
NaN
7.0

3.4
3.4
3.4
2.6

3.8
5.2
4.9

NaN
6.3
1.2

R1 R2 R1 R2

2 NaN
3.2
1.7

NaN
7.1
6.3

6.5
3.1

3.4
5.1

The first two rows output in CELIF are the values of the classification variables,
and the third row is the frequencies of the cells, as before. The next three rows
correspond to the first response variable, and the last three rows correspond to the
second response variable. (This is “case 6” above, where the argument CELIF is
described.)

      INTEGER    KMAX, LDCELI, LDX, NR, NCOL
      PARAMETER  (KMAX=4, LDCELI=15, LDX=10, NR=2, NCOL=5)
C
      INTEGER    IDO, IFRQ, IRX(NR), IWT, K, MIN0, MOPT, NR
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      REAL       AMACH, CELIF(LDCELI,KMAX), X(LDX,NCOL)
      INTRINSIC  MIN0
      EXTERNAL   AMACH, CSTAT, WRRRN
C                                 Get data for example.
      DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0,
     &     1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3,
     &     3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 3.1, 3.4, 2.6, 9.8, 7.1, 6.3,
     &     2.4, 6.3, 1.2, 3.4, 5.1, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     &     1.0, 1.0, 1.0/
C                                 All data are input at once.
      IDO  = 0
      NROW = 10
      K    = 0
C                                 Frequencies are in the 5th column.
C                                 All weights are equal
      IFRQ = 5
      IWT  = 0
C                                 Response variables are in 3rd and 4th
C                                 columns.
      IRX(1) = 3
      IRX(2) = 4
C                                 Set some values to “missing” for
C                                 this example.  Specify elementwise
C                                 deletion of missing values of the
C                                 response variables.
      MOPT   = 1
      X(1,3) = AMACH(6)
      X(6,4) = AMACH(6)
      X(3,5) = AMACH(6)
C
      CALL CSTAT (IDO, NROW, NCOL, X, LDX, NR, IRX, IFRQ, IWT, MOPT,
     &            KMAX, K, CELIF, LDCELI)
C                                 Print the results.
      CALL WRRRN (’Statistics for the Cells’, NCOL+2*NR, MIN0(KMAX,K),
     &            CELIF, LDCELI, 0)
      END

Output
     Statistics for the Cells
        1       2       3       4
1    1.00    1.00    2.00    2.00
2    1.00    2.00    1.00    2.00
3    4.00    2.00    3.00    2.00
4    1.00    2.00    3.00    2.00
5    7.00    2.45    4.63    4.80
6    0.00    1.12    1.09    5.78
7    4.00    2.00    2.00    2.00
8    3.20    6.70    3.75    4.25
9    0.48    0.32   13.01    1.44

MEDPL/DMEDPL (Single/Double precision)
Compute a median polish of a two-way table.
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Usage
CALL MEDPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE,
            LDPTAB, ITER)

Arguments

NROW — Number of rows in the table.   (Input)

NCOL — Number of columns in the table.   (Input)

TABLE — NROW by NCOL matrix containing the table.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

MAXIT — Maximum number of polishing iterations to be performed.   (Input)
An iteration is counted each time the rows or the columns are polished. The
iterations begin by polishing the rows.

PTABLE — (NROW + 1) by (NCOL + 1) matrix containing the cell residuals from
the fitted table and, in the last row and column, the marginal residuals.   (Output)

LDPTAB — Leading dimension of PTABLE exactly as specified in the dimension
statement in the calling program.   (Input)

ITER — Number of iterations actually performed.   (Output)

Comments

Automatic workspace usage is

MEDPL max(NROW, NCOL) units, or
DMEDPL 2 * max(NROW, NCOL) units

Workspace may be explicitly provided, if desired, by use of M2DPL/DM2DPL. The
reference is
CALL M2DPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE,
            LDPTAB, ITER, WK)

The additional argument is

WK — Work vector of length max(NROW, NCOL).

Algorithm

The routine MEDPL performs a median polish on a two-way table. It first copies
TABLE into PTABLE and fills the last row and last column of PTABLE with zeroes.
It then computes the row-wise medians, adds these to the values in the last
column and corresponding row, and subtracts them from the other entries in the
corresponding row. Similar computations are then performed for all NCOL + 1
columns. The whole procedure is then repeated (using NROW + 1 rows) until
convergence is achieved (until no changes occur), or until MAXIT iterations
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are performed. Convergence is known to have occurred if ITER is less than
MAXIT.

As Emerson and Hoaglin (1983) discuss, it is not necessarily desirable to
continue until convergence. If MAXIT is set to twice the maximum of the number
of rows and columns plus five, it is likely that convergence will occur.

As Emerson and Hoaglin point out, median polish starting with rows can lead to a
different fit from that obtained by starting with columns. Although MEDPL does
not make provision for choosing which dimension to start with, TABLE can be
transposed by use of routine TRNRR (IMSL MATH/LIBRARY). Use of the
transposed table in MEDPL would result in the iterations beginning with the
columns of the original table. Further descriptions of median polish, which was
first proposed by John Tukey, and examples of its use can be found in Tukey
(1977, Chapter 11) and in Velleman and Hoaglin (1981, Chapter 8).

Example

This example is taken from Emerson and Hoaglin (1983, page 168). It involves
data on infant mortality in the United States, classified by father’s education and
by region of the country. In order to show the difference between making only
one polishing pass over the rows and polishing until convergence, on the first
invocation MAXIT is set to one. On a second call, it is set large enough to have
reasonable assurance of execution until convergence. In the first case, the last row
and column of PTABLE are printed. The values in these are the medians before
any polishing. These values approach zero as the polishing continues.

      INTEGER    NCOL, NROW
      PARAMETER  (NCOL=5, NROW=4)
C
      INTEGER    ITER, LDPTAB, LDTABL, MAXIT, NOUT
      REAL       PTABLE(NROW+1,NCOL+1), TABLE(NROW,NCOL)
      EXTERNAL   MEDPL, UMACH, WRRRL
C
      DATA TABLE/25.3, 32.1, 38.8, 25.4, 25.3, 29.0, 31.0, 21.1, 18.2,
     &     18.8, 19.3, 20.3, 18.3, 24.3, 15.7, 24.0, 16.3, 19.0, 16.8,
     &     17.5/
C
      CALL UMACH (2, NOUT)
      MAXIT  = 1
      LDTABL = 4
      LDPTAB = 5
      CALL MEDPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB,
     &            ITER)
      CALL WRRRL (’Fitted table after one iteration over the rows’,
     &            NROW+1, NCOL+1, PTABLE, LDPTAB, 0, ’(W10.4)’,
     &            ’NONE’, ’NONE’)
      MAXIT = 15
      CALL MEDPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB,
     &            ITER)
      CALL WRRRL (’%/Fitted table and marginal residuals’, NROW+1,
     &            NCOL+1, PTABLE, LDPTAB, 0, ’(W10.4)’, ’NONE’,
     &            ’NONE’)
      WRITE (NOUT,99999) ITER
99999 FORMAT (/, ’ Iterations taken: ’, I2)



62 • Chapter 1: Basic Statistics IMSL STAT/LIBRARY

      END

Output
      Fitted table after one iteration over the rows
 7.0         7.0        -0.1         0.0        -2.0        18.3
 7.8         4.7        -5.5         0.0        -5.3        24.3
19.5        11.7         0.0        -3.6        -2.5        19.3
 4.3         0.0        -0.8         2.9        -3.6        21.1
 0.0         0.0         0.0         0.0         0.0         0.0

                   Fitted table and marginal residuals
-1.55        0.00        0.00       -1.15        0.60       -1.45
 1.55        0.00       -3.10        1.15       -0.40        2.25
10.85        4.60        0.00       -4.85        0.00       -0.35
-3.25       -6.00        0.30        2.75        0.00        0.35
 8.10        6.55       -0.55        0.70       -3.05       20.20

Iterations taken: 15
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Chapter 2: Regression

Routine
2.1. Simple Linear Regression

Straight line fit ....................................................................... RLINE 79
Simple linear regression analysis.......................................... RONE 82
Response control by a fitted line...........................................RINCF 90
Inverse prediction by a fitted line........................................... RINPF 94

2.2. Multivariate General Linear Model Analysis

2.2.1 Model Fitting
From raw data for a single dependent variable.......................RLSE 98
From covariances ................................................................. RCOV 104
From raw data without classification variables..................... RGIVN 107
From raw data with classification variables........................... RGLM 117
With linear equality restrictions ........................................... RLEQU 131

2.2.2 Statistical Inference and Diagnostics
Summary statistics for a fitted regression ............................RSTAT 141
Variance-covariance
matrix of the estimated coefficients .................................... RCOVB 152
Construction of a completely testable hypothesis................. CESTI 157
Sums of crossproducts for a multivariate hypothesis ..........RHPSS 163
Tests for the multivariate linear hypothesis..........................RHPTE 170
Test for lack of fit based on exact replicates........................RLOFE 176
Test for lack of fit based on near replicates .........................RLOFN 182
Intervals and diagnostics for individual cases......................RCASE 191
Diagnostics for outliers and influential cases ........................ROTIN 201

2.2.3 Utilities for Classification Variables
Getting unique values of classification variables .................GCLAS 207
Generation of regressors for a general linear model ..........GRGLM 210

2.3. Variable Selection
All best regressions via leaps-and-bounds algorithm ..........RBEST 214
Stepwise regression.............................................................RSTEP 221
Generalized sweep of a nonnegative definite matrix ......... GSWEP 230
Retrieval of a symmetric submatrix
from a symmetric matrix .....................................................RSUBM 233
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2.4. Polynomial Regression and Second-Order Models

2.4.1 Polynomial Regression Analysis
Polynomial fit of known degree............................................RCURV 237
Polynomial regression analysis ........................................... RPOLY 241

2.4.2 Second-Order Model Design
Generation of an orthogonal central composite design......RCOMP 248

2.4.3 Utility Routines for Polynomial Models and Second-Order Models
Polynomial regression fit .....................................................RFORP 252
Summary statistics for a fitted polynomial model ................ RSTAP 258
Case statistics for a fitted polynomial model .......................RCASP 263
Generation of orthogonal polynomials.................................OPOLY 269
Centering of variables and generation of crossproducts .....GCSCP 272
Transforming coefficients for a second order model ........... TCSCP 277

2.5. Nonlinear Regression Analysis
Nonlinear regression fit..........................................................RNLIN 280

2.6. Fitting Linear Models Based on Criteria Other Than Least Squares
Least absolute value regression.............................................RLAV 293
Least LS norm regression ....................................................... RLLP 297
Least maximum value regression.......................................... RLMV 308

Usage Notes

Simple Linear Regression

The simple linear regression model is

y x i ni i i= + +  =β β εο 1 1 2     , , ,K

where the observed values of the yL’s constitute the responses or values of the
dependent variable, the xL’s are the settings of the independent (explanatory)

variable, β0 and β1 are the intercept and slope parameters, respectively, and the
εL’s are independently distributed normal errors each with mean zero and variance 

σ2.

Routine RLINE (page 79) fits a straight line and computes summary statistics for
the simple linear regression model. There are no options with this routine.

Routine RONE (page 82) analyzes a simple linear regression model. Routine RONE
requires a data matrix as input. There is an option for excluding the intercept β0
from the model. The variables x, y, weights (optional), and frequencies (optional)
must correspond to columns in this matrix. The simple linear regression model is
fit, summary statistics are computed (including a test for lack of fit), and
confidence intervals and diagnostics for individual cases are computed. There are
options for printing and plotting the results.
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Routines RINCF (page 90) and RINPF (page 94) solve the inverse regression
(calibration) problem using a fitted simple linear regression. Routines RLINE
(page 79) or RONE can be used to compute the fit. Routine RINCF estimates
settings of the independent variable that restrict, at a specified confidence
percentage, y to a given specified range. Routine RINPF computes a confidence
interval on the setting of the independent variable for a given response y0.

Multiple Linear Regression

The multiple linear regression model is

y x x x i ni i i k ik i= + + + + + =β β β β εο 1 1 2 2 1 2... , ,...,    

where the observed values of the yL’s constitute the responses or values of the

dependent variable, the xL�’s, xL�’s, …, xLN’s are the settings of the k independent

(explanatory) variables, β0, β1, …, βN are the regression coefficients, and the εL’s
are independently distributed normal errors each with mean zero and variance

σ2.

Routine RLSE (page 98) fits the multiple linear regression model. There is an
option for excluding the intercept β0. There are no other options. The responses
are input in a one-dimensional array Y, and the independent variables are input in
a two-dimensional array X that contains the individual cases as the rows and the
variables as the columns.

By specifying a single dependent variable, either RGIVN (page 107) or RCOV
(page 104) can also be used to fit the multiple linear regression. (These routines
are designed to fit any number of dependent variables simultaneously. See the
section “Multivariate General Linear Model” on page 67.)

Routine RGIVN fits the model using fast Givens transformations. For large data
sets that cannot be stored in a single array, RGIVN is designed to allow multiple
invocations. In this case, only some of the rows from the entire data set are input
at any one time. Alternatively, the data set can be input in a single array.

Routine RCOV fits the multiple linear regression model from the sum of squares
and crossproducts matrix for the data (x1, x2, …, xN, y). Routine CORVC (page 314)
can compute the required sums of squares and crossproducts matrix for input into
RCOV. Routine RORDM (page 1268) can reorder this matrix, if required.

Three routines in the IMSL MATH/LIBRARY can be used for fitting the
multiple linear regression model. Routine LSQRR (IMSL MATH/LIBRARY)
computes the fit via the Householder QR decomposition. Routine LSBRR

(IMSL MATH/LIBRARY) computes the fit via iterative refinement. Routine
LSVRR (IMSL MATH/LIBRARY) computes the singular value decomposition of
a matrix. Routines LSQRR and LSBRR use the regressors and dependent variable
as two input arrays. Routine LSVRR computes the singular value decomposition
of the matrix of regressors, from which the regression coefficients can be
obtained. Kennedy and Gentle (1980, section 8.1) discuss some of the
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 computational advantages and disadvantages of the various methods for least-
squares computations.

No Intercept Model

Several routines provide the option for excluding the intercept from a model. In
most practical applications, the intercept should be included in the model. For
routines that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts
matrix as input in place of the corrected sums of squares and crossproducts. The
raw sum of squares and crossproducts matrix can be computed as (x1, x2, …, xN,

y)7(x1, x2, …, xN, y) using the matrix multiplication routine MXTXF
(IMSL MATH/LIBRARY).

Variable Selection

Variable selection can be performed by RBEST (page 214), which does all best
subset regressions, or by RSTEP (page 221), which does stepwise regression. In
either case, the sum of squares and crossproducts matrix must first be formed.
The method used by RBEST is generally preferred over that used by RSTEP
because RBEST implicitly examines all possible models in the search for a model
that optimizes some criterion while stepwise does not examine all possible
models. However, the computer time and memory requirements for RBEST can be
much greater than that for RSTEP when the number of candidate variables is
large.

Two utility routines GSWEP (page 230) and RSUBM (page 233) are provided also
for variable selection. Routine GSWEP performs a generalized sweep of a
nonnegative define matrix. Routine RSUBM can be invoked after either GSWEP or
RSTEP in order to extract the symmetric submatrix whose rows and columns have
been swept, i.e., whose rows and columns have entered the stepwise model.
Routines GSWEP and RSUBM can be invoked prior to RBEST in order to force
certain variables into all the models considered by RBEST.

Polynomial Model

The polynomial model is

y x x x i ni i i k i
k

i= + + + + + =β β β β εο 1 2
2 1 2.... , , ,     K

where the observed values of the yL’s constitute the responses or values of the
dependent variable, the xL’s are the settings of the independent (explanatory)

variables, β�, β1, …, βN are the regression coefficients, and the εL’s are

independently distributed normal errors each with mean zero and variance σ2.

Routine RCURV (page 237) fits a specified degree polynomial. Routine RPOLY

(page 241) determines the degree polynomial to fit and analyzes this model. If
only a decomposition of sum of squares for first, second, …, k-th degree effects
in a polynomial model is required, either RCURV or the service routine RFORP
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(page 252) can be used to compute this decomposition. The other service routines
(RSTAP, page 258, RCASP, page 263, OPOLY, page 269) can be used to perform
other parts of the full analysis.

Multivariate General Linear Model

Routines for the multivariate general linear model use the model

Y = XB + ε

where Y is the n × q matrix of responses, X is the n × p matrix of regressors, B is
the p × q matrix of regression coefficients, and ε is the n × q matrix of errors
whose q-dimensional rows are identically and independently distributed
multivariate normal with mean vector 0 and variance-covariance matrix Σ.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression
models may look quite different, the models are essentially the same. The term
general linear model emphasizes that a common notational scheme is used for
specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). We refer
to an effect as a single variable or a product of variables. (The term effect is often
used in a narrower sense, referring only to a single regression coefficient.) In
particular, an effect is composed of one of the following:

1. a single continuous variable

2. a single classification variable

3. several different classification variables

4. several continuous variables, some of which may be the same

5. continuous variables, some of which may be the same, and classification
variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the
third type appear as interactions in analysis of variance models. Effects of the
fourth type appear in polynomial models and response surface models as powers
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of
parallelism of a regression function across the groups.

The specification of a general linear model is through arguments INTCEP,
NCLVAR, INDCL, NEF, NVEF, and INDEF, whose meanings are as follows:
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INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

NCLVAR — Number of classification variables.   (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are the classification variables.   (Input)

NEF — Number of effects (sources of variation) in the model excluding error.
(Input)

NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF).
(Input)
The first NVEF(1) elements give the column numbers of X for each variable in the
first effect. The next NVEF(2) elements give the column numbers for each variable
in the second effect. … The last NVEF(NEF) elements give the column numbers
for each variable in the last effect.

Suppose the data matrix has as its first 4 columns two continuous variables in
columns 1 and 2 and two classification variables in columns 3 and 4. The data
might appear as follows:

Column 1 Column 2 Column 3 Column 4
11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The
classification variable in column 3 has two levels. The classification variable in
column 4 has three levels. (Integer values are recommended, but not required, for
values of the classification variables. If real numbers are used, the values of the
classification variables corresponding to the same level must be identical.) Some
examples of regression functions and their specifications are as follows:
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INTCEP NCLVAR INDCL NEF NVEF INDEF

β0 + β1x1 1 0 1 1 1

β0 + β1x1 + β2x12 1 0 2 1,2 1,1,1

µ + αL 1 1 3 1 1 3

µ + αL + βM + γLM 1 2 3,4 3 1,1,2 3,4,3,4

µLM 0 2 3,4 1 2 3,4

β0 + β1x1 + β2x2 + β
3x1x2

1 0 3 1,1,2 1,2,1,2

µ + αL + βx1L + βLx1L 1 1 3 3 1,1,2 3,1,1,3

Routines for Fitting the Model

Routine RGLM (page 117) fits a multivariate general linear model. If the data set is
too large to be stored in a single array, RGLM is designed so that multiple
invocations can be made. In this case, one or more rows of the entire data set can
be input at each invocation. Alternatively, the data set can be input all at once in a
single array. Index vectors are used to specify the column numbers of the data
matrix used as classification variables, effects, and dependent variables. This is
useful if several models with different effects need to be fit from the same data
matrix.

Routine RLEQU (page 131) can be called after RGIVN (page 107) or RGLM to
impose linear equality restrictions AB = Z on the regression parameters. RLEQU
checks consistency of the restrictions. Routine RLEQU is useful for fitting spline
functions where restrictions on the regression parameters arise from continuity
and differentiability conditions on the regression function.

Routine RLEQU can be used to test the multivariate general linear hypothesis
AB = Z by fitting the restricted model after the full model is fit. The additional
degrees of freedom for error (and the additional sum of squares and crossproducts
for error) gained in the restricted model can be used for computing a test statistic.
However, a more efficient approach for computing the sum of squares and
crossproducts for a multivariate general linear hypothesis is provided by RHPSS
(page 163). See the next section entitled “Multivariate General Linear
Hypothesis” for a brief description of the problem and related routines.

Two utility routines GCLAS (page 207) and GRGLM (page 210) are provided to
determine the values of the classification variables and then to use those values
and the specified general linear model to generate the regressors in the model.
These routines would not be required if you use RGLM to fit the model since RGLM
does this automatically. However, if other routines in this chapter are used that
require the actual regressors and not the classification variables, then these
routines could be used.
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Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The routines in this chapter are
designed to handle linear dependence of the regressors, i.e., the n × p matrix X
(the matrix of regressors) in the general linear model can have rank less than p.
Often, the models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5) some care must be taken to use correctly
the results of the fitted nonfull rank regression model for estimation and
hypothesis testing. In the nonfull rank case, not all linear combinations of the
regression coefficients can be estimated. Those linear combinations that can be
estimated are called “estimable functions.” If routines in this chapter are used to
attempt to estimate linear combinations that cannot be estimated, error messages
are issued. A good general discussion of estimable functions is given by Searle
(1971, pages 180−188).

The check used by routines in this chapter for linear dependence is sequential.
The j-th regressor is declared linearly dependent on the preceding regressors
 j − 1 regressors if

1 1 2 1
2− ⋅ −Rj j, ,...,

is less than or equal to TOL. Here, RM¿1,2,¤,M-1 is the multiple correlation coefficient

of the j-th regressor with the first j − 1 regressors. Also, TOL is a tolerance that
must be input by the user. When a routine declares the j-th regressor to be linearly
dependent on the first j − 1 regressors, the j-th regression coefficient is set to zero.
Essentially, this removes the j-th regressor from the model.

The reason a sequential check is used is that frequently practitioners include the
variables that they prefer to remain in the model first. Also, the sequential check
is based on many of the computations already performed as this does not degrade
the overall efficiency of the routines. There is no perfect test for linear
dependence when finite precision arithmetic is used. The input of the tolerance
TOL allows the user some control over the check for linear dependence. If you
know your model is full rank, you can input TOL = 0.0. However, generally TOL
should be input as approximately 100 times the machine epsilon. The machine
epsilon is AMACH(4) in single precision and DMACH(4) in double precision. (See
routines AMACH and DMACH (Reference Material))

Routines in this chapter performing least squares are based on QR

decomposition of X or on a Cholesky factorization R7R of X7X. Maindonald
(1984, chapters 1−5) discusses these methods extensively. The R matrix used by
the regression routines is taken to be a p × p upper triangular matrix, i.e., all
elements below the diagonal are zero. The signs of the diagonal elements of R
are used as indicators of linearly dependent regressors and as indicators of
parameter restrictions imposed by fitting a restricted model. The rows of R can
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be partitioned into three classes by the sign of the corresponding diagonal
element:

1. A positive diagonal element means the row corresponds to data.

2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by AB = Z
in a restricted model.

3. A zero diagonal element means a linear dependence of the regressors

was declared. The regression coefficients in the corresponding row of $B
are set to zero. This represents an arbitrary restriction which is imposed
to obtain a solution for the regression coefficients. The elements of the
corresponding row of R are also set to zero.

Multivariate General Linear Hypothesis

Routine RHPSS (page 163) computes the matrix of sums of squares and
crossproducts for the general linear hypothesis H B U = G for the multivariate
general linear model Y = XB + ε with possible linear equality restrictions AB = Z.

The R matrix and $B  from the routines that fit the model are required for input to
RHPSS.

The rows of H must be linear combinations of the rows of R, i.e., H B = G must
be completely testable. If the hypothesis is not completely testable, routine CESTI
(page 157) can be used to construct an equivalent completely testable hypothesis.

Routine RHPTE (page 170) computes several test statistics and approximate p-
values for the multivariate general linear hypothesis. The test statistics computed
included are Wilks’ lambda, Roy’s maximum root, Hotelling’s trace, and Pillai’s
trace. Seber (1984, pages 409−416) and Morrison (1976, pages 222−224) discuss
the procedures and compare the test statistics. The error sum of squares and
crossproducts matrix (SCPE) output from the fit of the model is required for input
to RHPTE. In addition, the hypothesis sum of squares and crossproducts matrix
(SCPH), which can be computed using RHPSS, is required for input to RHPTE.

Nonlinear Regression Model

The nonlinear regression model is

y f x i ni i i= + =( ; ) , , ,θ ε      1 2 K

where the observed values of the yL’s constitute the responses or values of the
dependent variable, the xL’s are the known vectors of values of the independent
(explanatory) variables, f is a known function of an unknown regression
parameter vector θ, and the εL’s are independently distributed normal errors each

with mean zero and variance σ2.
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Routine RNLIN (page 280) performs the least-squares fit to the data for this
model. The routine RCOVB (page 152) can be used to compute the large sample
variance-covariance matrix of the estimated nonlinear regression parameters from
the output of RNLIN.

Weighted Least Squares

Routines throughout the chapter generally allow weights to be assigned to the
observations. The argument IWT is used throughout to specify the weighting
option. (IWT = 0 means ordinary least squares; a positive IWT means weighted
least squares with weights in column IWT of the data set.) All of the weights must
be nonnegative. For routines requiring a sum of squares and crossproducts matrix
for input, a weighted analysis can be performed by using as input a weighted sum
of squares and crossproducts matrix. Routine CORVC (page 314) in Chapter 3,
“Correlation,” can compute the required weighted sum of squares and
crossproducts matrix.

Computations that relate to statistical inference, e.g., t tests, F tests, and
confidence intervals, are based on the multiple regression model except that the

variance of εL is assumed to equal σ2 (or Σ in the multivariate case) times the
reciprocal of the corresponding weight.

If a single row of the data matrix corresponds to nL observations, the argument
IFRQ can be used to specify the frequency option. IFRQ = 0 means that for all
rows, nL = 1; a positive IFRQ means the frequencies are entered into column IFRQ

of the data matrix. Degrees of freedom for error are affected by frequencies, but
are unaffected by weights.

Summary Statistics

Summary statistics for a single dependent variable are computed by several
routines in the regression chapter. The routines RONE (page 82), RLSE (page 98),
RSTEP (page 221), and RPOLY (page 241) output some summary statistics with
the fit of the the model. For additional summary statistics, the routines RSTAT

(page 141) and RSTAP (page 258) can be used.

Routine RSTAT can be used to compute and print statistics related to a regression
for each of the q dependent variables fitted by RGIVN (page 107), RGLM (page
117), RLEQU (page 131), or RCOV (page 104). Routine RSTAT computes summary
statistics that include the model analysis of variance table, sequential sums of
squares and F-statistics, coefficient estimates, estimated standard errors, t-
statistics, variance inflation factors, and estimated variance-covariance matrix of
the estimated regression coefficients. If only the variance-covariance matrix of
the estimated regression coefficients in needed, routine RCOVB (page 152) can be
used.

The summary statistics are computed under the model y = Xβ + ε, where y is the n
× 1 vector of responses, X is the n × p matrix of regressors with rank(X) = r, β is
the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors
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whose elements are independently normally distributed with mean 0 and variance 

σ2/wL.

Given the results of a weighted least-squares fit of this model (with the wL’s as the
weights), most of the computed summary statistics are output in the following
variables:

AOV  — a one-dimensional array usually of length 15. In RSTEP, AOV is of length
13 because the last last two elements of the array cannot be computed from the
input. The array contains statistics related to the analysis of variance. The sources
of variation examined are the regression, error, and total. The first 10 elements of
AOV and the notation frequently used for these is described in the following table:

Model Analysis of Variance Table

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean Square F p-value

Regression DFR=AOV(1) SSR=AOV(4) MSR=AOV(7) AOV(9) AOV(10)

Error DFE=AOV(2) SSE=AOV(5) s2 = AOV(8)

Total DFT=AOV(3) SST=AOV(6)

In the case an intercept is indicated (INTCEP = 1), the total sum of squares is the
sum of squares of the deviations of yL from its (weighted) mean

y

—the so-called corrected total sum of squares, it is denoted by

SST = −
=
∑w y yi i
i

n

( )2

1

In the case an intercept is not indicated (INTCEP=0), the total sum of squares is
the sum of squares of yL—the so-called corrected total sum of squares, it is
denoted by

SST =
=
∑w yi i
i

n
2

1

The error sum of squares is given by

SSE = −
=
∑w y yi i
i

n

i( $ )
1

2

The error degrees of freedom is defined by

DFE = n − r

The estimate of σ2 is given by

s2 = SSE/DFE
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which is the error mean square.

The computed F statistic for the null hypothesis H0 : β1 = β2 = … = βN = 0 versus
the alternative that at least one coefficient is nonzero is given by

F = MSR/s2

The p-value associated with the test is the probability of an F larger than that
computed under the assumption of the model and the null hypothesis. A small p-
value (less that 0.05) is customarily used to indicate that there is sufficient
evidence from the data to reject the null hypothesis.

The remaining 5 elements in AOV frequently are displayed together with the actual

analysis of variance table. The quantities R-squared (R2 = AOV(11)) and adjusted
R-squared

Ra
2 12= AOV0 5

are expressed as a percentage and are defined by

R2 = 100(SSR/SST) = 100(1 − SSE/SST)

R
s

a
2

2

100 0 1= −
%&'

()*
max ,

SST / DFT

The square root of s2(s = AOV(13)) is frequently referred to as the estimated
standard deviation of the model error.

The overall mean of the responses

y

is output in (AOV(14)).

The coefficient of variation (CV = AOV(15)) is expressed as a percentage and is
defined by

CV = 100s y/

COEF  — a two dimensional array containing the regression coefficient vector

$β
as one column and associated statistics (including the estimated standard error, t
statistic and p-value) in the remaining columns.

SQSS  — a two dimensional array containing sequential sums of squares as one
column and associated statistics (including degrees of freedom, F statistic, and p-
value) in the remaining columns.

COVB  — the estimated variance-covariance matrix of the estimated regression
coefficients.
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Tests for Lack of Fit

Tests for lack of fit are computed for simple linear regression by RONE (page 82),
for the polynomial regression by routines RPOLY (page 241) and RSTAP (page
258) and for multiple regression by routines RLOFE (page 176) and RLOFN (page
182).

In the case of polynomial regression, the two-dimensional output array TLOF
contains the lack of fit F tests for each degree polynomial 1, 2, …, k, that is fit to
the data. These tests are useful for indicating the degree of the polynomial
required to fit the data well.

In the case of simple and multiple regression, the one-dimensional output array
TESTLF of length 10 contains the analysis of variance table for the test of lack of
fit. Two routines RLOFE and RLOFN can be used to compute a test for lack of fit.
Routine RLOFE requires exact replicates of the independent variables, i.e., there
must be at least two cases in the data set that have the same settings of all the
independent variables, while RLOFN does not require exact replicates.
Customarily, one would require there to be several sets of duplicate settings of the
independent variables in order to use RLOFE.

For RLOFE, the 10 elements of TESTLF and the notation frequently used for these
is described in the following table:

Lack of Fit Analysis of Variance Table

Source of
Variation

Degrees of
Freedom

Sum of Squares Mean
Square

F p-value

Lack of Fit TESTLF(1) TESTLF(4) TESTLF(7) TESTLF(9) TESTLF(10)

Error DFPE =
TESTLF(2)

SSPE = TESTLF(5) TESTLF(8)

Pure Error DFE =
TESTLF(3)

SSE = TESTLF(6)

For RLOFN, the 10 elements of TESTLF are similar to those in the previous table.
However, since there may not be exact replicates in the data, the data are grouped
into sets of near replicates. Then, instead of computing a pure error (or within)
sum of squares using a one-way analysis of variance model, an expanded one-way
analysis of covariance model using the clusters of near replicates as the groups is
computed. The error from this expanded model replaces the pure error in the
preceding table in order to compute an exact F test for lack of fit conditional on
the selected clusters.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by several routines
in the regression chapter. Routines RONE (page 82), and RPOLY (page 241) output
diagnostics for individual cases with the fit. If the fit of the model is done



76 • Chapter 2: Regression IMSL STAT/LIBRARY

by other routines, RCASE (page 191) and RCASP (page 263) can be used to
compute the diagostics.

Routine RCASE computes confidence intervals and diagnostics for individual
cases in the data matrix. The cases can be stored in a single data matrix or
multiple invocations can be made in which one or more rows of the entire data set
are input at any one time. Statistics computed by RCASE include predicted values,
confidence intervals, and diagnostics for detecting outliers and cases that greatly
influence the fitted regression.

If not all of the statistics computed by RCASE are needed, ROTIN (page 201) can
be used to obtain some of the statistics.

The diagnostics are computed under the model y = Xβ + ε, where y is the n × 1
vector of responses, X is the n × p matrix of regressors with rank(X) = r, β is the p
× 1 vector of regression coefficients, and ε is the n × 1 vector of errors whose
elements are independently normally distributed with mean 0 and variance

σ2/wL.

Given the results of a weighted least-squares fit of this model (with the wL’s as the
weights), the following five diagnostics are computed: (1) leverage, (2)
standardized residual, (3) jackknife residual, (4) Cook’s distance, and (5)
DFFITS. These diagnostics are stored in the FORTRAN matrix CASE. The
definition of these terms is given in the discussion that follows:

Let xL be a column vector containing the elements of the i-th row of X. A case
could be unusual either because of xL�or because of the response yL. The leverage
hL�is a measure of unusualness of the xL. The leverage is defined by

h x X W X x wi i
T T

i i= �
! 

"
$#

−3 8
where W = diag(w1, w2, …, wQ) and (X7W X)- denotes a generalized inverse of

X7WX. The average value of the hL’s is r/n. Regression routines declare xLunusual
if hL > 2r/n. A row label X is printed beside a case that is unusual because of of xL�
Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage
point) when this occurs.

Let eL denote the residual

y yi i− $

for the i-th case. The estimated variance of eL is (1 − hL)s2/wL where s2 is the
residual mean square from the fitted regression. The i-th standardized residual
(also called the internally studentized residual) is by definition
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and rL follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yL
and its predicted value based on the data set in which the i-th case is deleted. This
difference equals eL/(1 − hL). The jackknife residual is obtained by standardizing
this difference. The residual mean square for the regression in which the i-th case
is deleted is

s
n r s w e h

n ri
i i i2

2 2 1

1
=

− − −
− −

( ) / ( )

The jackknife residual is defined to be

t e
w

s h
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−2 1( )

and tL follows a t distribution with n − r − 1 degrees of freedom. The regression
routines declare yL unusual (an outlier) if a jackknife residual greater than 2.0 in
absolute value is computed. A row label Y is printed beside a case that is unusual
because of yL.

Cook’s distance for the i-th case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as
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Weisberg (1985) states that if DL exceeds the 50-th percentile of the F(r, n − r)
distribution, it should be considered large. (This value is about 1. This statistic
does not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the formula

DFFITSi i
i i

i i

e
w h
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Hoaglin and Welsch (1978) suggest that DFFITSL is greater than

2 r n/

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables

( , , , , )x x x x x x1 2 1
2

2
2

1 2
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is often needed. Logarithms of the independent variables are also often used. (See
Draper and Smith, 1981, pages 218−222, Box and Tidwell, 1962, Atkinson, 1985,
pages 177−180, Cook and Weisberg, 1982, pages 78−86.)

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation can often be selected so that the
transformed model is linear in the regression parameters. For example, the
exponential model

y e x= +β β ε0 1 1

by taking natural logarithms on both sides of the equation, can be transformed to
a model that satisfies the linear regression model provided the εL’s have a log
normal distribution (Draper and Smith, pages 222−225).

When the responses are nonnormal and their distribution is known, a
transformation of the responses can often be selected so that the transformed
responses closely satisfy the regression model assumptions. The square root
transformation for counts with a Poisson distribution and the arc-sine
transformation for binomial proportions are common examples (Snedecor and
Cochran, 1967, pages 325−330, Draper and Smith, pages 237−239).

If the distribution of the responses is not known, the data can be used to select a
transformation so that the transformed responses may more closely obey the
regression model. For a positive response variable y > 0, the family of power
transformations indexed by λ

y
y
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λ λ
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if 

and generalizations of this family are useful. Routine BCTR (page 629) (See
Chapter 8, “Time Series Analysis and Forecasting”) can be used to perform the
transformation. A method to estimate and to compute an approximate test for
λ = 1 is given by Atkinson (1973). Also, Atkinson (1986) discusses
transformation deletion statistics for computing the estimate and test leaving out a
single observation since the evidence for a transformation of the response may
sometimes depend crucially on one or a few observations.

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. The least absolute value
(LAV, L1) criterion yields the maximum likelihood estimate when the errors
follow a Laplace distribution. Routine RLAV (page 293) is often used when the
errors have a heavy tailed distribution or when a fit is needed that is resistant to
outliers.
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A more general approach, minimizing the LS norm (p ≥ 1), is given by routine
RLLP (page 297). Although the routine requires about 30 times the CPU time for
the case p = 1 than would the use of RLAV, the generality of RLLP allows the user
to try several choices for p ≥ 1 by simply changing the input value of p in the
calling program. The CPU time decreases as p gets larger. Generally, choices of p
between 1 and 2 are of interest. However, the LS norm solution for values of p
larger than 2 can also be computed.

The minimax (LMV, L�, Chebyshev) criterion is used by RLMV (page 308). Its
estimates are very sensitive to outliers, however, the minimax estimators are quite
efficient if the errors are uniformly distributed.

Missing Values

NaN (not a number) is the missing value code used by the regression routines.
Use function AMACH(6) (or function DMACH(6) with double precision regression
routines) to retrieve NaN. (See the section “Machine-Dependent Constants” in
Reference Material.) Any element of the data matrix that is missing must be set to
AMACH(6) (or DMACH(6) for double precision). In fitting regression models, any
row of the data matrix containing NaN for the independent, dependent, weight, or
frequency variables is omitted from the computation of the regression parameters.

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by including additional rows in the data matrix. These
additional rows should contain the desired settings of the independent variables
along with the responses set equal to NaN. The cases with NaN will not be used
in determining the estimates of the regression parameters, and a predicted value
and confidence interval will be computed from the given settings of the
independent variables.

RLINE/DRLINE (Single/Double precision)
Fit a line to a set of data points using least squares.

Usage
CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)

Arguments

NOBS — Number of observations.   (Input)

XDATA — Vector of length NOBS containing the x-values.   (Input)

YDATA — Vector of length NOBS containing the y-values.   (Input)

B0 — Estimated intercept of the fitted line.   (Output)
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B1 — Estimated slope of the fitted line.   (Output)

STAT — Vector of length 12 containing the statistics described below.   (Output)

I STAT(I)
1 Mean of XDATA
2 Mean of YDATA
3 Sample variance of XDATA
4 Sample variance of YDATA
5 Correlation
6 Estimated standard error of B0

7 Estimated standard error of B1

8 Degrees of freedom for regression
9 Sum of squares for regression
10 Degrees of freedom for error
11 Sum of squares for error
12 Number of (x, y) points containing NaN (not a number) as either the x or

y value

Comments

Informational error
Type Code
   4    1 Each (x, y) point contains NaN (not a number). There are no

valid data.

Algorithm

Routine RLINE fits a line to a set of (x, y) data points using the method of least
squares. Draper and Smith (1981, pages 1−69) discuss the method. The fitted
model is

$ $ $y x= +β β0 1

where $β0  (stored in B0) is the estimated intercept and $β1 (stored in B1) is the

estimated slope. In addition to the fit, RLINE produces some summary statistics,
including the means, sample variances, correlation, and the error (residual) sum

of squares. The estimated standard errors of $ $β β0 1 and  are computed under the

simple linear regression model. The errors in the model are assumed to be
uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In this case, RLINE sets $β1

to zero and $β0  to the mean of the y values.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981,
Table 1.1, pages 9−33). The response y is the amount of steam used per month
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(in pounds), and the independent variable x is the average atmospheric
temperature (in degrees Fahrenheit).

      INTEGER    NOBS
      PARAMETER  (NOBS=25)
C
      INTEGER    NOUT
      REAL       B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS)
      CHARACTER  CLABEL(13)*15, RLABEL(1)*4
      EXTERNAL   RLINE, UMACH, WRRRL
C
      DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,
     &     57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,
     &     74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
      DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,
     &     7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,
     &     8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,
     &     ’Variance X’, ’Variance Y’, ’Corr.’, ’Std. Err. B0’,
     &     ’Std. Err. B1’, ’DF Reg.’, ’SS Reg.’, ’DF Error’,
     &     ’SS Error’, ’Pts. with NaN’/
C
      CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) B0, B1
99999 FORMAT (’ B0 = ’, F7.2, ’  B1 = ’, F9.5)
      CALL WRRRL (’%/STAT’, 1, 12, STAT, 1, 0, ’(12W10.4)’, RLABEL,
     &            CLABEL)
C
      END

Output
B0 =   13.62  B1 =  -0.07983

                                      STAT
Mean of X   Mean of Y  Variance X  Variance Y       Corr.  Std. Err. B0
     52.6       9.424       298.1       2.659     -0.8452        0.5815

Std. Err. B1     DF Reg.     SS Reg.    DF Error    SS Error  Pts. with NaN
     0.01052           1       45.59          23       18.22              0
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Figure 2-1   Plot of the Data and the Least Squares Line

RONE/DRONE (Single/Double precision)
Analyze a simple linear regression model.

Usage
CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ,
           IWT,IPRED, CONPCM, CONPCP, IPRINT, AOV, COEF,
           LDCOEF, COVB, LDCOVB, TESTLF, CASE, LDCASE,
           NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.



IMSL STAT/LIBRARY Chapter 2: Regression • 83

1 An intercept is in the model.

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

IND — Column number IND of X contains the data for the independent
(explanatory) variable.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies. If X(I, IFRQ) = 0.0, none of the remaining
elements of row I of X are referenced, and updating of statistics is skipped for
row I.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

IPRED — Prediction interval option.   (Input)
IPRED = 0 means that prediction intervals are computed for a single future
response. For positive IPRED, a prediction interval is computed on the average of
future responses, and column number IPRED of X contains the number of future
responses in each average.

CONPCM — Confidence level for two-sided interval estimates on the mean, in
percent.   (Input)
CONPCM percent confidence intervals are computed, hence, CONPCM must be
greater than or equal to 0.0 and less than 100.0. CONPCM often will be 90.0, 95.0,
or 99.0. For one-sided intervals with confidence level ONECL, where ONECL is
greater than or equal to 50.0 and less than 100.0, set CONPCM = 100.0 − 2.0 *
(100.0 − ONECL).

CONPCP — Confidence level for two-sided prediction intervals, in percent.
(Input)
CONPCP percent prediction intervals are computed, hence, CONPCP must be
greater than or equal to 0.0 and less than 100.0. CONPCP often will be 90.0, 95.0,
or 99.0. For one-sided intervals with confidence level ONECL, where ONECL is
greater than or equal to 50.0 and less than 100.0, set CONPCP = 100.0 − 2.0 *
(100.0 − ONECL).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 AOV, COEF, TESTLF, and unusual rows of CASE are printed.
2 AOV, COEF, TESTLF, and unusual rows of CASE are printed. A plot of the

data with the regression line is printed.
3 All printing is performed. A plot of the data with the regression line, a

plot of the standardized residuals versus the independent variable, and a
half-normal probability plot of the standardized residuals are printed.



84 • Chapter 2: Regression IMSL STAT/LIBRARY

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)

1 Degrees of freedom for regression
2 Degrees of freedom for error
3 Total degrees of freedom
4 Sum of squares for regression
5 Sum of squares for error
6 Total sum of squares
7 Regression mean square
8 Error mean square
9 F-statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error
14 Mean of the response (dependent) variable
15 Coefficient of variation (in percent)

If INTCEP = 1, the regression and total are corrected for the mean. If INTCEP = 0,
the regression and total are not corrected for the mean, and AOV(14) and AOV(15)
are set to NaN (not a number).

COEF — INTCEP + 1 by 5 matrix containing statistics relating the regression
coefficients.   (Output)
If INTCEP = 1, the first row corresponds to the intercept. Row INTCEP + 1
corresponds to the coefficient for the slope. The statistics in the columns are

Col. Description
1 Coefficient estimate
2 Estimated standard error of the coefficient estimate
3 t-statistic for the test that the coefficient is zero
4 p-value for the two-sided t test
5 Variance inflation factor

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COVB — INTCEP + 1 by INTCEP + 1 matrix that is the estimated variance-
covariance matrix of the estimated regression coefficients.   (Output)

LDCOVB — Leading dimension of COVB exactly as specified in the dimension
statement in the calling program.   (Input)

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model.   (Output)

Elem. Description
1 Degrees of freedom for lack of fit
2 Degrees of freedom for pure error
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3 Degrees of freedom for error (TESTLF(1) + TESTLF(2))
4 Sum of squares for lack of fit
5 Sum of squares for pure error
6 Sum of squares for error
7 Mean square for lack of fit
8 Mean square for pure error
9 F statistic
10 p-value

If there are no replicates in the data set, a test for lack of fit cannot be performed.
In this case, elements 7, 8, 9, and 10 of TESTLF are set to NaN (not a number).

CASE — NOBS by 12 matrix containing case statistics.   (Output)
Columns 1 through 12 contain the following:

Col. Description
1 Observed response
2 Predicted response
3 Residual
4 Leverage
5 Standardized residual
6 Jackknife residual
7 Cook’s distance
8 DFFITS
9, 10 Confidence interval on the mean
11, 12 Prediction interval

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of data encountered containing missing values for
the independent, dependent, weight, or frequency variables.   (Output)
NaN (not a number) is used as the missing value code. Any row of X containing
NaN as a value of the independent, dependent, weight, or frequency variables is
omitted from the computations for fitting the model.

Comments

1. Automatic workspace usage is

RONE 4 * NOBS units, or
DRONE 7 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
R2NE/DR2NE. The reference is
CALL R2NE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND,
           IFRQ, IWT, IPRED, CONPCM, CONPCP, IPRINT,
           AOV, COEF, LDCOEF, COVB, LDCOVB, TESTLF,
           CASE, LDCASE, NRMISS, IWK, WK)

The additional arguments are as follows:
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IWK — Work vector of length NOBS.

WK — Work vector of length 3 * NOBS.

2. Informational errors
Type Code
   3    5 CONPCM is less than 50.0. Confidence percentages

commonly used are 90.0, 95.0, and 99.0.
   3    6 CONPCP is less than 50.0. Confidence percentages

commonly used are 90.0, 95.0, and 99.0.
   4    1 Negative weight encountered.
   4    2 Negative frequency encountered.
   4    7 Each row of X contains NaN.

Algorithm

Routine RONE performs an analysis for the simple linear regression model. In
addition to the fit, summary statistics (analysis of variance, t tests, lack-of-fit test),
and confidence intervals and diagnostics for individual cases are computed. With
the printing option, diagnostic plots can also be produced. Draper and Smith
(1981, chapter 1) give formulas for many of the statistics computed by RONE. For
definitions of the case diagnostics (stored in CASE), see the introduction to
Chapter 2 (page 75).

Example 1

This example fits a line to a set of data discussed by Draper and Smith (1981,
pages 9−33). The response y is the amount of steam used per month (in pounds),
and the independent variable x is the average atmospheric temperature (in degrees
Fahrenheit). The IPRINT = 1 option is selected. Hence, plots are not produced
and only unusual cases are printed. Note in the case analysis, with the default
page width, the observation number and the associated 12 statistics require two
lines of output. (Routine PGOPT, page 1263, can be invoked to increase the page
width to put all 12 statistics on the same line.) Also note that observation 11 is
labeled with a “Y” to indicate an unusual y (response). The residual for this case is
about 2 standard deviations from zero.

      INTEGER    INTCEP, LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS
      PARAMETER  (NOBS=25, LDX=25, LDCASE=25, INTCEP=1, NCOEF=INTCEP+1,
     &           LDCOEF=NCOEF, LDCOVB=NCOEF, NCOL=2)
C
      INTEGER    IFRQ, IND, IPRED, IPRINT, IRSP, IWT, NRMISS
      REAL       AOV(15), CASE(LDCASE,12), COEF(LDCOEF,5), CONPCM,
     &           CONPCP, COVB(LDCOVB,NCOEF), TESTLF(10), X(LDX,NCOL)
      EXTERNAL   RONE
C
      DATA (X(1,J),J=1,2)  /35.3, 10.98/
      DATA (X(2,J),J=1,2)  /29.7, 11.13/
      DATA (X(3,J),J=1,2)  /30.8, 12.51/
      DATA (X(4,J),J=1,2)  /58.8,  8.40/
      DATA (X(5,J),J=1,2)  /61.4,  9.27/
      DATA (X(6,J),J=1,2)  /71.3,  8.73/
      DATA (X(7,J),J=1,2)  /74.4,  6.36/
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DATA (X(8,J),J=1,2)  /76.7,  8.50/
      DATA (X(9,J),J=1,2)  /70.7,  7.82/
      DATA (X(10,J),J=1,2) /57.5,  9.14/
      DATA (X(11,J),J=1,2) /46.4,  8.24/
      DATA (X(12,J),J=1,2) /28.9, 12.19/
      DATA (X(13,J),J=1,2) /28.1, 11.88/
      DATA (X(14,J),J=1,2) /39.1,  9.57/
      DATA (X(15,J),J=1,2) /46.8, 10.94/
      DATA (X(16,J),J=1,2) /48.5,  9.58/
      DATA (X(17,J),J=1,2) /59.3, 10.09/
      DATA (X(18,J),J=1,2) /70.0,  8.11/
      DATA (X(19,J),J=1,2) /70.0,  6.83/
      DATA (X(20,J),J=1,2) /74.5,  8.88/
      DATA (X(21,J),J=1,2) /72.1,  7.68/
      DATA (X(22,J),J=1,2) /58.1,  8.47/
      DATA (X(23,J),J=1,2) /44.6,  8.86/
      DATA (X(24,J),J=1,2) /33.4, 10.36/
      DATA (X(25,J),J=1,2) /28.6, 11.08/
C
      IRSP   = 2
      IND    = 1
      IFRQ   = 0
      IWT    = 0
      IPRED  = 0
      CONPCM = 95.0
      CONPCP = 99.0
      IPRINT = 1
      CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ, IWT,
     &           IPRED, CONPCM, CONPCP, IPRINT, AOV, COEF, LDCOEF,
     &           COVB, LDCOVB, TESTLF, CASE, LDCASE, NRMISS)
C
      END

Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   71.444     70.202          0.8901       9.424           9.445

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             1       45.59       45.59     57.543    0.0000
Residual              23       18.22        0.79
Corrected Total       24       63.82

                * * * Inference on Coefficients * * *
                     Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       13.62      0.5815        23.43      0.0000       10.67
    2       -0.08      0.0105        -7.59      0.0000        1.00

                 * * * Test for Lack of Fit * * *
                          Sum of        Mean             Prob. of
Source            DF     Squares      Square  Overall F  Larger F
Lack of fit       22       17.40      0.7911      0.966    0.6801
Pure error         1        0.82      0.8192
Residual          23       18.22
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                         * * * Case Analysis * * *
     Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
            Cook’s D     DFFITS   95.0% CI   95.0% CI   99.0% PI   99.0% PI
Y      11     8.2400     9.9189    -1.6789     0.0454    -1.9305    -2.0625
              0.0886    -0.4497     9.5267    10.3112     7.3640    12.4739

Figure 2-2   Plot of Line and 99% One-at-a-Time Prediction Intervals

Example 2

This example fits a line to a data set discussed by Draper and Smith (1981, pages
38−40). The data set contains several repeated x values in order to assess lack of
fit of the straight line. The IPRINT  = 1 option is selected. Hence, plots are not
produced and only unusual cases are printed. Note in the case analysis that
observations 1 and 2 are labeled with an “X” to indicate an unusual x value. Each
have leverage 0.1944 that exceeds the average leverage of p/n = 2/24 by a factor
of 2.

      INTEGER    INTCEP, LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS
      PARAMETER  (INTCEP=1, NCOL=2, NOBS=24, LDCASE=NOBS, LDX=NOBS,
     &           NCOEF=INTCEP+1, LDCOEF=NCOEF, LDCOVB=NCOEF)
C
      INTEGER    IFRQ, IND, IPRED, IPRINT, IRSP, IWT, NRMISS
      REAL       AOV(15), CASE(LDCASE,12), COEF(LDCOEF,5), CONPCM,
     &           CONPCP, COVB(LDCOVB,NCOEF), TESTLF(10), X(LDX,NCOL)
      EXTERNAL   RONE
C
      DATA (X(1,J),J=1,2)  /2.3, 1.3/
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      DATA (X(2,J),J=1,2)  /1.8, 1.3/
      DATA (X(3,J),J=1,2)  /2.8, 2.0/
      DATA (X(4,J),J=1,2)  /1.5, 2.0/
      DATA (X(5,J),J=1,2)  /2.2, 2.7/
      DATA (X(6,J),J=1,2)  /3.8, 3.3/
      DATA (X(7,J),J=1,2)  /1.8, 3.3/
      DATA (X(8,J),J=1,2)  /3.7, 3.7/
      DATA (X(9,J),J=1,2)  /1.7, 3.7/
      DATA (X(10,J),J=1,2) /2.8, 4.0/
      DATA (X(11,J),J=1,2) /2.8, 4.0/
      DATA (X(12,J),J=1,2) /2.2, 4.0/
      DATA (X(13,J),J=1,2) /5.4, 4.7/
      DATA (X(14,J),J=1,2) /3.2, 4.7/
      DATA (X(15,J),J=1,2) /1.9, 4.7/
      DATA (X(16,J),J=1,2) /1.8, 5.0/
      DATA (X(17,J),J=1,2) /3.5, 5.3/
      DATA (X(18,J),J=1,2) /2.8, 5.3/
      DATA (X(19,J),J=1,2) /2.1, 5.3/
      DATA (X(20,J),J=1,2) /3.4, 5.7/
      DATA (X(21,J),J=1,2) /3.2, 6.0/
      DATA (X(22,J),J=1,2) /3.0, 6.0/
      DATA (X(23,J),J=1,2) /3.0, 6.3/
      DATA (X(24,J),J=1,2) /5.9, 6.7/
C
      IRSP   = 1
      IND    = 2
      IFRQ   = 0
      IWT    = 0
      IPRED  = 0
      CONPCM = 95.0
      CONPCP = 95.0
      IPRINT = 1
      CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ, IWT,
     &           IPRED, CONPCM, CONPCP, IPRINT, AOV, COEF, LDCOEF,
     &           COVB, LDCOVB, TESTLF, CASE, LDCASE, NRMISS)
      END

Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   22.983     19.483          0.9815       2.858          34.34

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             1        6.32       6.325      6.565    0.0178
Residual              22       21.19       0.963
Corrected Total       23       27.52

                * * * Inference on Coefficients * * *
                     Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       1.436      0.5900        2.435      0.0235       8.672
    2       0.338      0.1319        2.562      0.0178       1.000

                 * * * Test for Lack of Fit * * *
                          Sum of        Mean             Prob. of
Source            DF     Squares      Square  Overall F  Larger F
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Lack of fit       11        8.72       0.793      0.700    0.7183
Pure error        11       12.47       1.134
Residual          22       21.19

                       * * * Case Analysis * * *
      Obs.  Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
            Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
X       1     2.3000     1.8756     0.4244     0.1944     0.4817     0.4731
              0.0280     0.2324     0.9783     2.7730    -0.3489     4.1002
X       2     1.8000     1.8756    -0.0756     0.1944    -0.0859    -0.0839
              0.0009    -0.0412     0.9783     2.7730    -0.3489     4.1002
Y      13     5.4000     3.0245     2.3755     0.0460     2.4780     2.8515
              0.1481     0.6264     2.5877     3.4612     0.9426     5.1063
Y      24     5.9000     3.7002     2.1998     0.1537     2.4363     2.7855
              0.5391     1.1873     2.9021     4.4983     1.5138     5.8866

Figure 2-3   Plot of Leverages hi and the Average (p/n = 2/24)

RINCF/DRINCF (Single/Double precision)
Perform response control given a fitted simple linear regression model.

Usage
CALL RINCF (SUMWTF, DFE, INTCEP, B, XYMEAN, SSX, S2,
            SWTFY0, CONPER, YLOWER, YUPPER, XLOWER,
            XUPPER)
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Arguments

SUMWTF — Sum of products of weights with frequencies from the fitted
regression.   (Input, if INTCEP = 1)
In the ordinary case when weights and frequencies are all one, SUMWTF equals the
number of observations.

DFE — Degrees of freedom for error from the fitted regression.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

B — Vector of length INTCEP + 1 containing a least-squares solution for the
intercept and slope.   (Input)

INTCEP Intercept Slope

0 B(1)

1 B(1) B(2)

XYMEAN — Vector of length 2 containing the variable means.   (Input)
XYMEAN(1) is the independent variable mean. XYMEAN(2) is the dependent
variable mean. If INTCEP = 0, XYMEAN is not referenced and can be a vector of
length one.

SSX — Sum of squares for the independent variable.   (Input)
If INTCEP = 1, SSX is the sums of squares of deviations of the independent
variable from its mean. Otherwise, SSX is not corrected for the mean.

S2 — s2, the estimate of σ2 from the fitted regression.   (Input)

SWTFY0 — S2/SWTFY0 is the estimated variance of the future response (or
future response mean) that is to be controlled.   (Input)
In the ordinary case, when weights and frequencies are all one, SWTFY0 is the
number of observations in the response mean that is to be controlled.
SWTFY0 = 0.0 means the true response mean is to be controlled.

CONPER — Confidence level for a two-sided response control, in percent.
(Input)
CONPER percent limits are computed; hence, CONPER must be greater than or
equal to 0.0 and less than 100.0. CONPER often will be 90.0, 95.0, or 99.0. For
one-sided control with confidence level ONECL, where ONECL is greater than or
equal to 50.0 and less than 100.0, set CONPCM = 100.0 − 2.0 * (100.0 − ONECL).

YLOWER — Lower limit for the response.   (Input)

YUPPER — Upper limit for the response.   (Input)

XLOWER — Lower limit on the independent variable for controlling the
response.   (Output)
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XUPPER — Upper limit on the independent variable for controlling the
response.   (Output)

Comments

Informational errors
Type Code
   4    1 The slope is not significant at the (100 − CONPER) percent

level. Control limits cannot be obtained.
   4    2 The computed lower limit, XLOWER, exceeds the computed

upper limit, XUPPER. No satisfactory settings of the
independent variable exist to control the response as specified.

Algorithm

Routine RINCF estimates settings of the independent variable that restrict, at a
specified confidence percentage, the average of k randomly drawn responses to a
given acceptable range (or the true mean response to a given acceptable range),
using a fitted simple linear regression model. The results of routine RLINE (page
79) or RONE (page 82) can be used for input into RINCF. The simple linear
regression model is assumed:

yL= β0 + β1xL+ εL     i = 1, 2, …, n + k

where the εL’s are independently distributed normal errors with mean zero and

variance σ2/wL. Here, n is the total number of observations used in the fit of the
line, i.e., n = DFE + INTCEP + 1. Also, k is the number of additional responses
whose average is to be restricted to the specified range. The wL’s are the weights.

The methodology is based on Graybill (1976, pages 280−283). The estimate of

σ2, s2 (stored in S2), is the usual estimate of σ2 from the fitted regression based
on the first n observations. First, a test of the hypothesis H0 : β1 = 0 vs.
HD: β1 ≠ 0 at level α = 1 − CONPER/100 is performed. If H0 is accepted, the model

becomes yL = β0 + εL, and limits for x to control the response are meaningless
since x is no longer in the model. In this case, a type 4 fatal error is issued. If H0

is rejected and $β1 is positive, a lower limit (upper limit) for x stored in
XLOWER(XUPPER) is computed for the case where SWTFY0 is positive by
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and t is the 50 + CONPER/2 percentile of the t distribution with DFE degrees of
freedom. In the formula, the symbol ± is used to indicate that + is used to
compute XLOWER with y0 = YLOWER, and − is used to compute XUPPER with

y0 = YUPPER. If H0 is rejected and $β1 is negative, a lower limit (upper limit) for x
stored in XLOWER(XUPPER) is computed for the case where SWTFY0 is positive by
a small modification. In particular, the symbol ± is then taken so that + is used to
compute XLOWER with y0 = YUPPER, and − is used to compute XUPPER with y0 =
YLOWER. These limits actually have a confidence coefficient less than that
specified by CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN)
and the sum of squares for x (stored in SSX) are all weighted. When the variances
of the εL’s are all equal, ordinary least squares must be used, this corresponds to
all wL = 1.

The previous discussion can be generalized to the case where an intercept is not

in the model. The necessary modifications are to let β β0 00 0= =, $  and to

replace the first term under the square root symbol by zero, x  by zero, and y  by
zero.

In order to restrict the true mean response to a specified range, i.e, when SWTFY0

is zero, the formulas are modified by replacing the second term under the square
root symbol with zero.

Example

This example estimates the settings of the independent variable that restrict, at
97.5% confidence, the true mean response to a upper bound of -4.623, using a
fitted simple linear regression model. The fitted model excludes the intercept
term. To accomplish one-sided control, CONPER is set to 100 − 2(100 − 97.5)
= 95, and YLOWER is set to an arbitrary value less than YUPPER. The output for
XLOWER furnishes the lower bound for x necessary to control y.

      INTEGER    INTCEP
      PARAMETER  (INTCEP=0)
C
      INTEGER    NOUT
      REAL       B(INTCEP+1), CONPER, DFE, ONECL, S2, SSX, SUMWTF,
     &           SWTFY0, XLOWER, XUPPER, XYMEAN(1), YLOWER, YUPPER
      EXTERNAL   RINCF, UMACH
C
      DATA B/-.079829/
C
      SUMWTF = 25.0
      DFE    = 24.0
      SSX    = 76323.0
      S2     = 0.7926
      SWTFY0 = 0.0
      ONECL  = 97.5
      CONPER = 100.0 - 2*(100.0-ONECL)
      YUPPER = -4.623
      YLOWER = -9.0
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      CALL RINCF (SUMWTF, DFE, INTCEP, B, XYMEAN, SSX, S2, SWTFY0,
     &            CONPER, YLOWER, YUPPER, XLOWER, XUPPER)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’XLOWER = ’, XLOWER, ’  XUPPER = ’, XUPPER
      END

Output
XLOWER = 63.1747   XUPPER = 104.07

RINPF/DRINPF (Single/Double precision)
Perform inverse prediction given a fitted simple linear regression model.

Usage
CALL RINPF (SUMWTF, DFS2, INTCEP, B, XYMEAN, SSX, S2,
            CONPER, IY0, SWTFY0, Y0, X0HAT, XLOWER,
            XUPPER)

Arguments

SUMWTF — Sum of products of weights with frequencies from the fitted
regression.   (Input, if INTCEP = 1)
In the ordinary case when weights and frequencies are all one, SUMWTF equals the
number of observations used in the fit of the model.

DFS2 — Degrees of freedom for estimate of σ2.   (Input)
If IY0 = 1, DFS2 is the degrees of freedom for error from the fitted regression. If
IY0 = 0, DFS2 is the pooled degrees of freedom from the estimate of sigma-
squared based on the fitted regression and the additional responses used to
compute the mean Y0.

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

B — Vector of length INTCEP + 1 containing a least-squares solution for the
intercept and slope.   (Input)

INTCEP Intercept Slope

0 B(1)

1 B(1) B(2)

XYMEAN — Vector of length 2 with the mean of the independent and dependent
variables, respectively.   (Input, if INTCEP = 1)
If INTCEP = 0, XYMEAN is not referenced and can be a vector of length 1.
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SSX — Sum of squares for x.   (Input)
If INTCEP = 1, SSX is the sum of squares of deviations of x from its mean. If
INTCEP = 0, SSX must not be corrected for the mean.

S2 — s2, the estimate of the variance of the error in the model.   (Input)

If IY0= 1, S2 is the estimate of σ2 from the fitted regression. If IY0= 0, S2 is the

pooled estimate of σ2 based on the fitted regression, and the additional responses
used to compute the mean Y0.

CONPER — Confidence level for the interval estimation.   (Input)
CONPER must be expressed as a percentage between 0.0 and 100.0. CONPER often
will be 90.0, 95.0, 99.0. For one-sided confidence intervals with confidence level
ONECL, set CONPER = 100.0 − 2.0 * (100.0 − ONECL).

IY0 — Option for Y0.   (Input)

IY0 Meaning
0 Y0 is a sample mean of one or more responses.
1 Y0 is the true mean response.

SWTFY0 — Sum of products of weights with frequencies for Y0.   (Input, if
IY0 = 0)
In the ordinary case, when weights and frequencies are all one, SWTFY0 is the
number of observations used to obtain the mean Y0. If IY0 = 1, SWTFY0 is not
referenced.

Y0 — Value of the response variable for which an interval estimate of the
corresponding independent variable value is desired.   (Input)

X0HAT — Point estimate of the independent variable.   (Output)

XLOWER — Lower limit of the interval estimate for the independent variable.
(Output)

XUPPER — Upper limit of the interval estimate for the independent variable.
(Output)

Comments

Informational errors
Type Code
   3    2 The slope is not significant at the (100 − CONPER)% level.

Confidence limits XLOWER and XUPPER cannot be obtained.

Algorithm

Routine RINPF computes a confidence interval on the independent variable
setting x0 for a given response y0 from the results of a straight line fit. Here, y0
may represent the mean of k responses or the true mean response. The results of
routine RLINE (page 79) or RONE (page 82) can be used for input into RINPF.
The simple linear regression model is assumed,
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y x i n ki i= + + = +β β ε0 1 1 2     , ,...,

where the εL’s are independently distributed normal errors with mean zero and

variance σ2/wL. Here, n is the total number of observations used in the fit of the
line, i.e., n = DFE + INTCEP + 1 where DFE is the degrees of freedom from the
fitted regression. Also, k is the number of additional responses used to determine
y0. The wL’s are the weights that must be used in the fit of the model. The

methodology is discussed by Graybill (1976, pages 280−283). For the case when

IY0 = 1, the estimate of σ2, s2 (stored in S2), is the usual estimate of σ2 from the

fitted regression based on the first n observations. If IY0 = 0, the estimate of σ2 is
a pooled estimator based on the fitted regression and the k responses that produce
y0 .

This pooled estimator (stored in S2) is given by
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where (n − 2) + (k − 1) (stored in DFS2) is the pooled degrees of freedom for s2.

First, a point estimate $x0  (stored in X0HAT) is computed by
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Then, a test of the hypothesis H0 : β1 = 0 vs. HD : β1 ≠ 0 is performed. If H0 is
accepted, the model becomes yL = β0 + εL, and therefore no confidence interval
exists for x0 because it is no longer in the model. In this case, a type 3 warning
error is issued. If H0 is rejected, a confidence interval exists and is computed for
the case IY0 = 1 by
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and t is the 50 + CONPER/2 percentile of the t distribution with DFS2 degrees of
freedom. The interval actually has a confidence coefficient less than that specified
by CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN)
and the sum of squares for x (stored in SSX) are all weighted. When the
variances of the εL’s are all equal, ordinary least squares must be used, this
corresponds to all wL= 1.
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Modifications are necessary to the preceding discussion for other cases. For the

case when an intercept is not in the model, let β β0 00 0= =, $  the pooled

degrees of freedom of s2 equal to (n − 1) + (k − 1), and replace the first term
under the square root symbol with zero, x  with zero, and y  with zero.

For the case of the true response mean, i.e, when IY0 = 1, replace the second
term under the square root symbol by zero.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981,
Table 1.1, page 9). The response y is the amount of steam used per month (in
pounds), and the independent variable x is the average atmospheric temperature
(in degrees Fahrenheit). A 95% confidence interval for the temperature x0 is
computed given a single response of y0 = 10.

      INTEGER    NOBS
      PARAMETER  (NOBS=25)
C
      INTEGER    INTCEP, IY0, NOUT
      REAL       B(2), B0, B1, CONPER, DFS2, S2, SSX, STAT(12),
     &           SUMWTF, SWTFY0, X0HAT, XDATA(NOBS), XLOWER, XUPPER,
     &           XYMEAN(2), Y0, YDATA(NOBS)
      EXTERNAL   RINPF, RLINE, UMACH
C
      DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,
     &     57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,
     &     74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
      DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,
     &     7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,
     &     8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
C
      CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)
      SUMWTF    = NOBS
      DFS2      = STAT(10)
      INTCEP    = 1
      B(1)      = B0
      B(2)      = B1
      XYMEAN(1) = STAT(1)
      XYMEAN(2) = STAT(2)
      SSX       = STAT(3)*(NOBS-1)
      S2        = STAT(11)/STAT(10)
      CONPER    = 95.0
      IY0       = 0
      SWTFY0    = 1.0
      Y0        = 10.0
      CALL RINPF (SUMWTF, DFS2, INTCEP, B, XYMEAN, SSX, S2, CONPER,
     &            IY0, SWTFY0, Y0, X0HAT, XLOWER, XUPPER)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’X0HAT = ’, X0HAT
      WRITE (NOUT,*) ’(XLOWER,XUPPER) = (’, XLOWER, ’,’, XUPPER, ’)’
      END
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Output
X0HAT = 45.3846
(XLOWER,XUPPER) = (20.2627,69.347)

RLSE/DRLSE (Single/Double precision)
Fit a multiple linear regression model using least squares.

Usage
CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)

Arguments

NOBS — Number of observations.   (Input)

Y — Vector of length NOBS containing the dependent (response) variable.
(Input)

NIND — Number of independent (explanatory) variables.   (Input)

X — NOBS by NIND matrix containing the independent (explanatory) variables.
(Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

B — Vector of length INTCEP + NIND containing a least-squares solution $β  for
the regression coefficients.   (Output)

For INTCEP = 0, the fitted value for observation I is B(1) * X(I, 1) + B(2) *
X(I, 2) + … + B(NIND) * X(I, NIND).

For INTCEP = 1, the fitted value for observation I is B(1) + B(2) * X(I, 1) + … +
B(NIND + 1) * X(I, NIND).

SST — Total sum of squares.   (Output)
If INTCEP = 1, the total sum of squares is corrected for the mean.

SSE — Sum of squares for error.   (Output)

Comments

1. Automatic workspace usage is

RLSE (INTCEP + NIND)2 + 5 * NIND+ 4 * INTCEP + 2 units, or

DRLSE 2 * (INTCEP + NIND)2 + 10 * NIND+ 8 * INTCEP + 4 units.
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Workspace may be explicitly provided, if desired, by use of
R2SE/DR2SE. The reference is
CALL R2SE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST,
           SSE, R, LDR, DFE, NRMISS, WK)

The additional arguments are as follows:

R — INTCEP + NIND by INTCEP + NIND upper triangular matrix
containing the R matrix from a QR decomposition of the matrix of
regressors.   (Output)
All of the diagonal element of R are taken to be nonnegative. The rank
of the matrix of regressors is the number of positive diagonal elements,
which equals NOBS − NRMISS − DFE.

LDR — Leading dimension of R exactly as specified in the dimension
statement in the calling program.   (Input)

DFE — Degrees of freedom for error.   (Output)

NRMISS — Number of rows in the augmented matrix (X, Y) containing
NaN (not a number).   (Output)
If a row contains NaN, that row is excluded from all other computations.

WK — Work vector of length 5 * NIND + 4 * INTCEP + 2.

2. Informational error
Type Code
   3    1 The model is not full rank. There is not a unique least-

squares solution. If the I-th diagonal element of R is
zero, B(I) is set to zero in order to compute a solution.

Algorithm

Routine RLSE fits a multiple linear regression model with or without an intercept.
If INTCEP = 1, the multiple linear regression model is

y x x x i ni i i k ik i= + + + + + =β β β β ε0 1 1 2 2 1 2... , , ,     K

where the observed values of the yL’s (input in Y) constitute the responses or

values of the dependent variable, the xL1’s, xL2’s, …, xLN’s (input in X) are the

settings of the k (input in NIND) independent variables, β0, β1, …, βN are the

regression coefficients whose estimated values are output in B, and the eL’s are

independently distributed normal errors each with mean zero and variance σ2.
Here, n is the number of valid rows in the augmented matrix (X, Y), i.e. n equals
NOBS − NRMISS (the number of rows that do not contain NaN). If INTCEP = 0, β0
is not included in the model.
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Routine RLSE computes estimates of the regression coefficients by minimizing
the sum of squares of the deviations of the observed response yL�from the fitted
response

$yi

for the n observations. This minimum sum of squares (the error sum of squares) is
output and denoted by

SSE = −
=
∑ ( $ )y yi i
i

n
2

1

In addition, the total sum of squares is output. For the case, INTCEP = 1, the total
sum of squares is the sum of squares of the deviations of yL from its mean

y

—the so-called corrected total sum of squares; it is denoted by

SST = −
=
∑ ( )y yi
i

n
2

1

For the case INTCEP = 0, the total sum of squares is the sum of squares of yL—the
so-called uncorrected total sum of squares; it is denoted by

SST =
=
∑ yi
i

n
2

1

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, RLSE performs an orthogonal
reduction of the matrix of regressors to upper triangular form. If the user needs
the upper triangular matrix output for subsequent computing, the routine R2SE

can be invoked in place of RLSE. (See the description of R in Comment 1). The
reduction is based on one pass through the rows of the augmented matrix (X, Y)
using fast Givens transformations. (See routines SROTMG and SROTM Golub and
Van Loan, 1983, pages 156-162, Gentleman, 1974.) This method has the
advantage that the loss of accuracy resulting from forming the crossproduct
matrix used in the normal equations is avoided.

With INTCEP = 1, the current means of the dependent and independent variables
are used to internally center the data for improved accuracy. Let xM be a column
vector containing the j-th row of data for the independent variables. Let xi
represent the mean vector for the independent variables given the data for rows 1,
2, …, i. The current mean vector is defined to be

x
x

ii
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The i-th row of data has xi  subtracted from it and is then weighted by i/(i − 1).

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:
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An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the first row of R and the first element of B are
updated so that they reflect the statistics for the original (uncentered) data. This
means that the estimate of the intercept and the R matrix are for the uncentered
data.

As part of the final computations, RLSE checks for linearly dependent regressors.
If the i-th regressor is a linear combination of the first i − 1 regressors, the i-th
diagonal element of R is close to zero (exactly zero if infinite precision arithmetic
could be used) prior to the final computations. In particular, linear dependence of
the regressors is declared if any of the following three conditions is satisfied:

• A regressor equals zero.

• Two or more regressors are constant.

• The result of

1 1 2 1
2− ⋅ −Ri i, , ,K

is less than or equal to 100 × ε where ε is the machine epsilon. (For RLSE,
ε = AMACH(4) and for DRLSE, ε = DMACH(4). See routines AMACH and DMACH
(Reference Material)). Here, RL¿1,2,¤,L-1 is the multiple correlation coefficient of

the i-th independent variable with the first i − 1 independent variables. If no
intercept is in the model (INTCEP = 0), the “multiple correlation” coefficient is
computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be
linearly dependent upon the previous i − 1 regressors, then the i-th element of B
and all elements in the i-th row of R are set to zero. Finally, if a linear dependence
is declared, an informational (error) message, code 1, is issued indicating the
model is not full rank.

Example 1

A regression model

yL= β0 + β1xL� + β2xL� + β3xL� + εL�     i = 1,2, …, 9

is fitted to data taken from Maindonald (1984, pages 203−204).

      INTEGER    INTCEP, LDX, NCOEF, NIND, NOBS
      PARAMETER  (INTCEP=1, NIND=3, NOBS=9, LDX=NOBS,
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     &           NCOEF=INTCEP+NIND)
C
      INTEGER    NOUT
      REAL       B(NCOEF), SSE, SST, X(LDX,NIND), Y(NOBS)
      EXTERNAL   RLSE, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NIND)/ 7.0,  5.0, 6.0/, Y(1)/ 7.0/
      DATA (X(2,J),J=1,NIND)/ 2.0, -1.0, 6.0/, Y(2)/-5.0/
      DATA (X(3,J),J=1,NIND)/ 7.0,  3.0, 5.0/, Y(3)/ 6.0/
      DATA (X(4,J),J=1,NIND)/-3.0,  1.0, 4.0/, Y(4)/ 5.0/
      DATA (X(5,J),J=1,NIND)/ 2.0, -1.0, 0.0/, Y(5)/ 5.0/
      DATA (X(6,J),J=1,NIND)/ 2.0,  1.0, 7.0/, Y(6)/-2.0/
      DATA (X(7,J),J=1,NIND)/-3.0, -1.0, 3.0/, Y(7)/ 0.0/
      DATA (X(8,J),J=1,NIND)/ 2.0,  1.0, 1.0/, Y(8)/ 8.0/
      DATA (X(9,J),J=1,NIND)/ 2.0,  1.0, 4.0/, Y(9)/ 3.0/
C
      CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)
      CALL WRRRN (’B’, NCOEF, 1, B, NCOEF, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,99999) ’SST = ’, SST, ’  SSE = ’, SSE
99999 FORMAT (A7, F7.2, A7, F7.2)
      END

Output
    B
1   7.733
2  -0.200
3   2.333
4  -1.667

SST =  156.00  SSE =   4.00

Example 2

A weighted least-squares fit is computed using the model

yL= β0 + β1xL1 + β2xL2 + εL       i = 1, 2, …, 4

and weights 1/i2 discussed by Maindonald (1984, pages 67 - 68). In order to
compute the weighted least-squares fit, using an ordinary least squares routine
(RLSE), the regressors (including the column of ones for the intercept term as well
as the independent variables) and the responses must be transformed prior to
invocation of RLSE. The transformed regressors and responses can be computed
by using routine SHPROD (IMSL MATH/LIBRARY). For the i-th case the
corresponding response and regressors are multiplied by a square root of the i-th
weight. Because the column of ones corresponding to the intercept term in the
untransformed model, is transformed by the weights, this transformed column of
ones must be input to the least squares subroutine as an additional independent
variable along with the option INTCEP = 0.

In terms of the original, untransformed regressors and responses, the minimum
sum of squares for error output in SSE is
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SSE = w y yi i i
i
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where here the weight wL = 1/i2. Also, since INTCEP = 0, the uncorrected total
sum of squares is output in SST. In terms of the original untransformed responses,

SST = w yi i
i

n
2
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∑

      INTEGER    INTCEP, LDX, NCOEF, NIND, NOBS
      PARAMETER  (INTCEP=0, NIND=3, NOBS=4, LDX=NOBS,
     &           NCOEF=INTCEP+NIND)
C
      INTEGER    I, NOUT
      REAL       B(NCOEF), SQRT, SSE, SST, W(NOBS), X(LDX,NIND),
     &           Y(NOBS)
      INTRINSIC  SQRT
      EXTERNAL   RLSE, SHPROD, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NIND)/1.0, -2.0, 0.0/, Y(1)/-3.0/
      DATA (X(2,J),J=1,NIND)/1.0, -1.0, 2.0/, Y(2)/ 1.0/
      DATA (X(3,J),J=1,NIND)/1.0,  2.0, 5.0/, Y(3)/ 2.0/
      DATA (X(4,J),J=1,NIND)/1.0,  7.0, 3.0/, Y(4)/ 6.0/
C
      DO 10  I=1, NOBS

C                                 Assign weights
         W(I) = 1.0/I**2

C                                 Store square roots of weights
         W(I) = SQRT(W(I))
   10 CONTINUE
C                                 Transform regressors
      DO 20  J=1, NIND
         CALL SHPROD (NOBS, W, 1, X(1,J), 1, X(1,J), 1)
   20 CONTINUE
C                                 Transform response
      CALL SHPROD (NOBS, W, 1, Y, 1, Y, 1)
C
      CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)
C
      CALL WRRRN (’B’, NCOEF, 1, B, NCOEF, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,99999) ’SST = ’, SST, ’  SSE = ’, SSE
99999 FORMAT (A7, F7.2, A7, F7.2)
      END

Output
    B
1  -1.431
2   0.658
3   0.748

SST =   11.94  SSE =   1.01
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RCOV/DRCOV (Single/Double precision)
Fit a multivariate linear regression model given the variance-covariance matrix.

Usage
CALL RCOV (INTCEP, NIND, NDEP, COV, LDCOV, XYMEAN, SUMWTF,
           TOL, B, LDB, R, LDR, IRANK, SCPE, LDSCPE)

Arguments

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

NIND — Number of independent (explanatory) variables.   (Input)

NDEP — Number of dependent (response) variables.   (Input)

COV — NIND + NDEP by NIND + NDEP matrix containing the variance-
covariance matrix or sum of squares and crossproducts matrix.   (Input)
Only the upper triangle of COV is referenced. The first NIND rows and columns
correspond to the independent variables, and the last NDEP rows and columns
correspond to the dependent variables. If INTCEP = 0, COV contains raw sums of
squares and crossproducts. If INTCEP = 1, COV contains sums of squares and
crossproducts corrected for the mean. If weighting is desired, COV contains
weighted sums of squares and crossproducts.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

XYMEAN — Vector of length NIND + NDEP containing variable means.   (Input,
if INTCEP = 1)
The first NIND elements of XYMEAN are for the independent variables in the same
order in which they appear in COV. The last NDEP elements of XYMEAN are for the
dependent variables in the same order in which they appear in COV. If weighting
is desired, XYMEAN contains weighted means. If INTCEP = 0, XYMEAN is not
referenced and can be a vector of length one.

SUMWTF — Sum of products of weights with frequencies.   (Input, if
INTCEP = 1)
In the ordinary case when weights and frequencies are all one, SUMWTF equals the
number of observations.

TOL — Tolerance used in determining linear dependence.   (Input)
For RCOV, TOL = 100 * AMACH(4) is a common choice. For DRCOV,
TOL = 100 * DMACH(4) is a common choice. See documentation for routine
AMACH/DMACH (Reference Material).
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B — INTCEP + NIND by NDEP matrix containing a least-squares solution $B  for
the regression coefficients.   (Output)
Column j is for the j-th dependent variable. If INTCEP = 1, row 1 is for the
intercept. Row INTCEP + i is for the i-th independent variable. Elements of the

appropriate row(s) of $B  are set to 0.0 if linear dependence of the regressors is
declared.

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

R — INTCEP + NIND by INTCEP + NIND upper triangular matrix containing the

R matrix from a Cholesky factorization R7 R of the matrix of sums of squares and
crossproducts of the regressors.   (Output)
Elements of the appropriate row(s) of R are set to 0.0 if linear dependence of the
regressors is declared.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

IRANK — Rank of R.   (Output)
IRANK less than INTCEP + NIND indicates that linear dependence of the

regressors was declared. In this case, some rows of $B  are set to zero.

SCPE — NDEP by NDEP matrix containing the error (residual) sums of squares
and crossproducts.   (Output)

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Informational error
Type Code
   3    1 COV is not a variance-covariance matrix within the

tolerance defined by TOL.

2. If COV is not needed, then the partitioned matrix

R B

SCPE−
�
��

�
��

and A can share the same storage locations. Here, A is a matrix, INTCEP
+ NIND + NDEP by INTCEP + NIND + NDEP, with leading dimension LDA
and containing COV in the last NIND + NDEP rows and columns of A. The
reference is

CALL RCOV (INTCEP, NIND, NDEP, A(INTCEP+1,INTCEP+1),
           LDA, XYMEAN, SUMWTF, TOL,
           A(1,INTCEP+NIND+1), LDA, A, LDA,
           IRANK,A(INTCEP+NIND+1,INTCEP+NIND+1),LDA)



106 • Chapter 2: Regression IMSL STAT/LIBRARY

Algorithm

Routine RCOV fits a multivariate linear regression model given the variance-
covariance matrix (or sum of squares and crossproducts matrix) for the
independent and dependent variables. Typically, an intercept is to be in the
model, and the corrected sum of squares and crossproducts matrix is input for
COV. Routine CORVC (page 314) can be invoked to compute the corrected sum of
squares and crossproducts matrix. Routine RORDM (page 1268) can reorder this
matrix, if required. If an intercept is not to be included in the model, a raw
(uncorrected) sum of squares and crossproducts matrix must be input for COV;
and SUMWTF and XYMEAN are not used in the computations. Routine MXTXF
(IMSL MATH/LIBRARY) can be used to compute the raw sum of squares and
crossproducts matrix.

Routine RCOV is based on a Cholesky factorization of COV. Let k (input in NIND)
be the the number of independent variables, and d (input in SUMWTF) the
denominator used in computing the x means (input in the first k locations of
XYMEAN). The matrix R is formed by computing a Cholesky factorization of the
first k rows and columns of COV. If INTCEP equals one, the k rows from this
factorization are appended to the initial row

d d x d xk, , ,1 K

The resulting R matrix is the Cholesky factor of the X7 X matrix where X contains
a column of ones as its first column and the independent variable settings as its
remaining k columns.

Maindonald (1984, Chapter 3) discusses the Cholesky factorization as it applies
to regression computations.

The routine RCOV checks sequentially for linear dependent regressors. Linear
dependence of the regressors is declared if

Error! Objects cannot be created from editing field codes.

is less than or equal to TOL. Here, RL¿1,2,¤,L-1is the multiple correlation coefficient

of the i-th independent variable with the first i − 1 independent variables. If no
intercept is in the model (INTCEP = 0), the “multiple correlation” coefficient is
computed without adjusting for the mean. When a dependence is declared,
elements of the corresponding rows of R and B are set to zero. Maindonald (1984,
Sections 3.3, 3.4, and 3.9) discusses these implementation details of the Cholesky
factorization in regression problems.

Example

This example uses a data set from Draper and Smith (1981, pages 629 − 630). This
data set is put into the matrix X by routine GDATA (page 1302). The first four columns
are for the independent variables, and the last column is for the dependent variable.
Routine CORVC (page 314) is invoked to compute the corrected



IMSL STAT/LIBRARY Chapter 2: Regression • 107

sum of squares and crossproducts matrix. Then, RCOV is invoked to compute the
regression coefficient estimates, the R matrix, and the sum of squares for error.

      PARAMETER (LDX=13, NDX=5, NIND=4, NDEP=1, LDCOV=NIND+NDEP,
     &           LDSCPE=NDEP)
      PARAMETER (INTCEP=1, LDB=INTCEP+NIND, LDR=INTCEP+NIND)
      REAL       XYMEAN(NIND+NDEP)
      REAL       X(LDX,NDX), B(LDB,NDEP), R(LDR,INTCEP+NIND)
      REAL       COV(LDCOV,NIND+NDEP), SCPE(LDSCPE,NDEP)
      INTEGER    INCD(1,1)
C
      CALL GDATA (5, 0, NROW, NVAR, X, LDX, NDX)
C
      IFRQ = 0
      IWT  = 0
      MOPT = 0
      ICOPT = 1
      CALL CORVC (0, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, ICOPT, XYMEAN,
     &            COV, LDCOV, INCD, 1, NOBS, NMISS, SUMWTF)
C
      TOL = 100.0*AMACH(4)
      CALL RCOV (INTCEP, NIND, NDEP, COV, LDCOV, XYMEAN, SUMWTF, TOL,
     &           B, LDB, R, LDR, IRANK, SCPE, LDSCPE)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’IRANK = ’, IRANK, ’  SCPE(1,1) = ’, SCPE(1,1)
      CALL WRRRN (’B’, 1, INTCEP+NIND, B, 1, 0)
      CALL WRRRN (’R’, INTCEP+NIND, INTCEP+NIND, R, LDR, 0)
      END

Output
IRANK =   5  SCPE(1,1) =     47.8638

                  B
    1       2       3       4       5
62.40    1.55    0.51    0.10   -0.14

                    R
        1       2       3       4       5
1     3.6    26.9   173.6    42.4   108.2
2     0.0    20.4    12.3   -18.3   -14.2
3     0.0     0.0    52.5     1.1   -54.6
4     0.0     0.0     0.0    12.5   -12.9
5     0.0     0.0     0.0     0.0     3.4

RGIVN/DRGIVN (Single/Double precision)
Fit a multivariate linear regression model via fast Givens transformations.

Usage
CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND,
            IDEP, INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R,
            LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN,
            XMAX)
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Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of RGIVN for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to RGIVN will be made.

Initialization and updating for the data in X are performed.
2 This is an intermediate invocation of RGIVN, and updating for the data in

X is performed.
3 This is the final invocation of this routine. Updating for the data in X and

wrap-up computations are performed.

NROW — The absolute value of NROW is the number of rows of data currently
input in X.   (Input)
NROW may be positive, zero, or negative. Negative NROW means that the −NROW
rows of data are to be deleted from some aspects of the analysis, and this should
be done only if IDO is 2 or 3 and the wrap-up computations have not been
performed. When a negative value is input for NROW, it is assumed that each of the 
−NROW rows of X has been input (with positive NROW) in previous invocations of
RGIVN. Use of negative values of NROW should be made with care and with the
understanding that XMIN and XMAX cannot be updated properly in this case. It is
also possible that a constant variable in the remaining data will not be recognized
as such.

NCOL — Number of columns in X.   (Input)

X — |NROW| by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IIND — Independent variable option.   (Input)

IIND Meaning
< 0 The first −IIND columns of X contain the independent (explanatory)

variables.
> 0 The IIND independent variables are specified by the column numbers in

INDIND.
= 0 There are no independent variables.

The regressors are the intercept (if INTCEP = 1) and the independent variables.
There are INTCEP + |IIND| regression coefficients for each dependent variable.

INDIND — Index vector of length IIND containing the column numbers of X

that are the independent variables.   (Input, if IIND is positive)
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If IIND is nonpositive, INDIND is not referenced and can be a vector of length
one.

IDEP — Dependent variable option.   (Input)

IDEP Meaning
< 0 The last −IDEP columns of X contain the dependent (response) variables.

That is, columns NCOL + IDEP + 1, NCOL + IDEP + 2, …, NCOL contain
the dependent variables.

> 0 The IDEP dependent (response) variables are specified by the column
numbers in INDDEP.

= 0 There are no dependent variables. (Generally, this option is not used.
The R matrix from a QR decomposition of a matrix of regressors is
computed.)

INDDEP — Index vector of length IDEP containing the column numbers of X

that are the dependent variables.   (Input, if IDEP is positive)
If IDEP is nonpositive, INDDEP is not referenced and can be a vector of length
one.

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies. If X(I, IFRQ) = 0.0, none of the remaining
elements of row I of X are referenced, and updating of statistics is skipped for
row I.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

ISUB — Data centering option.   (Input)
If INTCEP = 0, ISUB must equal 0.

ISUB Action

0 No centering. This option should be used when (1) the data are already
centered; (2) there is no intercept in the model; or (3) the independent
variables for a large percentage of the data are zero, and sparsity of the
problem needs to be preserved in order that the Givens rotations are
performed quickly.

1 Variables are centered using the method of provisional means for
improved accuracy of the computations. The final estimate for the
intercept and the R matrix are given for the uncentered data. This option
is generally recommended.

TOL — Tolerance used in determining linear dependence.   (Input)
For RGIVN, TOL = 100 * AMACH(4) is a common choice. For DRGIVN, TOL = 100
* DMACH(4) is a common choice. See the documentation for routines AMACH and
DMACH (Reference Material).

B — INTCEP + |IIND| by |IDEP| matrix containing a least-squares solution
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$B
for the regression coefficients on return from the final invocation of this routine.
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
If INTCEP = 1, row 1 is for the intercept. Row INTCEP + I is for the I-th
independent variable. Column j is for the j-th dependent variable.

IDO Action
1 or 2 A current least-squares solution is given by a solution x to the equation

Rx = B.
0 or 3 A least-squares solution for the regression coefficients is returned in B.

Elements of the appropriate row(s) of B are set to 0.0 if linear
dependence of the regressors is declared.

If IDEP = 0, B is not referenced and can be a vector of length 1.

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

R — INTCEP + |IIND| by INTCEP +  |IIND| upper triangular matrix containing
the R matrix from a QR decomposition of the matrix of regressors on return from
the final invocation of this routine.  (Output, if IDO = 0 or 1; input/output, if IDO
= 2 or 3)

IDO Action

1 or 2 The current matrix of raw sums of squares and crossproducts for the

regressors can be found as R7 ⋅ diag(D) ⋅ R where diag(D) is the diagonal
matrix whose diagonal elements are the elements of the vector D.

0 or 3 The matrix of raw sums of squares and crossproducts for the regressors

can be found as R7�R. Elements of the appropriate row(s) of R are set to
0.0 if linear dependence of the regressors is declared.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

D — Vector of length INTCEP + |IIND| containing scale factors for fast Givens
transformations.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

IDO Action
1 or 2 D contains the current scale factors associated with the fast Givens

transformations.
0 or 3 Each element of D is set to 1.0.

IRANK — Rank of R.   (Output, if IDO = 0 or 3)
IRANK less than INTCEP + |IIND| indicates linear dependence of the regressors
was declared.

DFE — Degrees of freedom for error on return from the final invocation of this
routine.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
Prior to the final invocation of RGIVN, DFE is the sum of the frequencies.
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SCPE — |IDEP| by |IDEP| matrix containing error (residual) sums of squares and
crossproducts.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
SCPE(m, n) contains the current sum of crossproducts of residuals for the m-th
and n-th dependent variables. If IDEP = 0, SCPE is not referenced and can be a
vector of length 1.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of data encountered in calls to RGIVN that contain
any missing values for the independent, dependent, weight, or frequency
variables.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
NaN (not a number) is used as the missing value code. Any row of X containing
NaN as a value of the independent, dependent, weight, or frequency variables is
omitted from the analysis.

XMIN — Vector of length INTCEP + |IIND| containing the minimum values for
each of the regressors.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

XMAX — Vector of length INTCEP + |IIND| containing the maximum values for
each of the regressors.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

Comments

1. Automatic workspace usage is

RGIVN INTCEP + |IIND| + |IDEP| units, or
DRGIVN 2 * (INTCEP + |IIND| + |IDEP|) units.

Workspace may be explicitly provided, if desired, by use of
R2IVN/DR2IVN. The reference is

CALL R2IVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND,
            INDIND, IDEP, INDDEP, IFRQ, IWT, TOL, B,
            LDB, R, LDR, D, IRANK, DFE, SCPE,
            LDSCPE, NRMISS, XMIN, XMAX, WK)

The additional argument is

WK — Work vector of length INTCEP + |IIND| + |IDEP|

2. Informational errors
Type Code
   4    1 Negative weight encountered.
   4    2 Negative frequency encountered.

Algorithm

Routine RGIVN fits a multivariate linear regression model. (See the chapter
introduction for a description of the multivariate linear regression model.) The
routine RGIVN is designed so that multiple invocations can be made. In this case,
zero, one, or several rows of the data set can be input for each invocation of
RGIVN (with IDO = 1, 2, 2, …, 2, 3). Alternatively, one invocation of RGIVN
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(with IDO = 0) can be made with the entire data set contained in X. Routine
RSTAT (page 141) can be invoked after the wrap-up computations are performed
by RGIVN to compute and print summary statistics related to the fitted regression.

Routine RGIVN performs an orthogonal reduction of the matrix of regressors to
upper triangular form. The reduction is based on fast Givens transformations.
(See routines SROTMG and SROTM, Golub and Van Loan 1983, pages 156-162,
Gentleman 1974.) This method has two main advantages: (1) the loss of accuracy
resulting from forming the crossproduct matrix used in the normal equations is
avoided, (2) data can be conveniently added or deleted to take advantage of the
previous computations performed.

With ISUB = 1, the current means of the independent and dependent variables are
used to center the data for improved accuracy. Let xL be a column vector
containing the i-th row of data for the independent variables. Let xi  represent the

mean vector for the independent variables given the data for observations 1, 2, …
, i. The mean vector is defined to be
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where the wM’s and fM’s are the weights and frequencies, respectively. The i-th row
of data has xi  subtracted from it, and then wLfL is multiplied by the factor aL/aL�1
where
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Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:
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An orthogonal reduction on the centered matrix is computed. When wrap-up
computations (IDO = 3 or IDO= 0) are performed, the first rows of R and B are
updated so that they reflect the statistics for the original (uncentered) data. This
means that the estimate of the intercept and the R matrix are for the uncentered
data.

If the i-th regressor is a linear combination of the first i − 1 regressors, the i-th
diagonal element of R will be close to zero (exactly zero if infinite precision
arithmetic could be used) prior to the wrap-up computations. When performing
the wrap-up computations, RGIVN checks sequentially for linear dependent
regressors. Linear dependence of the regressors is declared if any of the following
three conditions is satisfied:
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• A regressor equals zero, as determined from XMIN and XMAX.

• Two or more regressors are constant, as determined from XMIN and XMAX.

1 1 2 1
2− ⋅ −Ri i, ,...,

is less than or equal to TOL. Here, RL¿1,2,¤,L-1 is the multiple correlation coefficient

of the i-th independent variable with the first i − 1 independent variables. If no
intercept is in the model (INTCEP = 0) the “multiple correlation” coefficient is
computed without adjusting for the mean.

When a dependence is declared, R is changed in the wrap-up computations so as
to reflect the deletion of the i-th regressor from the model. On completion of the
wrap-up computations, if the i-th regressor is declared to be dependent upon the

previous i − 1 regressors, then the R and $B  matrices will have all elements in
their i-th rows set to zero.

Example 1

The first example uses a data set from Draper and Smith (1981, pages 629-630).
This data set is put into the matrix X by routine GDATA (page 1302). There is 1
dependent variable and 4 independent variables. RGIVN is invoked to fit the
regression model with the IDO = 0 option, so all computations are performed in
one call.

      INTEGER    LDB, LDCOEF, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, NRX
      PARAMETER  (LDSCPE=1, NCOEF=5, NCOL=5, NDEP=1, NRX=13,
     &           LDB=NCOEF, LDCOEF=NCOEF, LDR=NCOEF, LDX=NRX)
C
      INTEGER    I, IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1),
     &           INTCEP, IRANK, ISUB, IWT, NOBS, NOUT, NRMISS, NROW,
     &           NVAR
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF),

     &           SCPE(LDSCPE,NDEP), TOL, X(LDX,NCOL), XMAX(NCOEF),
     &           XMIN(NCOEF)
      EXTERNAL   AMACH, GDATA, RGIVN, UMACH, WRRRN
C
      CALL GDATA (5, 0, NOBS, NVAR, X, LDX, NCOL)
C
      IDO    = 0
      NROW   = NOBS
      INTCEP = 1
      IIND   = -4
      IDEP   = -1
      IFRQ   = 0
      IWT    = 0
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      CALL WRRRN (’B’, NCOEF, NDEP, B, LDB, 0)
      CALL WRRRN (’R’, NCOEF, NCOEF, R, LDR, 0)
      CALL UMACH (2, NOUT)
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      WRITE (NOUT,*)
      WRITE (NOUT,*) ’Regressor   XMIN     XMAX’
      DO 10  I=1, NCOEF
         WRITE (NOUT,’(1X,I5,2X,2F9.1)’) I, XMIN(I), XMAX(I)
   10 CONTINUE
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’IRANK = ’, IRANK
      WRITE (NOUT,*) ’DFE = ’, DFE, ’  SCPE(1,1) = ’, SCPE(1,1)
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
     B
1   62.41
2    1.55
3    0.51
4    0.10
5   -0.14

                    R
        1       2       3       4       5
1     3.6    26.9   173.6    42.4   108.2
2     0.0    20.4    12.3   -18.3   -14.2
3     0.0     0.0    52.5     1.1   -54.6
4     0.0     0.0     0.0    12.5   -12.9
5     0.0     0.0     0.0     0.0     3.4

Regressor       XMIN     XMAX
        1        1.0      1.0
        2        1.0     21.0
        3       26.0     71.0
        4        4.0     23.0
        5        6.0     60.0

IRANK =   5
DFE =     8.00000  SCPE(1,1) =     47.8637
NRMISS =   0

Example 2

The data for the second example are taken from Maindonald (1984, pages 203−
204). The data are saved in the matrix X. Here, the data are input into RGIVN a
row at a time. The data set is small for clarity. However, the approach is generally
useful when the data set is large and the entire data set cannot be stored in X. A
multivariate regression model containing two dependent variables and three
independent variables is fit.

      INTEGER    INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
     &           NIND, NOBS
      PARAMETER  (INTCEP=1, NCOL=5, NDEP=2, NIND=3, NOBS=9,
     &           LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,
     &           LDR=NCOEF)
C
      INTEGER    I, IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1),
     &           IRANK, ISUB, IWT, NOUT, NRMISS, NROW
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF),
     &           SCPE(LDSCPE,NDEP), TOL, X(LDX,NCOL), XMAX(NCOEF),
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     &           XMIN(NCOEF)
      EXTERNAL   AMACH, RGIVN, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
      DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
      DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
      DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
      DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
      DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
      DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
C
      NROW = 1
      IIND = -NIND
      IDEP = -NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      DO 10  I=1, 9
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE IF (I .EQ. 9) THEN
            IDO = 3
         ELSE
            IDO = 2
         END IF
         CALL RGIVN (IDO, NROW, NCOL, X(I,1), LDX, INTCEP, IIND,
     &               INDIND, IDEP, INDDEP, IFRQ, IWT, ISUB, TOL, B,
     &               LDB, R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS,
     &               XMIN, XMAX)
   10 CONTINUE
C
      CALL WRRRN (’B’, NCOEF, NDEP, B, LDB, 0)
      CALL WRRRN (’R’, NCOEF, NCOEF, R, LDR, 0)
      CALL WRRRN (’SCPE’, NDEP, NDEP, SCPE, LDSCPE, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’Regressor   XMIN     XMAX’
      DO 20  I=1, NCOEF
         WRITE (NOUT,’(1X,I5,2X,2F9.1)’) I, XMIN(I), XMAX(I)
   20 CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’IRANK = ’, IRANK
      WRITE (NOUT,*) ’DFE = ’, DFE
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
          B
        1       2
1   7.733  -1.633
2  -0.200   0.400
3   2.333   0.167
4  -1.667   0.667
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             R
         1       2       3       4
1    3.00    6.00    3.00   12.00
2    0.00   10.00    4.00    2.00
3    0.00    0.00    4.00    2.00
4    0.00    0.00    0.00    6.00

       SCPE
        1       2
1     4.0    20.0
2    20.0   110.0

Regressor    XMIN     XMAX
     1        1.0      1.0
     2       -3.0      7.0
     3       -1.0      5.0
     4        0.0      7.0

IRANK =   4
DFE =     5.00000
NRMISS =   0

Example 3

The data for the third example are taken from Maindonald (1984, pages 104−
106). The constant regressor and the independent variables X1, X2, and X3 are
linearly dependent

X X X3
1
2 1

1
2 2= + −2 7

      INTEGER    INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
     &           NIND, NOBS
      PARAMETER  (INTCEP=1, NCOL=5, NDEP=1, NIND=4, NOBS=9,
     &           LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,
     &           LDR=NCOEF)
C
      INTEGER    I, IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1),
     &           IRANK, ISUB, IWT, NOUT, NRMISS, NROW
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF),
     &           SCPE(LDSCPE,NDEP), TOL, X(LDX,NCOL), XMAX(NCOEF),
     &           XMIN(NCOEF)
      EXTERNAL   AMACH, RGIVN, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NCOL)/-1.0, 0.0, -0.5, 1.0, 0.0/
      DATA (X(2,J),J=1,NCOL)/3.0, 0.0, 3.5, 1.0, 0.0/
      DATA (X(3,J),J=1,NCOL)/2.0, -2.0, 3.5, -2.0, -2.0/
      DATA (X(4,J),J=1,NCOL)/-2.0, -1.0, -1.0, 1.0, 1.0/
      DATA (X(5,J),J=1,NCOL)/-1.0, 1.0, -1.0, -1.0, -1.0/
      DATA (X(6,J),J=1,NCOL)/3.0, 3.0, 2.0, 1.0, 3.0/
      DATA (X(7,J),J=1,NCOL)/2.0, 2.0, 1.5, 2.0, 4.0/
      DATA (X(8,J),J=1,NCOL)/-2.0, -1.0, -1.0, -1.0, -2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 2.0, 1.0, 3.0/
C
      IDO  = 0
      NROW = NOBS
      IIND = -NIND
      IDEP = -NDEP
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      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      CALL WRRRN (’B’, NCOEF, NDEP, B, LDB, 0)
      CALL WRRRN (’R’, NCOEF, NCOEF, R, LDR, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’Regressor  Minimum  Maximum’
      DO 10  I=1, NCOEF
         WRITE (NOUT,’(1X,I5,2X,2F9.1)’) I, XMIN(I), XMAX(I)
   10 CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’IRANK = ’, IRANK
      WRITE (NOUT,*) ’DFE = ’, DFE, ’  SCPE(1,1) = ’, SCPE(1,1)
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
     B
1   0.056
2   0.167
3   0.500
4   0.000
5   1.000

                      R
        1       2       3       4       5
1   3.000   2.000   1.000   3.000   1.000
2   0.000   6.000   2.000   5.000   1.000
3   0.000   0.000   4.000  -2.000   2.000
4   0.000   0.000   0.000   0.000   0.000
5   0.000   0.000   0.000   0.000   3.000

Regressor  Minimum  Maximum
      1        1.0      1.0
      2       -2.0      3.0
      3       -2.0      3.0
      4       -1.0      3.5
      5       -2.0      2.0

IRANK =   4
DFE =     5.00000  SCPE(1,1) =     6.00000
NMISS =   0

RGLM/DRGLM (Single/Double precision)
Fit a multivariate general linear model.
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Usage
CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL,
           NEF, NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT,
           IDUMMY, ISUB, TOL, MAXCL, NCLVAL, CLVAL, IRBEF,
           B, LDB, R, LDR, D, IRANK, DFE, SCPE, LDSCPE,
           NRMISS, XMIN, XMAX)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of RGLM for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to RGLM will be made.

Initialization and updating for the data in X are performed.
2 This is an intermediate invocation of RGLM, and updating for the data in

X is performed.
3 This is the final invocation of this routine. Updating for the data in X and

wrap-up computation are performed.

NROW — The absolute value of NROW is the number of rows of data currently
input in X.   (Input)
NROW may be positive, zero, or negative. Negative NROW means that the −NROW
rows of data are to be deleted from some aspects of the analysis, and this should
be done only if IDO is 2 or 3 and the wrap-up computations have not been
performed. When a negative value is input for NROW, it is assumed that each of the 
−NROW rows of X has been input (with positive NROW) in previous invocations of
RGIVN. Use of negative values of NROW should be made with care and with the
understanding that XMIN, XMAX, and CLVAL cannot be updated properly in this
case. It is also possible that a constant variable in the remaining data will not be
recognized as such.

NCOL — Number of columns in X.   (Input)

X — |NROW| by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

NCLVAR — Number of classification variables.   (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are the classification variables.   (Input)

NEF — Number of effects (sources of variation) in the model excluding error.
(Input)
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NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF).
(Input)
The first NVEF(1) elements give the column numbers of X for each variable in the
first effect. The next NVEF(2) elements give the column numbers for each variable
in the second effect. … The last NVEF(NEF) elements give the column numbers
for each variable in the last effect.

IDEP — Dependent variable option.   (Input)
The absolute value of IDEP is the number of dependent (response) variables. The
sign of IDEP specifies the following options:

IDEP Meaning

< 0 The last −IDEP columns of X contain the dependent (response) variables.
That is, columns NCOL + IDEP + 1, NCOL + IDEP + 2, …, NCOL contain
the dependent variables.

> 0 The data for the IDEP dependent variables are in the columns of X

whose column numbers are given by the elements of INDDEP.

= 0 There are no dependent variables. (Generally, this option is not used.
However, it is possible to get the R matrix from a QR decomposition of a
matrix of regressors in this way.)

INDDEP — Index vector of length IDEP containing the column numbers of X
that are the dependent (response) variables.   (Input, if IDEP is positive)
If IDEP is nonpositive, INDDEP is not referenced and can be a vector of length
one.

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies. If X(I, IFRQ) = 0.0, none of the remaining
elements of row I of X are referenced and updating of statistics is skipped for row
I.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

IDUMMY — Dummy variable option.   (Input)
Some indicator variables are defined for the I-th class variable as follows: Let
J = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(I − 1). NCLVAL(I) indicator
variables are defined such that for K = 1, 2, …, NCLVAL(I) the K-th indicator
variable for observation number IOBS takes the value 1.0 if X(IOBS, INDCL(I)) =
CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are generated from
these indicator variables, and restrictions may be applied as given by the
following:
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IDUMMY Description

0 The NCLVAL(I) indicator variables are the dummy variables. The usual
balanced-data restrictions on the regression parameters are applied as
part of the wrap-up computations regardless of whether the data are
balanced.

1 The NCLVAL(I) indicator variables are the dummy variables.

2 NCLVAL(I) − 1 indicator variables are used as the dummy variables. The
indicator variable associated with the class value given in the first row of
X on the first invocation is omitted.

ISUB — Data centering option.   (Input)
If INTCEP = 0, ISUB must equal 0.

ISUB Action

0 No centering. This option should be used when (1) the data are already
centered, (2) there is no intercept in the model, or (3) the regressors for a
large percentage of the data are zero, and sparsity of the problem needs
to be preserved in order that the fast Givens transformations are
performed quickly.

1 Variables are centered using the method of provisional means for
improved accuracy of the computations. The final estimate for the
intercept along with the R matrix are given for the uncentered data. This
option is generally recommended.

TOL — Tolerance used in determining linear dependence.   (Input)
For RGLM, TOL = 100 * AMACH(4) is a common choice. For DRGLM, TOL = 100 *
DMACH(4) is a common choice. See the documentation for IMSL routine
AMACH/DMACH (Reference Material).

MAXCL — An upper bound on the sum of the number of distinct values taken on
by each classification variable.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken on
by each classification variable.   (Output, if IDO = 0 or 1; input/output, if IDO = 2
or 3)
NCLVAL(I) is the number of distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the values of the classification variables.   (Output, if IDO = 0 or 1;
input/output, if IDO = 2 or 3)
Since in general the length of CLVAL will not be known in advance, MAXCL (an
upper bound for this length) should be used for purposes of dimensioning
CLVAL. The first NCLVAL(1) elements contain the values of the first
classification variable. The next NCLVAL(2) elements contain the values of the
second classification variable. … The last NCLVAL(NCLVAR) elements contain
the values of the last classification variable. If IDUMMY = 0 or 1, the values are
in ascending order for each classification variable. If IDUMMY = 2, the last value
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for each classification variable is the value associated with the indicator variable
omitted from the model. The remaining values for each classification variable are
in ascending order.

IRBEF — Index vector of length NEF + 1.   (Output, if IDO = 0 or 1;
input/output, if IDO = 2 or 3)
For I = 1, 2, …, NEF, rows IRBEF(I), IRBEF(I) + 1, …, IRBEF(I + 1) − 1 of B
correspond to the I-th effect.

B — NCOEF by |IDEP| matrix containing on return from the final invocation of

this routine a least-squares solution $B  for the regression coefficients.   (Output, if
IDO = 0 or 1; input/output, if IDO = 2 or 3)
Here, NCOEF = IRBEF(NEF + 1) − 1 is the number of coefficients in the model. If
INTCEP = 1, row 1 is for the intercept. Column j is for the j-th dependent
variable.

IDO Action
1 or 2 A current least-squares solution is given by a solution x to the equation R

* x = B
0 or 3 A least-squares solution for the regression coefficients is returned in B.

Elements of the appropriate row(s) of B are set to 0.0 if linear
dependence of the regressors is declared.

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing, on return from the
final invocation of this routine, the R matrix from a QR decomposition of the
matrix of regressors.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
Upon completion of the wrap-up computations, a zero row indicates a nonfull
rank model. If IDUMMY = 0, a negative diagonal element of R indicates that the
associated row corresponds to a summation restriction.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

D — Vector of length NCOEF.   (Output, if IDO = 0 or 1; input/output, if IDO = 2
or 3)

IDO Action

1 or 2 D contains the current scale factors associated with the fast Givens
transformations. The current matrix of uncorrected sums of squares and

crossproducts for the regressors can be found as R7 ⋅ diag(D) ⋅ R where
diag(D) is the diagonal matrix whose diagonal elements are the elements
of D.

0 or 3 Each element of D is set to 1.0.

IRANK — Rank of R.   (Output, if IDO = 0 or 3)
IRANK less than NCOEF indicates linear dependence of the regressors was
declared.
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DFE — Degrees of freedom for error on return from the final invocation of this
routine.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
Prior to the final invocation, DFE is the sum of the frequencies.

SCPE — |IDEP| by |IDEP| matrix containing error (residual) sums of squares and
crossproducts.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
SCPE(M, N) is the current sum of crossproducts of residuals for the M-th and N -th
dependent variables.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of data encountered in calls to RGLM containing
NaN (not a number) for the independent, dependent, weight, and/or frequency
variables.   (Output, if IDO = 0 or 1, input/output, if IDO = 2 or 3)
If a row of data contains NaN for any of these variables, that row is excluded
from the computations.

XMIN — Vector of length NCOEF containing the minimum values for each of the
regressors.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

XMAX — Vector of length NCOEF containing the maximum values for each of
the regressors.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

Comments

1. Automatic workspace usage is

RGLM max(MAXB, NCLVAR) + MAXB + |IDEP| + 2 units, or
DRGLM max(MAXB, NCLVAR) + 2 * MAXB + 2 * |IDEP| + 4 units,

where MAXB = min(LDB, LDR). Workspace may be explicitly provided, if
desired, by use of R2LM/DR2LM. The reference is

CALL R2LM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR,
           INDCL, NEF, NVEF, INDEF, IDEP, INDEP,
           IFRQ, IWT, IDUMMY, ISUB, TOL, MAXCL,
           NCLVAL, VAL, IRBEF, B, LDB, R, LDR, D,
           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN,
           XMAX, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length max(MAXB, NCLVAR).

WK — Work vector of length MAXB + |IDEP| + 2.

2. Informational errors
Type Code
   4    1 Negative weight encountered.
   4    2 Negative frequency encountered.
   4    7 MAXCL is too small. Increase MAXCL and the dimension

of CLVAL.
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   4    8 LDB or LDR is too small. One or more of the
dimensions of B, R, D, XMIN, and XMAX must be
increased.

3. Let the data matrix X = (A, B, X1, Y) where A and B are classification
variables, X1is a continuous independent variable, and Y is a response
variable. The model containing an intercept and the effects A, B, AB, X1,
AX1, BX1, and ABX1 is specified as follows: INTCEP = 1, NCLVAR = 2,
INDCL = (1, 2), NEF = 7, NVEF = (1, 1, 2, 1, 2, 2, 3), INDEF = (1, 2, 1, 2,
3, 1, 3, 2, 3, 1, 2, 3), IDEP = 1, and INDDEP = (4).

For this model suppose NCLVAL(1) = 2, NCLVAL(2) = 3, and
CLVAL = (1.0., 2.0, 1.0., 2.0, 3.0). Let A1, A2, B1, B2, and B3, be the
associated indicator variables. For each IDUMMY option the regressors
following the intercept in their order of appearance in the model are
given as follows:

IDUMMY Regressors

0 or 1 A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3, X1, A1X1,
A2X1B1X1, B2X1, B3X1, A1B1X1, A1B2X1, A1B3X1, A2B1X1,
A2B2X1, A2B3X1

2 A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, A1B1X1, A1B2X1

Within a group of regressors corresponding to an interaction effect, the
indicator variables composing the regressors change most rapidly for the
last classification variable, change next most rapidly for the next to last
classification variable, etc.

4. If NROW is negative, no downdating of XMIN, XMAX, NCLVAL, and CLVAL
can occur.

Algorithm

Routine RGLM fits a multivariate linear regression model. (See the chapter
introduction for a description of the multivariate linear regression model.) The
routine RGLM is designed so that multiple invocations can be made. In this case,
zero, one, or several rows of the data set can be input for each invocation of RGLM
(with IDO = 1, 2, 2, ..., 2, 3). Alternatively, one invocation of RGLM (with IDO =
0) can be made with the entire data set contained in X. Routines RSTAT (page
141) and RCASE (page 191) can be invoked after the wrap-up computations are
performed by RGLM to compute and print summary statistics and case statistics
related to the fitted regression.

The data matrix can contain classification variables as well as continuous
variables. The specification of a general linear model through the arguments
INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF is discussed in the chapter
introduction.
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Regressors for effects composed solely of continuous variables are generated as
powers and crossproducts. Consider a data matrix containing continuous variables
as columns 3 and 4. The effect (3, 3) generates a regressor whose i-th value (i = 1,
2, …, n) is the square of the i-th value in column 3. The effect (3, 4) generates a
regressor whose i-th value is the product of the i-th value in column 3 with the i-th
value in column 4.

Regressors for an effect containing a single classification variable are generated
using indicator variables. Let the classification variable A take on values a1, a2, 
…, aQ (stored in that order in CLVAL). From this classification variable, n

indicator variables IN are created. For k = 1, 2, …, n we have

I
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k
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1

0
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otherwise

For each classification variable, another set of variables is created from the
indicator variables. We call these new variables dummy variables. Dummy
variables are generated from the indicator variables in one of two manners: (1)
the dummies are the n indicator variables, or (2) the dummies are the first n − 1
indicator variables. In particular, for IDUMMY = 0 or IDUMMY = 1, the dummy
variables are AN = IN (k = 1, 2, …, n). For IDUMMY = 2, the dummy variables are

AN = IN (k = 1, 2, …, n − 1).

Let mM be the number of dummies generated for the j-th classification variable.

Suppose there are two classification variables A and B with dummies A1, A2, …,
AP� and B1, B2,…, BP�, respectively. The regressors generated for an effect
composed of two classification variables A and B are
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More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variables is specified in
INDEF. Consider a data matrix containing classification variables in columns 1
and 2 and continuous variables in columns 3 and 4. Label these four columns A,
B, X1, and X2, respectively. The regressors generated by the effect (1, 2, 3, 3, 4)
are A  ⊗ B ⊗ X1X1X2.

Routine RGLM performs an orthogonal reduction of the matrix of regressors to
upper triangular form. The reduction is based on fast Givens transformations.
(See routines SROTMG and SROTM, Golub and Van Loan 1983, pages 156-162,
Gentleman 1974.) This method has two main advantages: (1) the loss of
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accuracy resulting from forming the crossproduct matrix used in the normal
equations is avoided, and (2) data can be conveniently added or deleted to take
advantage of the previous computations performed.

With ISUB = 1, the current means of the regressors and dependent variables are
used to center the data for improved accuracy. Let xL be a column vector
containing the i-th row of data for the regressors. Let xi  represent the mean

vector for the regressors given the data for observations 1, 2, ..., i. The mean
vector is defined to be
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where the wM’s and fM’s are the weights and frequencies, respectively. The i-th row
of data has xi  subtracted from it, and then, wLfL is multiplied by the factor aL/aL-�
where

a w fi j
i

j j= =∑ 1

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:
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An orthogonal reduction on the centered matrix is computed. When wrap-up
computations (IDO = 3 or IDO = 0) are performed, the first rows of R and B are
updated so that they reflect the statistics for the original (uncentered) data. This
means that the R matrix and the estimate of the intercept are for the uncentered
data.

An orthogonal reduction on the centered matrix is computed. When wrap-up
computations (IDO = 3 or IDO = 0) are performed, the first rows of R and B are
updated so that they reflect the statistics for the original (uncentered) data. This
means that the estimate of the intercept and the R matrix are for the uncentered
data.

If the i-th regressor is a linear combination of the first i − 1 regressors, the i-th
diagonal element of R will be close to zero (exactly zero if infinite precision
arithmetic could be used) prior to the wrap-up computations. When performing
the wrap-up computations, RGLM checks sequentially for linear dependent
regressors. Linear dependence of the regressors is declared if any of the following
three conditions is satisfied:

• A regressor equals zero, as determined from XMIN and XMAX.

• Two or more regressors are constant, as determined from XMIN and XMAX.
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• The product of

1 1 2 1
2− ⋅ −Ri i, ,...,

is less than or equal to TOL. Here RL¿�,�,¤,L�� is the multiple correlation coefficient

of the i-th regressor with the first i − 1 regressors. If no intercept is in the model
(INTCEP = 0) the ‘multiple correlation’ coefficient is computed without adjusting
for the mean.

When a dependence is declared, R is changed in the wrap-up computations so as
to reflect the deletion of the i-th regressor from the model. On completion of the
wrap-up computations, if the i-th regressor is declared to be dependent upon the
previous i − 1 regressors, then the R and B matrices will have all elements in their
i-th rows set to zero.

Example 1

A one-way analysis of covariance model is fitted to the turkey data discussed by
Draper and Smith (1981, pages 243−249). The response variable is turkey weight
y (in pounds). There are three groups of turkeys corresponding to the three states
where they were reared. The age of a turkey (in weeks) is the covariate. The
explanatory variables are group, age, and interaction. The model is

yLM = µ + αL + βxLM + βLxLM + εLM     i = 1, 2, 3; j = 1, 2, …, nL

where α3 = 0 and β3 = 0. Here, the IDUMMY = 2 option is used. The fitted model
gives three separate lines, one for each state where the turkeys were reared.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    IDEP, INTCEP, LDB, LDR, LDSCPE, LDX, MAXB, MAXCL,
     &           NCLVAR, NCOL, NEF, NROW
      PARAMETER  (IDEP=1, INTCEP=1, LDX=13, MAXB=6, MAXCL=3, NCLVAR=1,
     &           NCOL=3, NEF=3, NROW=13, LDB=MAXB, LDR=MAXB,
     &           LDSCPE=IDEP)
C
      INTEGER    I, IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP),
     &           INDEF(4), IRANK, IRBEF(NEF+1), ISUB, IWT, J,
     &           NCLVAL(NCLVAR), NCOEF, NOUT, NRMISS, NVEF(NEF)
      REAL       AMACH, B(LDB,IDEP), CLVAL(MAXCL), D(MAXB), DFE,
     &           R(LDR,MAXB), SCPE(LDSCPE,IDEP), TOL, X(LDX,NCOL),
     &           XMAX(MAXB), XMIN(MAXB)
      CHARACTER  CLABEL(7)*6, RLABEL(1)*4
      EXTERNAL   AMACH, RGLM, UMACH, WRIRN, WRRRL, WRRRN
C
      DATA (X(1,J),J=1,3)  /25, 13.8, 3/
      DATA (X(2,J),J=1,3)  /28, 13.3, 1/
      DATA (X(3,J),J=1,3)  /20,  8.9, 1/
      DATA (X(4,J),J=1,3)  /32, 15.1, 1/
      DATA (X(5,J),J=1,3)  /22, 10.4, 1/
      DATA (X(6,J),J=1,3)  /29, 13.1, 2/
      DATA (X(7,J),J=1,3)  /27, 12.4, 2/
      DATA (X(8,J),J=1,3)  /28, 13.2, 2/
      DATA (X(9,J),J=1,3)  /26, 11.8, 2/
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      DATA (X(10,J),J=1,3) /21, 11.5, 3/
      DATA (X(11,J),J=1,3) /27, 14.2, 3/
      DATA (X(12,J),J=1,3) /29, 15.4, 3/
      DATA (X(13,J),J=1,3) /23, 13.1, 3/
      DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/3, 1, 1, 3/, INDDEP/2/
      DATA CLABEL/’ ’, ’MU’, ’ALPHA1’, ’ALPHA2’, ’BETA’, ’BETA1’,
     &     ’BETA2’/
      DATA RLABEL/’NONE’/
C
      IDO    = 0
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 2
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
     &           NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      WRITE (NOUT,*) ’IRANK = ’, IRANK, ’  DFE = ’, DFE, ’  ’//
     &              ’SCPE(1,1) = ’, SCPE(1,1)
      J = 0
      DO 10  I=1, NCLVAR
         CALL WRRRN (’Class values’, 1, NCLVAL(I), CLVAL(J+1), 1, 0)
         J = J + NCLVAL(I)
   10 CONTINUE
      NCOEF = IRBEF(NEF+1) - 1
      CALL WRRRN (’XMIN’, 1, NCOEF, XMIN, 1, 0)
      CALL WRRRN (’XMAX’, 1, NCOEF, XMAX, 1, 0)
      CALL WRIRN (’IRBEF’, 1, NEF+1, IRBEF, 1, 0)
      CALL WRRRN (’R-MATRIX’, NCOEF, NCOEF, R, LDR, 1)
      CALL WRRRL (’B’, 1, NCOEF, B, 1, 0, ’(2W10.4)’, RLABEL, CLABEL)
C
      END

Output
NRMISS =   0
IRANK =   6  DFE =     7.00000  SCPE(1,1) =    0.706176

      Class values
    1       2       3
1.000   2.000   3.000

                     XMIN
   1       2       3       4       5       6
1.00    0.00    0.00   20.00    0.00    0.00

                     XMAX
   1       2       3       4       5       6
1.00    1.00    1.00   32.00   32.00   29.00

    IRBEF
1   2   3   4
2   4   5   7
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                     R-MATRIX
        1       2       3       4       5       6
1    3.61    1.11    1.11   93.47   28.29   30.51
2            1.66   -0.74   -1.02   42.43  -20.34
3                    1.49    3.73    0.00   40.99
4                           11.66    7.80    0.43
5                                   5.49    -0.61
6                                            2.11

                                B
   MU      ALPHA1      ALPHA2        BETA       BETA1       BETA2
2.475      -3.454      -2.775       0.445     0.06104       0.025

Figure 2-4   Plot of Turkey Weights and Fitted Lines by State

Example 2

A two-way analysis-of-variance model is fitted to balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
weight gains (in grams) of rats fed diets varying in two components—level of
protein and source of protein. The model is

 yLMN= µ + αL+ βM+ γLM+ εLMN     i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

α β γ γi j ij ij
jiji

j i= = = = = =
====
∑∑∑∑ 0 0 0 1 2 3 0 1 2

11

2

1

3

1

2

; ; , , ; , for  and  for 
3

Here, the IDUMMY = 0 option is used.
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      INTEGER    IDEP, LDB, LDR, LDSCPE, LDX, LINDEF, MAXB, MAXCL,
     &           NCLVAR, NCOL, NEF, NROW
      PARAMETER  (IDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2,
     &           NCOL=3, NEF=3, NROW=60, LDB=MAXB, LDR=MAXB,
     &           LDSCPE=IDEP, LDX=NROW)
C
      INTEGER    I, IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP),
     &           INDEF(LINDEF), INTCEP, IRANK, IRBEF(NEF+1), ISUB,
     &           IWT, J, NCLVAL(NCLVAR), NCOEF, NOUT, NRMISS, NVEF(NEF)
      REAL       AMACH, B(LDB,IDEP), CLVAL(MAXCL), D(MAXB), DFE,
     &           R(LDR,MAXB), SCPE(LDSCPE,IDEP), TOL, X(LDX,NCOL),
     &           XMAX(MAXB), XMIN(MAXB)
      CHARACTER  CLABEL(MAXB+1)*7, RLABEL(1)*4
      EXTERNAL   AMACH, RGLM, UMACH, WRIRN, WRRRL, WRRRN
C
      DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
     &     117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0,
     &     77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
     &     108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0,
     &     51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
     &     98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
     &     81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0,
     &     10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
      DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
      DATA CLABEL/’ ’, ’MU’, ’ALPHA1’, ’ALPHA2’, ’BETA1’, ’BETA2’,
     &     ’BETA3’, ’GAMMA11’, ’GAMMA12’, ’GAMMA13’, ’GAMMA21’,
     &     ’GAMMA22’, ’GAMMA23’/
      DATA RLABEL/’NONE’/
C
      IDO    = 0
      INTCEP = 1
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 0
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
     &           NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      WRITE (NOUT,*) ’IRANK = ’, IRANK, ’  DFE = ’, DFE, ’  ’//
     &              ’SCPE(1,1) = ’, SCPE(1,1)
      J = 0
      DO 10  I=1, NCLVAR
         CALL WRRRN (’Class Values’, 1, NCLVAL(I), CLVAL(J+1), 1, 0)
         J = J + NCLVAL(I)
   10 CONTINUE
      NCOEF = IRBEF(NEF+1) - 1
      CALL WRRRN (’XMIN’, 1, NCOEF, XMIN, 1, 0)
      CALL WRRRN (’XMAX’, 1, NCOEF, XMAX, 1, 0)
      CALL WRIRN (’IRBEF’, 1, NEF+1, IRBEF, 1, 0)
      CALL WRRRN (’R-MATRIX’, NCOEF, NCOEF, R, LDR, 1)
      CALL WRRRL (’B’, 1, NCOEF, B, 1, 0, ’(2W10.4)’, RLABEL, CLABEL)
C
      END
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Output
NRMISS =   0
IRANK =   12  DFE =     54.0000  SCPE(1,1) =     11586.0

Class Values
    1       2
1.000   2.000

    Class Values
    1       2       3
1.000   2.000   3.000

                                    XMIN
    1      2      3       4       5       6       7       8       9      10
1.000  0.000  0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

   11      12
0.000   0.000

                                     XMAX
    1      2      3       4       5       6       7       8       9      10
1.000  1.000  1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000

   11      12
1.000   1.000

     IRBEF
1    2    3    4
2    4    7   13

                                  R-MATRIX
        1       2       3       4       5       6       7       8       9
1   7.746   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
2          -1.000  -1.000   0.000   0.000   0.000   0.000   0.000   0.000
3                   7.746   0.000   0.000   0.000   0.000   0.000   0.000
4                          -1.000  -1.000  -1.000   0.000   0.000   0.000
5                                   6.325   3.162   0.000   0.000   0.000
6                                           5.477   0.000   0.000   0.000
7                                                  -1.000   0.000   0.000
8                                                          -1.000   0.000
9                                                                  -1.000

       10      11      12
1   0.000   0.000   0.000
2   0.000   0.000   0.000
3   0.000   0.000   0.000
4   0.000   0.000   0.000
5   0.000   0.000   0.000
6   0.000   0.000   0.000
7  -1.000   0.000   0.000
8   0.000  -1.000   0.000
9   0.000   0.000  -1.000
10  -1.000  -1.000  -1.000
11           6.325   3.162
12                   5.477

                                    B
         MU      ALPHA1      ALPHA2       BETA1       BETA2       BETA3
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      87.87       7.267      -7.267       1.733      -2.967       1.233

    GAMMA11     GAMMA12     GAMMA13     GAMMA21     GAMMA22     GAMMA23
      3.133      -6.267       3.133      -3.133       6.267      -3.133

RLEQU/DRLEQU (Single/Double precision)
Fit a multivariate linear regression model with linear equality restrictions H B = G
imposed on the regression parameters given results from routine RGIVN (page
107) after IDO = 1 and IDO = 2 and prior to IDO = 3.

Usage
CALL RLEQU (INVOKE, NH, NCOEF, H, LDH, IG, NDEP, G, LDG,
            TOL, B, LDB, R, LDR, D, IRANKR, DFE, SCPE,
            LDSCPE, IRANKH)

Arguments

INVOKE — Invocation option.   (Input)

INVOKE Action
0 This is the only invocation of RLEQU. All the restrictions are input at

once.
1 This is the first invocation, and additional calls to RLEQU will be made.

Initialization and updating for the restrictions H B = G are performed.
2 This is an intermediate invocation of RLEQU, and updating for the

restrictions H B = G is performed.
3 This is the final invocation of this routine. Updating for the restrictions

H B = G is performed, and wrap-up computations are performed.

NH — Number of rows in the restriction H B = G.   (Input)

NCOEF — Number of coefficients in the regression equation for each dependent
variable.   (Input)

H — NH by NCOEF matrix with the i-th row specifying a linear combination of the
regression parameters for the i-th row in the restriction H B = G.   (Input)

LDH — Leading dimension of H exactly as specified in the dimension statement
of the calling program.   (Input)

IG — Option for G matrix.   (Input)

IG Restrictions
0 H B = 0
1 H B = G

NDEP — Number of dependent (response) variables.   (Input)

G — NH by NDEP matrix containing the right-hand side of the restriction
H B = G.   (Input, if IG = 1)
If IG = 0, G is not referenced and can be a vector of length 1.
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LDG — Leading dimension of G exactly as specified in the dimension statement
in the calling program.   (Input)

TOL — Tolerance used in determining linear dependence.   (Input)
For RLEQU, TOL = 100.0 * AMACH(4) is a common choice. For DRLEQU,
TOL = 100.0 * DMACH(4) is a common choice. See the documentation for IMSL
routines AMACH and DMACH (Reference Material).

B — NCOEF by NDEP matrix containing on return from the final invocation of this
routine a least-squares solution for the regression coefficients in the restricted
model.   (Input/Output)
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the B matrix from
RGIVN (page 107) after RGIVN’s invocation with IDO = 1 and IDO = 2 and prior
to IDO = 3 with NROW = 0. After the wrap-up computations are computed by
RLEQU, B contains a least-squares solution for the regression coefficients in the
restricted model.

LDB — Leading dimension B exactly as specified in the dimension statement in
the calling program.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing, on return from the
final invocation of this routine, the R matrix from the restricted regression fit.
(Input/Output)
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the R matrix from
RGIVN after RGIVN’s invocation with IDO = 1 and IDO = 2 and prior to IDO = 3
with NROW = 0. After the wrap-up computations are computed by RLEQU, R
contains the R matrix from the restricted regression fit. Elements to the right of a
diagonal element of R (that is zero) are also zero. A zero row in R indicates a
nonfull rank model. Each row of R corresponding to a restriction has a
corresponding diagonal element that is negative. Each remaining row of R has a
corresponding diagonal element that is positive.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

D — Vector of length NCOEF containing scale factors associated with the fast
Givens transformations.   (Input/Output)
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the D from RGIVN
after RGIVN’s invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with
NROW = 0. After the wrap-up computations are computed by RLEQU, D contains all
its elements set to 1.0.

IRANKR — Rank of matrix R.   (Output, if INVOKE = 0 or 3)

DFE — Degrees of freedom for error for the restricted model on return from the
final invocation of this routine.   (Input/Output)
Prior to the final invocation of this routine, DFE contains the sum of the
frequencies. Invocation of RLEQU with INVOKE = 0 and 1 requires as input the
DFE from RGIVN after RGIVN’s invocation with IDO = 1 and IDO = 2 and prior to
IDO = 3 with NROW = 0.
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SCPE — NDEP by NDEP matrix containing error (residual) sums of squares and
crossproducts for the restricted model.   (Input/Output)
SCPE(M, N) is the current sum of crossproducts of residuals for the M-th and N-th
dependent variables. Invocation of RLEQU with INVOKE = 0 and 1 requires as
input the SCPE matrix from RGIVN after RGIVN’s invocation with IDO = 1 and
IDO = 2 and prior to IDO = 3 with NROW = 0.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension
statement in the calling program.   (Input)

IRANKH — Rank of matrix H.   (Output)

Comments

1. Automatic workspace usage is

RLEQU NCOEF + NDEP units, or
DRLEQU 2 * NCOEF + 2 * NDEP units.

Workspace may be explicitly provided, if desired, by use of
R2EQU/DR2EQ. The reference is

CALL R2EQU (INVOKE, NH, NCOEF, H, LDH, IG, NDEP, G,
             LDG, TOL, B,LDB, R, LDR, D, IRANKR,
             DFE, SCPE, LDSCPE, IRANKH, WK)

The additional argument is

WK — Work vector of length NCOEF + NDEP.

2. Informational error
Type Code
   3    1 The restrictions are inconsistent.

3. The results of routine RGLM (page 117) can be used as input to RLEQU in
place of the results of routine RGIVN (page 107).

Algorithm

Routine RLEQU requires the output from routine RGIVN (page 107) after RGIVN
has been invoked with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0.
Similarly, RLEQU can use results from IMSL routine RGLM (page 117).

The routine RLEQU is designed so that you can partition a large number of
restrictions, as might arise in classification models, into several groups of
restrictions (each requiring less space) and make multiple calls to RLEQU (with
INVOKE = 1, 2, 2, …, 3). Alternatively, one invocation of RLEQU (with INVOKE =
0) can be made with all the restrictions contained in H and G.

After the wrap-up computations are performed by RLEQU, routines RSTAT
(page 141) and RCASE (page 191) can be used to compute and print summary
statistics and case statistics related to the fitted regression.

Routine RGIVN (or RGLM) together with routine RLEQU compute estimates of the
regression coefficients in a multivariate general linear model Y = X B + Ε
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subject to H B = G. Here, Y is the n × q matrix of responses, X is the n × p matrix
of regressors, B is the p × q matrix of regression coefficients, and Ε is the n × q
matrix of errors whose q-dimensional rows are identically and independently
distributed multivariate normal with mean vector 0 and variance-covariance
matrix Σ. The restriction is specified by the h × p matrix H and the
h × q matrix G.

Previously, algorithms for solving the restricted least-squares problem were based
on solving the following equations (Rao, 1973, page 232):

X X B H X Y

H B G

T T T$

$

+ =

=

Λ

Routine RLEQU is based on an orthogonal reduction of X to upper triangular form.
Fast Givens transformations with modifications described by Stirling (1981) for
incorporating restrictions are used. This method has two main advantages: (1) the

loss of accuracy resulting from forming X7 X and X7 Y is avoided, and (2)
restrictions can be conveniently added so as to take advantage of the previous
computations performed.

The method conceptually treats restrictions as observations with zero error
variance. Fast Givens transformations as described by Golub and Van Loan
(1983, pages 156−162) are used. The modification to the matrix R from the
unrestricted fit to form a modified

~
R

for the restricted fit is as follows:

1. If the leading nonzero element of the first restriction is small (as
determined by TOL times a computed scale factor), the element is set to
zero.

2. Let i be the index of the leading nonzero element in the modified first
restriction. Replace row i of R by the restriction. Flag the i-th row as a
restriction. Use the restriction to reduce the first nonzero element of the
row that was removed from R to zero. Incorporate the row that has been
reduced by the restriction into the remaining rows of R as if it were new
data.

3. Add additional restrictions into R by using Gaussian elimination, with
the rows in R corresponding to restrictions, to reduce the restriction to a
form so that it can replace a row of R corresponding to data and preserve
the upper triangular structure of R. While performing the Gaussian
elimination, set small nonzero elements (as determined by TOL times a
computed scale factor) of the reduced restriction to zero, so that errors
from in exact computer arithmetic are not incorporated as a new
restriction. Flag the row as a restriction. Use the restriction to reduce the
first nonzero element of the row that was removed from R to
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zero. Incorporate the row that has been reduced by the restriction into
the remaining rows of R as if it were new data.

4. After all the data and restrictions are incorporated, the i-th row of R
(where i ranges over each row of R corresponding to a linearly
independent constraint) is used to zero out elements of R in the i-th
column of the previous rows of R that correspond to data. Although this
step is not required to get a least-squares solution, Sallas (1988)
recommends this step so that the rows and columns of

~
R

corresponding to data form the R matrix for the reduced model that
arises from expressing some regression parameters, βL, in terms of other

regression parameters, βM(j > i).

Linear dependence of the regressors in the reduced model is then checked as part
of the wrap-up computations, using the rows and columns of R corresponding to
the reduced model. The check is complicated somewhat by the fact that a
regressor could become zero in the reduced model, but because of the finite
precision of computer arithmetic, the regressor is not exactly zero. Let dL equal

the i-th diagonal element of X7 X, and let
~
di

equal the corresponding diagonal from the crossproducts matrix for the reduced
model. Linear dependence of regressors in the reduced model is declared if

1 1 2 1
2− ⋅ −Ri i, ,...,

is less than or equal to TOL or if

1 1 2 1
2− ⋅ −R d di i i i, ,...,

~
/3 8

is less than or equal to TOL. (The last check is designed to detect a zero regressor
in the reduced model.) Here,

Ri i⋅ −1 2 1
2

, ,...,

is the square of the “multiple correlation” coefficient of the i-th regressor in the
reduced model with the first i − 1 regressors in the reduced model. The “multiple
correlation” coefficient is computed using the regressors in the reduced model
and adjusted for the mean only if the incorporated restrictions have that effect.

When a linear dependence is declared, R is changed so as to reflect the deletion
of the i-th regressor from the model. On completion of the wrap-up computations,
the rows of R can be partitioned into three classes according to the sign of the
corresponding diagonal element:
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1. A positive diagonal element means the row/column corresponds to data
for regressors in the reduced model.

2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by
H B = G.

3. A zero diagonal element means a linear dependence in the reduced
model was declared. The regression coefficients in the corresponding
row of

$B
are set to zero. This represents an arbitrary restriction that is imposed to
obtain a solution for the regression coefficients. The elements of the
corresponding row of R are also set to zero.

Redundant restrictions on the regression parameters are frequently specified in
general linear models. Routine RLEQU permits redundant restrictions and returns
the rank of H. An informational error is issued if inconsistent restrictions are
detected.

Example 1

A grafted polynomial (spline function) is fit to data discussed by Fuller (1976,
pages 396−398). The data set contains the response variable y measuring the
annual wheat yield (in bushels per acre) for the years 1908 through 1971. In order
to fit the trend, Fuller fits a function that is constant for the first 25 years,
increases at a quadratic rate until 1961, and is linear for the last 10 years. This
trend is represented by the function f(t) where

f t

t

t t t

t t
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if 

where t = 1 for 1908.

In order to fit a smooth function to the data, we require both continuity and
differentiability. This imposes four restrictions on the coefficients given as
follows:

1. β1 − β2 − 25β3 − 252β4 = 0

2. β2 + 54β3 + 542β4 − β5 − 54β6 = 0
3. β3 + 50β4 = 0
4. β3 + 108β4 − β6 = 0

The example program first calls routine RGIVN (page 107) with IDO = 1, which
specifies that initialization and updating for the data are performed and wrap-up
computations are not performed. This intermediate output from RGIVN along with
the restrictions is the input to RLEQU .
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      INTEGER    IDEP, LDB, LDG, LDH, LDR, LDSCPE, LDX, NCOEF, NH,
     &           NOBS, NVAR
      PARAMETER  (IDEP=1, LDG=1, NCOEF=6, NH=4, NOBS=64, NVAR=7,
     &           LDB=NCOEF, LDH=NH, LDR=NCOEF, LDSCPE=IDEP, LDX=NOBS)
C
      INTEGER    I, IDO, IFRQ, IG, INDDEP(IDEP), INDIND(NCOEF),
     &           INTCEP, INVOKE, IRANK, IRANKH, IRANKR, ISUB, IWT, NOUT,
     &           NRMISS
      REAL       AMACH, B(LDB,IDEP), D(NCOEF), DFE, G(LDG,IDEP),
     &           H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,IDEP), TOL,
     &           X(LDX,NVAR), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER*4 RLABEL(1), CLABEL(1)
      EXTERNAL   AMACH, RGIVN, RLEQU, UMACH, WRRRL
C
      DATA INDIND/1, 2, 3, 4, 5, 6/, INDDEP/7/
      DATA X/384*0.0, 14.3, 15.5, 13.7, 12.4, 15.1, 14.4, 16.1, 16.7,
     &     11.9, 13.2, 14.8, 12.9, 13.5, 12.7, 13.8, 13.3, 16.0, 12.8,
     &     14.7, 14.7, 15.4, 13.0, 14.2, 16.3, 13.1, 11.2, 12.1, 12.2,
     &     12.8, 13.6, 13.3, 14.1, 15.3, 16.8, 19.5, 16.4, 17.7, 17.0,
     &     17.2, 18.2, 17.9, 14.5, 16.5, 16.0, 18.4, 17.3, 18.1, 19.8,
     &     20.2, 21.8, 27.5, 21.6, 26.1, 23.9, 25.0, 25.2, 25.8, 26.5,
     &     26.3, 25.9, 28.4, 30.6, 31.0, 33.9/
      DATA (H(1,J),J=1,NCOEF)/1, -1, -25, -625, 0, 0/
      DATA (H(2,J),J=1,NCOEF)/0, 1, 54, 2916, -1, -54/
      DATA (H(3,J),J=1,NCOEF)/0, 0, 1, 50, 0, 0/
      DATA (H(4,J),J=1,NCOEF)/0, 0, 1, 108, 0, -1/
C
      DATA RLABEL/’NONE’/,CLABEL/’NONE’/
C
      DO 10  I=1, NOBS
         IF (I .LE. 25) THEN
C                                 Constant function.
            X(I,1) = 1.0
         ELSE IF (I.GT.25 .AND. I.LE.54) THEN
C                                 Quadratic function.
            X(I,2) = 1.0
            X(I,3) = I
            X(I,4) = I**2
         ELSE IF (I .GT. 54) THEN
C                                 Linear function.
            X(I,5) = 1.0
            X(I,6) = I
         END IF
   10 CONTINUE
      IDO    = 1
      INTCEP = 0
      IFRQ   = 0
      IWT    = 0
      ISUB   = 0
      TOL    = 100.*AMACH(4)
      CALL RGIVN (IDO, NOBS, NVAR, X, LDX, INTCEP, NCOEF, INDIND,
     &            IDEP, INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR,
     &            D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      INVOKE = 0
      IG     = 0
      CALL RLEQU (INVOKE, NH, NCOEF, H, LDH, IG, IDEP, G, LDG, TOL, B,
     &            LDB, R, LDR, D, IRANKR, DFE, SCPE, LDSCPE, IRANKH)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’IRANKR = ’, IRANKR, ’  IRANKH = ’, IRANKH
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      WRITE (NOUT,*) ’DFE = ’, DFE, ’  SCPE(1,1) = ’, SCPE(1,1)
      CALL WRRRL (’%/B’, 1, NCOEF, B, 1, 0, ’(2W10.4)’, RLABEL, CLABEL)
      CALL WRRRL (’%/R’, NCOEF, NCOEF, R, LDR, 1, ’(2W10.4)’, RLABEL,
     &            CLABEL)
      END

Output
IRANKR =   6  IRANKH =   4
DFE =     62.0000  SCPE(1,1) =     172.559

                              B
13.99       21.58     -0.6068     0.01214      -13.81      0.7039

                              R
   -1           1          25         625          0.         0.0
               -1         -54       -2916          1.        54.0
                           -1         -50          0.         0.0
                                      -58          0.         1.0
                                                   8.       359.4
                                                             59.4

Figure 2-5   Annual U.S. Wheat Yield and a Grafted Polynomial Fit

Example 2

A fit to unbalanced data for a two-way classification model is computed. The
model is
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yLMN = µ + αL+ βM+ γLM + εLMN�     i = 1, 2; j = 1, 2; k = 1, 2, …, nLM

where the αL’s and βM’s are the row and column effects, respectively, and γLM’s are
the interaction effects. The responses yLMN�are given in the cells of the following 2
× 2 table:

17, 14, 11 13, 12

12, 14, 15, 14, 12 13, 14

The following restrictions can be imposed on the regression parameters in order
to compute a cell-means fit to the responses:

1. 5α1 + 7α2 = 0
2. 8β1 + 4β2 = 0
3. 3α1 + 5α2 + 3γ11+ 5γ21 = 0
4. 2α1 + 2α2 + 2γ12+ 2γ22 = 0
5. 3β1 + 2β2 + 3γ11+ 2γ21 = 0
6. 5β1 + 2β2 + 5γ12+ 2γ22 = 0

The example program first calls IMSL routine RGLM (page 117) with IDO = 1,
which specifies that initialization and updating for the data are performed and
wrap-up computations are not performed. This intermediate output from RGLM

along with the restrictions is the input to RLEQU.

A cell-means fit to the data could also be obtained without using RLEQU and using
IDO = 0 in the call to RGLM in this example. Although the fitted yLMN would be the
same, the coefficient estimates and their interpretations would be different.

      INTEGER    IDEP, INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDX, MAXCL,
     &           NCLVAR, NCOEF, NEF, NH, NOBS, NVAR
      PARAMETER  (IDEP=1, INTCEP=1, LDG=1, LDH=6, MAXCL=4, NCLVAR=2,
     &           NCOEF=9, NEF=3, NH=6, NOBS=12, NVAR=3, LDB=NCOEF,
     &           LDR=NCOEF, LDSCPE=IDEP, LDX=NOBS)
C
      INTEGER    IDO, IFRQ, IG, INDCL(NCLVAR), INDDEP(1), INDEF(4),
     &           INVOKE, IRANK, IRANKH, IRANKR, IRBEF(NEF+1), ISUB, IWT,
     &           MODEL, NCLVAL(NCLVAR), NOUT, NRMISS, NVEF(NEF)
      REAL       AMACH, B(LDB,IDEP), CLVAL(MAXCL), D(NCOEF), DFE,
     &           G(LDG,IDEP), H(LDH,NCOEF), R(LDR,NCOEF),
     &           SCPE(LDSCPE,IDEP), TOL, X(LDX,NVAR), XMAX(NCOEF),
     &           XMIN(NCOEF)
      CHARACTER  CLABEL(10)*7, RLABEL(1)*4
      EXTERNAL   AMACH, RGLM, RLEQU, UMACH, WRRRL, WRRRN
C
      DATA INDCL/1, 2/, NVEF/1, 1, 2/, INDEF/1, 2, 1, 2/, INDDEP/3/
      DATA CLABEL/’ ’, ’MU’, ’ALPHA1’, ’ALPHA2’, ’BETA1’, ’BETA2’,
     &     ’GAMMA11’, ’GAMMA12’, ’GAMMA21’, ’GAMMA22’/
      DATA (X(1,J),J=1,NVAR)  /1, 1, 17/
      DATA (X(2,J),J=1,NVAR)  /1, 1, 14/
      DATA (X(3,J),J=1,NVAR)  /1, 1, 11/
      DATA (X(4,J),J=1,NVAR)  /1, 2, 13/
      DATA (X(5,J),J=1,NVAR)  /1, 2, 12/
      DATA (X(6,J),J=1,NVAR)  /2, 1, 12/
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      DATA (X(7,J),J=1,NVAR)  /2, 1, 14/
      DATA (X(8,J),J=1,NVAR)  /2, 1, 15/
      DATA (X(9,J),J=1,NVAR)  /2, 1, 14/
      DATA (X(10,J),J=1,NVAR) /2, 1, 12/
      DATA (X(11,J),J=1,NVAR) /2, 2, 13/
      DATA (X(12,J),J=1,NVAR) /2, 2, 14/
      DATA (H(1,J),J=1,NCOEF) /0, 5, 7, 0, 0, 0, 0, 0, 0/
      DATA (H(2,J),J=1,NCOEF) /0, 0, 0, 8, 4, 0, 0, 0, 0/
      DATA (H(3,J),J=1,NCOEF) /0, 3, 5, 0, 0, 3, 0, 5, 0/
      DATA (H(4,J),J=1,NCOEF) /0, 2, 2, 0, 0, 0, 2, 0, 2/
      DATA (H(5,J),J=1,NCOEF) /0, 0, 0, 3, 2, 3, 2, 0, 0/
      DATA (H(6,J),J=1,NCOEF) /0, 0, 0, 5, 2, 0, 0, 5, 2/
C
      IDO   = 1
      IFRQ  = 0
      IWT   = 0
      MODEL = 1
      ISUB  = 0
      TOL   = 100.*AMACH(4)
      CALL RGLM (IDO, NOBS, NVAR, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
     &           NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, MODEL, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      INVOKE = 0
      IG  = 0
      CALL RLEQU (INVOKE, NH, NCOEF, H, LDH, IG, IDEP, G, LDG, TOL, B,
     &            LDB, R, LDR, D, IRANKR, DFE, SCPE, LDSCPE, IRANKH)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’IRANKR = ’, IRANKR, ’  IRANKH = ’, IRANKH
      WRITE (NOUT,*) ’DFE = ’, DFE, ’  SCPE(1,1) = ’, SCPE(1,1)
      RLABEL(1) = ’NONE’
      CALL WRRRL (’B’, 1, NCOEF, B, 1, 0, ’(F7.2)’, RLABEL, CLABEL)
      CALL WRRRN (’R’, NCOEF, NCOEF, R, LDR, 1)
      END

Output
IRANKR =   9  IRANKH =   5
DFE =     8.00000  SCPE(1,1) =     26.2000

                                    B
       MU   ALPHA1   ALPHA2    BETA1    BETA2  GAMMA11  GAMMA12  GAMMA21
    13.42    -0.02     0.01     0.21    -0.42     0.39    -0.48    -0.24

GAMMA22
   0.49

                                     R
        1       2       3       4       5       6       7       8       9
1    3.46    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00
2           -5.00   -7.00    0.00    0.00    0.00    0.00    0.00    0.00
3                   -0.80    0.00    0.00   -3.00    0.00   -5.00    0.00
4                           -8.00   -4.00    0.00    0.00    0.00    0.00
5                                   -0.50   -3.00   -2.00    0.00    0.00
6                                           -3.00   -2.00   -5.00   -2.00
7                                                   10.41    3.20   11.37
8                                                           24.56    9.65
9                                                                    2.45
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RSTAT/DRSTAT (Single/Double precision)
Compute statistics related to a regression fit given the coefficient estimates

$β
and the R matrix.

Usage
CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT,
            AOV, SQSS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)

Arguments

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IEF — Effect option.   (Input)
The absolute value of IEF is the number of effects (sources of variation) in the
model excluding the error. The sign of IEF specifies the following options:

IEF Meaning
< 0 Each effect corresponds to a single regressor (coefficient) in the model.
> 0 Each effect corresponds to one or more regressors. The association

between the effects and the regressors is given by elements of IRBEF.
0 There are no effects in the model. INTCEP must equal 1.

IRBEF — Index vector of length |IEF| + 1.   (Input, if IEF is positive.)
For i = 1, 2, …, |IEF|, element numbers IRBEF(i), IRBEF(i) + 1, …, IRBEF(i + 1) 
− 1, of B correspond to the i-th effect.

B — Vector of length NCOEF containing a least-squares solution

$β
for the regression coefficients.   (Input)
Here, if IEF> 0, then NCOEF = IRBEF(IEF + 1) − 1; and if IEF ≤ 0, then
NCOEF = INTCEP − IEF. If INTCEP = 1, then B(1) must be the estimated
intercept.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
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restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

DFE — Degrees of freedom for error.   (Input)

SSE — Sum of squares for error.   (Input)

PRINT — Printing option.   (Input)
PRINT is a character string indicating what is to be printed. The PRINT string is
composed of one character print codes to control printing. These print codes are
given as follows:

PRINT(I : I) Printing that occurs
‘A’          All
‘N’          None
‘1’          AOV

‘2’          SQSS

‘3’          COEF

‘4’          COVB

The concatenated print codes ‘A’, ‘N’, ‘1’, …, ‘4’ that comprise the PRINT string
give the combination of statistics to be printed. Here are a few examples.

PRINT Printing Action
‘A’ All
‘N’ None
‘13’ AOV and COEF
‘124’ AOV, SQSS, and COVB

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for regression
2 Degrees of freedom for error
3 Total degrees of freedom
4 Sum of squares for regression
5 Sum of squares for error
6 Total sum of squares
7 Regression mean square
8 Error mean square
9 F-statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error
14 Mean of the response (dependent) variable
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15 Coefficient of variation (in percent)

If INTCEP = 1, the regression and total are corrected for the mean. If INTCEP = 0,
the regression and total are not corrected for the mean, and AOV(14) and AOV(15)
are set to NaN (not a number).

SQSS — |IEF| by 4 matrix containing in columns 1 through 4 the sequential
degrees of freedom, sum of squares, F-statistic, and p-value.   (Output)
Each row corresponds to an effect. If IEF = 0, SQSS is not referenced and can be
a vector of length one.

LDSQSS — Leading dimension of SQSS exactly as specified in the dimension
statement in the calling program.   (Input)

COEF — NCOEF by 5 matrix containing statistics relating to the regression
coefficients.   (Output)
Each row corresponds to a coefficient in the model. Row INTCEP + I
corresponds to the coefficient for the I-th independent variable. If INTCEP = 1,
the first row corresponds to the intercept. The statistics in the columns are

Col. Description
1 Coefficient estimate.
2 Estimated standard error of the coefficient estimate.
3 t-statistic for the test that the coefficient is zero.
4 p-value for the two-sided t test.
5 Variance inflation factors. The square of the multiple correlation

coefficient for the I-th regressor after all others can be obtained from
COEF(I, 5) by the formula 1.0 − 1.0/COEF(I, 5). If INTCEP = 0 or
INTCEP = 1 and I = 1, the “multiple correlation coefficient” is not
adjusted for the mean.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COVB — NCOEF by NCOEF matrix that is the estimated variance-covariance
matrix of the estimated regression coefficients when R is nonsingular and is from
an unrestricted regression fit.   (Output)
See Comments for an explanation of COVB when R is singular or R is from a
restricted regression fit. If R is not needed, COVB and R can share the same
storage locations.

LDCOVB — Leading dimension of COVB exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

When R is nonsingular and comes from an unrestricted regression fit, COVB is
the estimated variance-covariance matrix of the estimated regression

coefficients, and COVB = (SSE/DFE) * (R7R)-1. Otherwise, variances and
covariances of estimable functions of the regression coefficients can be obtained

using COVB, and COVB = (SSE/DFE) * GDG7. Here, D is the diagonal matrix
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with diagonal elements equal to 0 if the corresponding rows of R are restrictions
and with diagonal elements equal to one otherwise. Also, G is a particular
generalized inverse of R. See the Algorithm section.

Algorithm

Routine RSTAT computes summary statistics from a fitted general linear model.
The model is y = Xβ + ε where y is the n × 1 vector of responses, X is the n × p
matrix of regressors, β is the p × 1 vector of regression coefficients, and ε is the
n × 1 vector of errors whose elements are each independently distributed with

mean 0 and variance σ2. Routine RGIVN (page 107) or routine RGLM (page 117)
can be used to compute the fit of the model. Next, RSTAT uses the results of this
fit to compute summary statistics, including analysis of variance, sequential sum
of squares, t tests, and estimated variance-covariance matrix of the estimated
regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th element

of ε has variance σ2/wL and the weights wL are used in the fit of the model, RSTAT
produces summary statistics from the weighted least-squares fit. More generally,

if the variance-covariance matrix of ε is σ2V, RSTAT can be used to produce
summary statistics from the generalized least-squares fit. (Routine RGIVN can be

used to perform a generalized least-squares fit, by regressing y* on X* where

y* = (T-1)7y, X* = (T-1)7X and T satisfies T7T = V. Routines for computing y* and

X* can be found in the IMSL MATH/LIBRARY.)

If the general linear model has the restriction H β = g on the regression
parameters, and this restriction is used in the fit of the model by routine RLEQU
(page 131), RSTAT produces summary statistics from this restricted least-squares
fit.

The sequential sum of squares for the i-th regression parameter is given by

( $ )R iβ 2

The regression sum of squares is given by the sum of the sequential sums of
squares. If an intercept is in the model, the regression sum of squares is adjusted
for the mean, i.e.,

( $ )Rβ 1
2

is not included in the sum.

The estimate of σ2 is s2 (stored in AOV(8)) that is computed as SSE/DFE.

If R is nonsingular, the estimated variance-covariance matrix of

$β

(stored in COVB) is computed by s2R-1(R-1)7.
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If R is singular, corresponding to rank (X) < p, a generalized inverse is used. For a
matrix G to be a gL(i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy

conditions j (for j ≤ i) for the Moore-Penrose inverse but generally must fail
conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse
of A are as follows:

1. AGA = A
2. GAG = G
3. AG is symmetric
4. GA is symmetric

In the case where R is singular, the method for obtaining COVB follows the
discussion of Maindonald (1984, pages 101−103). Let Z be the diagonal matrix
with diagonal elements defined by

z
r

rii
ii

ii
=

≠
=

%&'
1

0

0

0

if

if

Let G be the solution to RG = Z obtained by setting the i-th ({i : rLL = 0}) row of G

to zero. COVB is set to s2GG7. (G is a g3 inverse of R. For any g3 inverse of R,
represented by

Rg3

the result

R Rg g T3 3

is a symmetric g2 inverse of R7R = X7X. See Sallas and Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable
functions of the regression coefficients, i.e., nonestimable functions (linear
combinations of the regression coefficients not in the space spanned by the
nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages
166−168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in
column 2 of COEF) are computed as square roots of the corresponding diagonal
entries in COVB.

For the case where an intercept is in the model, put

R
equal to the matrix R with the first row and column deleted. Generally, the
variance inflation factor (VIF) for the i-th regression coefficient is computed as

the product of the i-th diagonal element of R7R and the i-th diagonal element of
its computed inverse. If an intercept is in the model, the VIF for those coefficients
not corresponding to the intercept uses the diagonal elements of

R RT
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(see Maindonald 1984, page 40).

The preceding discussion can be modified to include the restricted least-squares
problem. The modification is based on the work of Stirling (1981). Let the matrix
D = diag(d1, d2, …, dS) be a diagonal matrix with elements dL = 0 if the i-th row
of R corresponds to restriction. In the unrestricted case, D is simply the

p × p identity matrix. The formula for COVB is s2GDG7. The formula for the
sequential sum of squares for the i-th ({i : rLL > 0}) regression parameter is given
by

DR
i

$β4 92

Sequential sums of squares for {i : rLL ≤ 0} are set to zero.

For the restricted least-squares problem, the sequential and regression sums of
squares correspond to those from a fitted reduced model obtained by first
substituting the restriction Hβ = g into the model. In general, the reduced model
is not unique. Care must be taken to interpret the sequential sums of squares in
the context of the particular reduced model indicated by the R matrix. If g = 0,
any of the reduced models that could be computed from the restrictions will
produce the same regression sum of squares. However, if g ≠ 0, different reduced
models resulting from the same restricted model can have different regressands,
and hence, different total and regression sums of squares.

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629−
630). This data set is put into the matrix X by routine GDATA (page 1302). There
are 4 independent variables and 1 dependent variable. Routine RGIVN (page 107)
is invoked to fit the regression model and RSTAT is invoked to compute summary
statistics.

C                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDSQSS,
     &           LDX, NCOEF, NDEP, NDX, NIND
      PARAMETER  (INTCEP=1, LDX=13, NDEP=1, NDX=5, NIND=4,
     &           LDSCPE=NDEP, LDSQSS=NIND, NCOEF=INTCEP+NIND,
     &           LDB=NCOEF, LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCOEF)
C
      INTEGER    IDEP, IDO, IEF, IFRQ, IIND, INDDEP(1), INDIND(1),
     &           IRANK, IRBEF(1), ISUB, IWT, NCOL, NRMISS, NROW
      REAL       AMACH, AOV(15), B(LDB,NDEP), COEF(LDCOEF,5),
     &           COVB(LDCOVB,5), D(NCOEF), DFE, R(LDR,NCOEF),
     &           SCPE(LDSCPE,NDEP), SQSS(LDSQSS,4), SSE, TOL,
     &           X(LDX,NDX), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  PRINT*5
      EXTERNAL   AMACH, GDATA, RGIVN, RSTAT
C
      CALL GDATA (5, 0, NROW, NCOL, X, LDX, NDX)
      IDO  = 0
      IIND = -NIND
      IDEP = -NDEP
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      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = AMACH(4)*100.0
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      PRINT = ’A’
      IEF   = -NIND
      SSE   = SCPE(1,1)
C
      CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV,
     &            SQSS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)
C
      END

Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   98.238     97.356           2.446       95.42           2.563

               * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             4      2667.9       667.0    111.479    0.0000
Residual               8        47.9         6.0
Corrected Total       12      2715.8

         * * * Sequential Statistics * * *
Indep.    Degrees of     Sum of                Prob. of
Variable     Freedom     Squares  F-statistic   Larger F
       1           1      1450.1      242.368     0.0000
       2           1      1207.8      201.870     0.0000
       3           1         9.8        1.637     0.2366
       4           1         0.2        0.041     0.8441

                * * * Inference on Coefficients * * *
                      Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       62.41       70.07        0.891      0.3991     10668.5
    2        1.55        0.74        2.083      0.0708        38.5
    3        0.51        0.72        0.705      0.5009       254.4
    4        0.10        0.75        0.135      0.8959        46.9
    5       -0.14        0.71       -0.203      0.8441       282.5

  * * * Variance-Covariance Matrix for the Coefficient Estimates * * *
              1             2             3             4             5
1       4909.95        -50.51        -50.60        -51.66        -49.60
2                        0.55          0.51          0.55          0.51
3                                      0.52          0.53          0.51
4                                                    0.57          0.52
5                                                                  0.50

Example 2

A one-way analysis of covariance model is fitted to the turkey data discussed by
Draper and Smith (1981, pages 243−249). The response variable is turkey
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weight y (in pounds). Three groups of turkeys corresponding to the three states
where they were reared are used. The age of a turkey (in weeks) is the covariate.
The explanatory variables are age, group, and interaction. The model is

yLM = µ + βxLM + αL + βLxLM + εLM�     i = 1, 2, 3; j = 1, 2, …, nL

where α3 = 0 and β3 = 0. Routine RGLM (page 117) is used to fit the model with
the option IDUMMY = 2. Then, RSTAT is used to compute summary statistics. The
fitted model gives three separate lines with slopes 0.506, 0.470, and 0.445. The F
test for interaction (the last effect) suggests omitting the interaction from the
model and using a model with identical slopes for each group.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    IDEP, IEF, INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE,
     &           LDSQSS, LDX, MAXB, MAXCL, NCLVAR, NCOL, NROW
      PARAMETER  (IDEP=1, IEF=3, INTCEP=1, LDX=13, MAXB=6, MAXCL=3,
     &           NCLVAR=1, NCOL=3, NROW=13, LDB=MAXB, LDCOEF=MAXB,
     &           LDCOVB=MAXB, LDR=MAXB, LDSCPE=IDEP, LDSQSS=IEF)
C
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP),
     &           INDEF(4), IRANK, IRBEF(IEF+1), ISUB, IWT,
     &           NCLVAL(NCLVAR), NRMISS, NVEF(IEF)
      REAL       AMACH, AOV(15), B(LDB,IDEP), CLVAL(MAXCL),
     &           COEF(LDCOEF,5), COVB(LDCOVB,MAXB), D(MAXB), DFE,
     &           R(LDR,MAXB), SCPE(LDSCPE,IDEP), SQSS(LDSQSS,4), SSE,
     &           TOL, X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)
      CHARACTER  PRINT*1
      EXTERNAL   AMACH, RGLM, RSTAT
C
      DATA (X(1,J),J=1,3)/25, 13.8, 3/
      DATA (X(2,J),J=1,3)/28, 13.3, 1/
      DATA (X(3,J),J=1,3)/20, 8.9, 1/
      DATA (X(4,J),J=1,3)/32, 15.1, 1/
      DATA (X(5,J),J=1,3)/22, 10.4, 1/
      DATA (X(6,J),J=1,3)/29, 13.1, 2/
      DATA (X(7,J),J=1,3)/27, 12.4, 2/
      DATA (X(8,J),J=1,3)/28, 13.2, 2/
      DATA (X(9,J),J=1,3)/26, 11.8, 2/
      DATA (X(10,J),J=1,3)/21, 11.5, 3/
      DATA (X(11,J),J=1,3)/27, 14.2, 3/
      DATA (X(12,J),J=1,3)/29, 15.4, 3/
      DATA (X(13,J),J=1,3)/23, 13.1, 3/
      DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/1, 3, 1, 3/, INDDEP/2/
C
      IDO    = 0
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 2
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, IEF,
     &           NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      SSE   = SCPE(1,1)
      PRINT = ’A’
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      CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV,
     &            SQSS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)
C
      END

Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   98.208     96.929          0.3176       12.78           2.484

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             5       38.71       7.742     76.744    0.0000
Residual               7        0.71       0.101
Corrected Total       12       39.42

            * * * Sequential Statistics * * *
         Degrees of     Sum of                Prob. of
Effect     Freedom     Squares  F-statistic   Larger F
     1           1       26.20      259.728     0.0000
     2           2       12.40       61.477     0.0000
     3           2        0.11        0.520     0.6156

                * * * Inference on Coefficients * * *
                      Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       2.475       1.264        1.959      0.0910       205.7
    2       0.445       0.050        8.861      0.0000         3.8
    3      -3.454       1.531       -2.257      0.0586        64.3
    4      -2.775       4.109       -0.675      0.5211       463.4
    5       0.061       0.060        1.013      0.3447        68.1
    6       0.025       0.151        0.166      0.8729       472.3

     * * * Variance-Covariance Matrix for the Coefficient Estimates * * *
              1             2             3             4             5
1        1.5965       -0.0631       -1.5965       -1.5965        0.0631
2                      0.0025        0.0631        0.0631       -0.0025
3                                    2.3425        1.5965       -0.0913
4                                                 16.8801       -0.0631
5                                                                0.0036

              6
1        0.0631
2       -0.0025
3       -0.0631
4       -0.6179
5        0.0025
6        0.0227

Example 3

A two-way analysis-of-variance model is fitted to balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
weight gains (in grams) of rats fed diets varying in two components—level of
protein and source of protein. The model is
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yLMN = µ + αL + βM  + γLM + εLMN�     i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

α β γ γi j ij
iji

ij
j

j i= = = = = =
=== =
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Routine RGLM (page 117) is used to fit the model with the IDUMMY = 0 option.
Then, RSTAT is used to compute summary statistics.

      INTEGER    IDEP, IEF, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDSQSS,
     &           LDX, LINDEF, MAXB, MAXCL, NCLVAR, NCOL, NEF, NROW
      PARAMETER  (IDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2,
     &           NCOL=3, NEF=3, NROW=60, IEF=NEF, LDB=MAXB,
     &           LDCOEF=MAXB, LDCOVB=MAXB, LDR=MAXB, LDSCPE=IDEP,
     &           LDSQSS=NEF, LDX=NROW)
C
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP),
     &           INDEF(LINDEF), INTCEP, IRANK, IRBEF(NEF+1), ISUB,
     &           IWT, NCLVAL(NCLVAR), NRMISS, NVEF(NEF)
      REAL       AMACH, AOV(15), B(LDB,IDEP), CLVAL(MAXCL),
     &           COEF(LDCOEF,5), COVB(LDCOVB,MAXB), D(MAXB), DFE,
     &           R(LDR,MAXB), SCPE(LDSCPE,IDEP), SQSS(LDSQSS,4), SSE,
     &           TOL, X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)
      CHARACTER  PRINT*1
      EXTERNAL   AMACH, RGLM, RSTAT
C
      DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
     &     117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0,
     &     77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
     &     108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0,
     &     51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
     &     98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
     &     81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0,
     &     10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
      DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
C
      IDO    = 0
      INTCEP = 1
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 0
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
     &           NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      SSE   = SCPE(1,1)
      PRINT = ’A’
      CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV,
     &            SQSS, LDSQSS, COEF, LDCOEF, COVB, LDCOVB)
C
      END
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Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   28.477     21.854           14.65       87.87           16.67

                     * * * Analysis of Variance * * *
                                 Sum of        Mean             Prob. of
Source                    DF     Squares      Square  Overall F  Larger F
Regression                 5      4612.9       922.6      4.300    0.0023
Residual                  54     11586.0       214.6
Reduced Model Total       59     16198.9

        * * * Sequential Statistics * * *
         Degrees of     Sum of                Prob. of
Effect     Freedom     Squares  F-statistic   Larger F
     1           1      3168.3       14.767     0.0003
     2           2       266.5        0.621     0.5411
     3           2      1178.1        2.746     0.0732

                * * * Inference on Coefficients * * *
                      Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       87.87       1.891        46.47      0.0000       1.000
    2        7.27       1.891         3.84      0.0003         NaN
    3       -7.27       1.891        -3.84      0.0003       1.000
    4        1.73       2.674         0.65      0.5196         NaN
    5       -2.97       2.674        -1.11      0.2722       1.333
    6        1.23       2.674         0.46      0.6465       1.333
    7        3.13       2.674         1.17      0.2465         NaN
    8       -6.27       2.674        -2.34      0.0228         NaN
    9        3.13       2.674         1.17      0.2465         NaN
   10       -3.13       2.674        -1.17      0.2465         NaN
   11        6.27       2.674         2.34      0.0228       1.333
   12       -3.13       2.674        -1.17      0.2465       1.333

      * * * Variance-Covariance Matrix for the Coefficient Estimates * * *
               1             2             3             4             5
 1       3.57593       0.00000       0.00000       0.00000       0.00000
 2                     3.57593      -3.57593       0.00000       0.00000
 3                                   3.57593       0.00000       0.00000
 4                                                 7.15185      -3.57592
 5                                                               7.15185

               6             7             8             9            10
 1       0.00000       0.00000       0.00000       0.00000       0.00000
 2       0.00000       0.00000       0.00000       0.00000       0.00000
 3       0.00000       0.00000       0.00000       0.00000       0.00000
 4      -3.57593       0.00000       0.00000       0.00000       0.00000
 5      -3.57593       0.00000       0.00000       0.00000       0.00000
 6       7.15185       0.00000       0.00000       0.00000       0.00000
 7                     7.15185      -3.57592      -3.57593      -7.15185
 8                                   7.15185      -3.57593       3.57592
 9                                                 7.15185       3.57593
10                                                               7.15185
              11            12
 1       0.00000       0.00000
 2       0.00000       0.00000
 3       0.00000       0.00000
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 4       0.00000       0.00000
 5       0.00000       0.00000
 6       0.00000       0.00000
 7       3.57592       3.57593
 8      -7.15185       3.57593
 9       3.57593      -7.15185
10      -3.57592      -3.57593
11       7.15185      -3.57593
12                     7.15185

RCOVB/DRCOVB (Single/Double precision)
Compute the estimated variance-covariance matrix of the estimated regression
coefficients given the R matrix.

Usage
CALL RCOVB (NCOEF, R, LDR, S2, COVB, LDCOVB)

Arguments

NCOEF — Number of regression coefficients in the model.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

S2 — s2, the estimated variance of the error in the regression model.   (Input)

s2 is the error mean square from the regression fit.

COVB — NCOEF by NCOEF matrix that is the estimated variance-covariance
matrix of the estimated regression coefficients when R is nonsingular and is from
an unrestricted regression fit.   (Output)
See Comments for an explanation of COVB when R is singular or R is from a
restricted regression fit. If R is not needed, COVB and R can share the same storage
locations.

LDCOVB — Leading dimension of COVB exactly as specified in the dimension
statement in the calling program.   (Input)
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Comments

When R is nonsingular and comes from an unrestricted regression fit, COVB is the
estimated variance-covariance matrix of the estimated regression coefficients, and

COVB = s2(R7R)-�. Otherwise, variances and covariances of estimable functions

of the regression coefficients can be obtained using COVB, and COVB = s2GDG7.
Here, D is the diagonal matrix with diagonal elements equal to 0 if the
corresponding rows of R are restrictions and with diagonal elements equal to one
otherwise. Also, G is a particular generalized inverse of R. See the Algorithm
section.

Algorithm

Routine RCOVB computes an estimated variance-covariance matrix of estimated
regression parameters from the R matrix in several models. In the simplest
situation, the model is a general linear model given by y = Xβ + ε where y is the n
× 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector
of regression coefficients, and ε is the n × 1 vector of errors whose elements are

each independently distributed with mean 0 and variance σ2. Routine RGIVN
(page 107) can be used to get the fit of the model and the R matrix.

If the i-th element of ε has variance σ2/wL�and the weights wL are used in the fit of
the model, RCOVB produces the estimated variance-covariance matrix from the R
matrix in the weighted least squares fit. More generally, if the variance-

covariance matrix of ε is σ2V, RCOVB can be used to produce the estimated
variance-covariance matrix from the generalized least-squares fit. (Routine

RGIVN can be used to perform a generalized least-squares fit, by regressing y* on

X* where y* = (T-1)7y, X* = (T-1)7X and T satisfies T7T = V.)

If the general linear model has the restriction Hβ = g on the regression parameters
and this restriction is used in the fit of the model by routine RLEQU (page 131),
RCOVB produces the estimated variance-covariance from the R matrix in the
restricted least squares fit.

Routine RCOVB computes an estimated variance-covariance matrix for the
estimated regression coefficients,

$B
in a fitted multivariate general linear model. The model is Y = XB + E where Y is
the n × q matrix of responses, X is the n × p matrix of regressors, B is the
p × q matrix of regression coefficients, and E is the n × q matrix of errors whose
rows are each independently distributed as a q-dimensional multivariate normal
each with mean vector 0 and variance-covariance matrix Σ. Let

$ $ , $ , , $B q= β β β1 2 K4 9
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The estimated covariance matrix

Cov $ , $β βi j ij
Ts X X4 9 3 8=

−1

Here, sLM (input in S2) is the estimate of the ij-th element of Σ.

If a nonlinear regression model is fit using routine RNLIN (page 280), RCOVB
produces the asymptotic estimated variance-covariance matrix from the R matrix
in that fit.

If R is singular, corresponding to rank(R) < p, a generalized inverse is used to
compute COVB. For a matrix G to be a gL(i = 1, 2, 3, or 4) inverse of a matrix A, G

must satisfy conditions j(for j ≤ i) for the Moore-Penrose inverse but, generally,
must fail conditions k (for k > i). The four conditions for G to be a Moore-Penrose
inverse of A are as follows:

1. AGA = A
2. GAG = G
3. AG is symmetric
4. GA is symmetric

In the case that R is singular, the method for obtaining COVB follows the
discussion of Maindonald (1984, pages 101−103). Let Z be the diagonal matrix
with diagonal elements defined by

z
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ii

ii
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Let G be the solution to RG = Z obtained by setting the i-th ({i : rLL= 0}) row of G

to zero. COVB is set to s2GG7. (G is a g3 inverse of R. For any g3 inverse of R,
represented by

Rg3

the result

R Rg g T3 3

is a symmetric g2 inverse of R7R = X7X. See Sallas and Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable
functions of the regression coefficients, i.e., nonestimable functions (linear
combinations of the regression coefficients not in the space spanned by the
nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages
166−168) for a discussion of estimable functions.

The preceding discussion can be modified to include the restricted least-squares
problem. The modification is based on the work of Stirling (1981). Let the matrix
D = diag(d1, d2, …, dS) be a diagonal matrix with elements dLL = 0 if the
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i-th row of R corresponds to a restriction and 1 otherwise. In the unrestricted case,

D is simply the p × p identity matrix. The formula for COVB is s2GDG7.

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629-
630). This data set is put into the matrix X by routine GDATA (page 1302). There
are 4 independent variables and 1 dependent variable. Routine RGIVN (page 107)
is invoked to fit the regression model, and RCOVB is invoked to compute summary
statistics.

C                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDX, NCOEF,
     &           NDEP, NDX, NIND
      PARAMETER  (INTCEP=1, LDX=13, NDEP=1, NDX=5, NIND=4,
     &           LDSCPE=NDEP, NCOEF=INTCEP+NIND, LDB=NCOEF,
     &           LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCOEF)
C
      INTEGER    IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1), IRANK,
     &           ISUB, IWT, NCOL, NRMISS, NROW
      REAL       AMACH, B(LDB,NDEP), COVB(LDCOVB,5), D(NCOEF), DFE,
     &           R(LDR,NCOEF), S2, SCPE(LDSCPE,NDEP), TOL, X(LDX,NDX),
     &           XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  CLABEL(6)*10, RLABEL(5)*10
      EXTERNAL   AMACH, GDATA, RCOVB, RGIVN, WRRRL
C
      DATA RLABEL/’Intercept’, ’X1’, ’X2’, ’X3’, ’X4’/
      DATA CLABEL/’ ’, ’Intercept’, ’X1’, ’X2’, ’X3’, ’X4’/
C
      CALL GDATA (5, 0, NROW, NCOL, X, LDX, NDX)
      IDO  = 0
      IIND = -NIND
      IDEP = -NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = AMACH(4)*100.0
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      S2 = SCPE(1,1)/DFE
C
      CALL RCOVB (NCOEF, R, LDR, S2, COVB, LDCOVB)
      CALL WRRRL (’COVB’, NCOEF, NCOEF, COVB, LDCOVB, 0, ’(2W10.4)’,
     &            RLABEL, CLABEL)
C
      END

Output
                                  COVB
            Intercept          X1          X2          X3          X4
Intercept      4910.0      -50.51      -50.60      -51.66      -49.60
X1              -50.5        0.55        0.51        0.55        0.51
X2              -50.6        0.51        0.52        0.53        0.51
X3              -51.7        0.55        0.53        0.57        0.52
X4              -49.6        0.51        0.51        0.52        0.50
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Example 2

In this example, routine RNLIN (page 280) is first invoked to fit the following
nonlinear regression model discussed by Neter, Wasserman, and Kutner (1983,
pages 475−478):

y e ii
x

i
i= + =θ εθ

1
2 1 2 15, , ,K

Then, RCOVB is used to compute the estimated asymptotic variance-covariance
matrix of the estimated nonlinear regression parameters. Finally, the diagonal
elements of the output matrix from RCOVB are used together with routine TIN
(page 1145,) to compute 95% confidence intervals on the regression parameters.

      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
C
      INTEGER    I, IDERIV, IRANK, NOUT
      REAL       A, DFE, R(LDR,NPARM), SQRT, SSE, THETA(NPARM), TIN
      INTRINSIC  SQRT
      EXTERNAL   EXAMPL, RCOVB, RNLIN, TIN, UMACH, WRRRN
C
      DATA THETA/60.0, -0.03/
C
      CALL UMACH (2, NOUT)
C
      IDERIV = 1
      CALL RNLIN (EXAMPL, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE,
     &            SSE)
C
      CALL RCOVB (NPARM, R, LDR, SSE/DFE, R, LDR)
C                                 Print
      CALL WROPT (-6, 2, 0)
      CALL WRRRN (’Estimated Asymptotic Variance-Covariance Matrix’,
     &            NPARM, NPARM, R, LDR, 0)
C                                 Compute and print 95 percent
C                                 confidence intervals.
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’        95% Confidence Intervals     ’
      WRITE (NOUT,*) ’   Estimate  Lower Limit  Upper Limit’
      DO 10  I=1, NPARM
         A = TIN(0.975,DFE)*SQRT(R(I,I))
         WRITE (NOUT,’(1X, F10.3, 2F13.3)’) THETA(I), THETA(I) - A,
     &                              THETA(I) + A
   10 CONTINUE
      END
C
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE,
     &                   IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(NPARM)
C
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
C
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
C
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0,
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     &     13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
     &     38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
C
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         IF (IOPT .EQ. 0) THEN
            E = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
         ELSE
            DE(1) = -EXP(THETA(2)*XDATA(IOBS))
            DE(2) = -THETA(1)*XDATA(IOBS)*EXP(THETA(2)*XDATA(IOBS))
         END IF
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output
Estimated Asymptotic Variance-Covariance Matrix
              1             2
1   2.16701E+00  -1.78121E-03
2  -1.78121E-03   2.92786E-06

     95% Confidence Intervals
Estimate  Lower Limit  Upper Limit
58.603       55.423       61.784
-0.040       -0.043       -0.036

CESTI/DCESTI (Single/Double precision)
Construct an equivalent completely testable multivariate general linear hypothesis
H BU = G from a partially testable hypothesis HSBU = GS.

Usage
CALL CESTI (NHP, NCOEF, HP, LDHP, NDEP, NU, GP, LDGP, R,
            LDR, IRANKP, NH, H, LDH, G, LDG)

Arguments

NHP — Number of rows in the hypothesis.   (Input)

NCOEF — Number of regression coefficients in the model.   (Input)

HP — NHP by NCOEF matrix HS with each row corresponding to a row in the
hypothesis and containing the constants that specify a linear combination of the
regression coefficients.   (Input)

LDHP — Leading dimension of HP exactly as specified in the dimension
statement of the calling program.   (Input)

NDEP — Number of dependent (response) variables.   (Input)
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NU — U matrix option.   (Input)
For positive NU, NU is the number of linear combinations of the dependent
variables to be considered. If NU = 0, the hypothesis is HSB = GS, and U is
automatically taken to be the identity. NU must be less than or equal to NDEP .

GP — Matrix GS containing the null hypothesis values.   (Input)
If NU = 0, then GP is NHP by NDEP; otherwise, GP is NHP by NU.

LDGP — Leading dimension of GP exactly as specified in the dimension
statement in the calling program.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

IRANKP — Rank of HS.   (Output)

NH — Number of rows in the completely testable hypothesis (also, the degrees of
freedom for the hypothesis).   (Output)
The degrees of freedom for the hypothesis (NH) classify the hypothesis
HS BU = GS as nontestable (NH = 0), partially testable (0 < NH < IRANKP), or
completely testable (0 < NH = IRANKP).

H — NH by NCOEF matrix H with each row corresponding to a row in the
completely testable hypothesis and containing the constants that specify an
estimable linear combination of the regression coefficients.   (Output)
If HP is not needed, H and HP can occupy the same storage locations.

LDH — Leading dimension of H exactly as specified in the dimension statement
of the calling program.   (Input)

G — Matrix G containing the null hypothesis values for the completely testable
hypothesis.   (Output)
If NU = 0, then G is NH by NDEP, otherwise, G is NH by NU. If GP is not needed, G
and GP can occupy the same storage locations.

LDG — Leading dimension of G exactly as specified in the dimension statement
in the calling program.   (Input)
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Comments

1. Automatic workspace usage is

CESTI NCOEF * m + NCOEF2+ NHP2+ n * r + n2+ 2 * m + max{2 * m,
n + r+ max(n, r) −1} units, or

DCESTI 2 * NCOEF * m + 2 * NCOEF2+ 2 * NHP2+ 2 * n * r + 2 * n2+ 3
* m + 2max{2 * m, n + r + max(n, r) − 1} units,

where m = max(NHP, NCOEF), n = min(NHP, NCOEF), r = rank(R).
Workspace may be explicitly provided, if desired, by use of
C2STI/DC2STI. The reference is

CALL C2STI (NCOEF, NHP, HP, LDHP, NDEP, NU, GP,
            LDGP, R, LDR, IRANKP, NH, H, LDH, G,
            LDG, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length max{NHP, NCOEF}.

WK — Work vector of length NCOEF * m + NCOEF2 + NHP2+ n * r + n2
+ m + max{2 * m, n + r + max(n, r) −1}.

2. Informational errors
Type Code
   4 1 There is inadequate space to store the completely

testable hypothesis. Increase LDH or LDG so that it is
greater than or equal to NH.

   3 2 The hypothesis HS BU = GS is inconsistent.

Algorithm

Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced
by the fact that some diagonal elements of the R matrix output from the fit are
equal to zero), methods that use the results of the fitted model to compute the
hypothesis sum of squares (see routine RHPSS, page 163) require one to specify in
the hypothesis only linear combinations of the regression parameters that are

estimable. A linear combination of regression parameters c7 β is estimable means

that there exists some vector a such that c7 = a7X, i.e., c7 is in the space spanned
by the rows of X. For a further discussion of estimable functions, see Maindonald
(1984, pages 166−168) and Searle (1971, pages 180 − 188). Routine CESTI is
only useful in the case of nonfull rank regression models, i.e., when the problem
of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the
context of a general linear hypothesis test H β = g is overly restrictive. He
extended the notion of a testable hypothesis (a hypothesis composed of estimable
functions of the regression parameters) to include partially testable and
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completely testable hypotheses. A hypothesis H β = g is partially testable means
that the intersection of the row space of H (denoted by R(H)) and the row space
of X(R(X)) is not essentially empty and is a proper subset of R(H), i.e.,
{0} ⊂ R(H) ∩ R(X) ⊂ R(H). A hypothesis H β = g is completely testable means
that{0} ⊂ R(H) ⊆ R(X). Peixoto also demonstrated a method for converting a
partially testable hypothesis to one that is completely testable so that the usual
method for obtaining the sum of squares for the hypothesis from the results of the
fitted model can be used. The method replaces HS in the partially testable

hypothesis HS β = gS by a matrix H whose rows are a basis for the intersection of
the row space of HS and the row space of X. A corresponding conversion of the
null hypothesis values from gS to g is also made. A sum of squares for the
completely testable hypothesis can then be computed (see routine RHPSS). The
sum of squares that is computed for the hypothesis H β = g equals the difference
in the error sums of squares from two fitted models the restricted model with the
partially testable hypothesis HS β = gS adjoined to the model as linear equality
restrictions (see routine RLEQU on page 131) and the unrestricted model.

Routines RGLM (page 117), RGIVN (page 107), RLEQU (page 131), and RCOV
(page 104) can be used to compute the fit of the general linear model prior to
invoking CESTI. The R matrix is required for input to CESTI. After converting a
partially testable hypothesis to a completely testable hypothesis, RHPSS (page
163) can be invoked to compute the sum of squares for the hypothesis.

For the general case of the multivariate general linear model Y = XB + E (see the
chapter introduction, page 67) with possible linear equality restrictions on the
regression parameters, CESTI converts the partially testable hypothesis
HS BU = GS to a completely testable hypothesis H BU = G. For the case of the
linear model with linear equality restrictions, the definitions of estimable
functions, nontestable hypotheses, partially testable hypotheses, and completely
testable hypothesis are similar to those previously given for the unrestricted
model with the exception that R(X) is replaced by R(R) where R is the upper
triangular matrix output from RLEQU. The nonzero rows of R form a basis for the

rowspace of the matrix (X7, A7)7. The rows of H form an orthonormal basis for
the intersection of two subspaces: the subspace spanned by the rows of HS and the
subspace spanned by the rows of R. The algorithm used by CESTI for computing
the intersection of these two subspaces is based on an algorithm for computing
angles between linear subspaces due to to Bjorck and Golub (1973). (See also
Golub and Van Loan 1983, pages 429−430). The method is closely related to a
canonical correlation analysis discussed by Kennedy and Gentle (1980, 56−565).
The algorithm is as follows:

1. Compute a QR factorization of

H p
T

with column permutations so that
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H Q R Pp
T T= 1 1 1

Here, P1 is the associated permutation matrix that is also an orthogonal
matrix. Determine the rank of HS as the number of nonzero diagonal
elements of R1, say n1. Partition Q1 = (Q11, Q12) so that Q11is the first
n1columns of Q1. Set IRANKP = n1.

2. Compute a QR factorization of the transpose of the R matrix input to
CESTI with column permutations so that

R Q R PT T= 2 2 2

Determine the rank of R from the number of nonzero diagonal elements
of R, say n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns
of Q2.

3. Form

A Q QT= 11 21

4. Compute the singular values of A

σ σ σ1 2 1 2
≥ ≥ ≥L min ,n n1 6

and the left singular vectors W of the singular value decomposition of A
so that

W AVT
n n= diag 1σ σ, , min ,K

1 21 64 9
If σ1 < 1, then the dimension of the intersection of the two subspaces is
s = 0. Otherwise, take the dimension of the intersection to be s if
σV = 1 > σV��. Set NH = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)7.

6. Take R11 to be a NHP by NHP matrix related to R1 as follows. If
NHP ≤ NCOEF, R11 equals the first NHP rows of R1. Otherwise, R11
contains R1 in its first NCOEF rows and zeros in the remaining rows.
Compute a solution Z to the linear system

R Z P GT T
p11 1=

using routine GIRTS (IMSL MATH/LIBRARY). If this linear system is
declared inconsistent, an error message with error code equal to 2 is
issued.

7. Partition

Z Z ZT T T= ( , )1 2

so that Z1 is the first n1 rows of Z. Set
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G W ZT= 1 1

The degrees of freedom (NH) classify the hypothesis HS BU = GS as nontestable
(NH = 0), partially testable (0 < NH < IRANKP), or completely testable (0 < NH =
IRANKP).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to
some data. The model is

yLM= µ + αL + εLM�     (i, j) = (1, 1), (2, 1), (2, 2)

The model is fitted using routine RGLM (page 117). Next, the partially testable
hypothesis

H0
1

2

5

3
:

α
α

=
=

is converted to a completely testable hypothesis using CESTI. Sum of squares
associated with the hypothesis are computed using routine RHPSS (page 163).
Finally, the F statistic is computed along with the associated p-value using routine
FDF (page 1137).

      INTEGER    LDB, LDG, LDGP, LDH, LDHP, LDR, LDSCPE, LDSCPH, LDU,
     &           LDX, LINDEF, MAXB, MAXCL, NCLVAR, NCOL, NDEP, NEF,
     &           NHP, NROW
      PARAMETER  (LDU=1, LINDEF=1, MAXB=3, MAXCL=2, NCLVAR=1, NCOL=2,
     &           NDEP=1, NEF=1, NHP=2, NROW=3, LDB=MAXB, LDG=NHP,
     &           LDGP=NHP, LDH=NHP, LDHP=NHP, LDR=MAXB, LDSCPE=NDEP,
     &           LDSCPH=NDEP, LDX=NROW)
C
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(NDEP),
     &           INDEF(LINDEF), INTCEP, IRANK, IRANKP, IRBEF(NEF+1),
     &           ISUB, IWT, NCLVAL(NCLVAR), NCOEF, NH, NOUT, NRMISS,
     &           NU, NVEF(NEF)
      REAL       AMACH, B(LDB,NDEP), CLVAL(MAXCL), D(MAXB), DFE, DFH,
     &           F, FDF, G(LDG,NDEP), GP(LDGP,NDEP), H(LDH,MAXB),
     &           HP(LDHP,MAXB), PVALUE, R(LDR,MAXB),
     &           SCPE(LDSCPE,NDEP), SCPH(LDSCPH,NDEP), TOL, U(LDU,1),
     &           X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)
      EXTERNAL   AMACH, CESTI, FDF, RGLM, RHPSS, UMACH, WRRRN
C
      DATA X/1.0, 2.0, 2.0, 17.3, 24.1, 26.3/
      DATA INDCL/1/, NVEF/1/, INDEF/1/, INDDEP/2/
      DATA (HP(1,J),J=1,MAXB)/0.0, 1.0, 0.0/
      DATA (HP(2,J),J=1,MAXB)/0.0, 0.0, 1.0/
      DATA GP/5.0, 3.0/
C
      IDO    = 0
      INTCEP = 1
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 1
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      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,
     &           NVEF, INDEF, NDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      NCOEF = IRBEF(NEF+1) - 1
C
      NU = 0
      CALL CESTI (NHP, NCOEF, HP, LDHP, NDEP, NU, GP, LDGP, R, LDR,
     &            IRANKP, NH, H, LDH, G, LDG)
C
      CALL UMACH (2, NOUT)
      IF (NH .EQ. 0) THEN
         WRITE (NOUT,*) ’Nontestable hypothesis’
      ELSE IF (NH .LT. IRANKP) THEN
         WRITE (NOUT,*) ’Partially testable hypothesis’
      ELSE
         WRITE (NOUT,*) ’Completely testable hypothesis’
      END IF
      CALL WRRRN (’H’, NH, NCOEF, H, LDH, 0)
      CALL WRRRN (’G’, NH, NDEP, G, LDG, 0)
      CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG,
     &            R, LDR, DFH, SCPH, LDSCPH)
C
      F      = (SCPH(1,1)/DFH)/(SCPE(1,1)/DFE)
      PVALUE = 1.0 - FDF(F,DFH,DFE)
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’Degrees of    Sum of                 Prob. of’
      WRITE (NOUT,*) ’   Freedom   Squares   F-statistic   Larger F’
      WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
      END

Output
Partially testable hypothesis

           H
     1        2        3
0.0000   0.7071  -0.7071

  G
1.414

Degrees of    Sum of                 Prob. of
   Freedom   Squares   F-statistic   Larger F
     1.0       65.340     27.000      0.1210

RHPSS/DRHPSS (Single/Double precision)
Compute the matrix of sums of squares and crossproducts for the multivariate
general linear hypothesis H BU = G given the coefficient estimates

$B
and the R matrix.
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Usage
CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G,
            LDG, R, LDR, DFH, SCPH, LDSCPH)

Arguments

NH — Number of rows in the hypothesis.   (Input)

NCOEF — Number of regression coefficients in the model.   (Input)

H — NH by NCOEF matrix H with each row corresponding to a row in the
hypothesis and containing the constants that specify an estimable linear
combination of the regression coefficients.   (Input)

LDH — Leading dimension of H exactly as specified in the dimension statement
of the calling program.   (Input)

NDEP — Number of dependent (response) variables.   (Input)

B — NCOEF by NDEP matrix

$B
containing a least-squares solution for the regression coefficients.   (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

NU — U matrix option.   (Input)
For positive NU, NU is the number of linear combinations of the dependent
variables to be considered. If NU = 0, the hypothesis is HB = G, i.e., U is
automatically taken to be the identity. NU must be less than or equal to NDEP.

U — NDEP by NU matrix U in test H BU = G.   (Input, if NU is positive)
If NU = 0, U is not referenced and can be a vector of length 1.

LDU — Leading dimension of U exactly as specified in the dimension statement
in the calling program.   (Input)

G — Matrix containing the null hypothesis values.   (Input)

If NU = 0, then G is NH by NDEP; otherwise, G is NH by NU.

LDG — Leading dimension of G exactly as specified in the dimension statement
in the calling program.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
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restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

DFH — Degrees of freedom for SCPH.   (Output)
DFH equals the rank of H.

SCPH — Matrix containing sums of squares and crossproducts attributable to the
hypothesis.   (Output)
If NU = 0, SCPH is a NDEP by NDEP matrix, otherwise, SCPH is a NU by NU matrix.

LDSCPH — Leading dimension of SCPH exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

RHPSS NH * (NDEP + NCOEF + max(NCOEF, NH) + 3) + NH + NU * NDEP
− 1 units, or

DRHPSS 2 * NH * (NDEP + NCOEF + max(NCOEF, NH) + 3) + NH + 2 * NU
* NDEP − 2 units.

Workspace may be explicitly provided, if desired, by use of
R2PSS/DR2PSS. The reference is

CALL R2PSS (NCOEF, NH, H, LDH, NDEP, B, LDB, NU, U,
            LDU, G, LDG, R, LDR, DFH, SCPH, LDSCPH,
            IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NH.

WK — Work vector of length NH * (NDEP + NCOEF + max(NCOEF, NH) +
3) + NU * NDEP − 1.

2. Informational errors
Type Code
   3    1 The hypothesis is not completely testable. Each row of

H must be in the space spanned by the rows of R.
   3    2 The hypothesis is inconsistent. The linear system HB

U = G combined with any restrictions from a
regression fit with linear equality restrictions must
have a solution for B.

3. SCPH = − −
−

H BU G C DC H BU G
T T$ $3 8 3 8 3 8
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where (C7DC)- is a generalized inverse of C7DC, C is a solution to

R7C = H7, and D is a diagonal matrix with

d
r

rii
ii

ii
=

>
≤

%&'
1 0

0 0

if 

if 

Algorithm

Routine RHPSS computes the matrix of sums of squares and crossproducts for the
general linear hypothesis H BU = G for the multivariate general linear model
Y = XB + E with possible linear equality restrictions AB = Z. (See the chapter
introduction for a description of the multivariate general linear model.) Routines
RGLM (page 117), RGIVN (page 107), RLEQU (page 131), and RCOV (page 104)
can be used to compute the fit of the general linear model prior to invoking

RHPSS. The R matrix and $B  from any of those routines are required for input to
RHPSS.

The rows of H must be linear combinations of the rows of R, i.e., HB = G must be
completely testable. If the hypothesis is not completely testable, Routine CESTI
(page 157) can be used to construct an equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980,
page 317) that is extended by Sallas and Lionti (1988) for multivariate nonfull
rank models with possible linear equality restrictions. The algorithm is as follows:

1. Form

W H BU G= −$

2. Find C as the solution of R7C = H7 using routine GIRTS (IMSL
MATH/LIBRARY). If the equations are declared inconsistent within a
computed tolerance, an error message with code 1 is issued that the
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from a restricted least-squares fit using RLEQU, zero
out the corresponding rows of C, i.e., form DC.

4. Decompose DC using Householder transformations and column pivoting
to yield a square, upper triangular matrix T with diagonal elements of
nonincreasing magnitude and permutation matrix P such that

DCP Q
T

= �
! 

"
$#0

where Q is an orthogonal matrix.
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5. Determine the rank of T, say r. If t11= 0, then r = 0. Otherwise, the rank
of T is r if

t t trr r r> ≥ + +11 1 1ε ,

where ε = 10.0 * AMACH(4) (10.0 * DMACH(4) for the double precision
version). Then, zero out all rows of T below row r. Set the degrees of
freedom for the hypothesis, output in DFH, to r.

6. Find V as a solution to T 7V = P 7W using routine GIRTS. If the equations
are inconsistent, an error message with code 2 is issued that the hypothesis is
inconsistent within a computed tolerance, i.e., the linear system

H BU = G

AB = Z

does not have a solution for B.

7. Form V7V, which is the required matrix of sum of squares and
crossproducts output in SCPH.

In general, the two errors with code 1 and 2 are serious user errors that require the
user to correct the hypothesis before any meaningful sums of squares from this
routine can be computed. However, in some cases, the user may know the
hypothesis is consistent and completely testable, but the checks in RHPSS are too
tight. For this reason, RHPSS continues with the computations.

Routine RHPSS gives a matrix of sums of squares and crossproducts that could
also be obtained from separate fittings of the two models

Y* = XB* + E*

AB* = Z* (1)

HB* = G

and

Y* = XB* + E*

AB* = Z* (2)

where Y* = YU, B* = BU, E* = EU, and Z* = ZU. The error sum of squares and
crossproduct matrix for (1) minus that for (2) is the matrix of sum of squares and
crossproducts output in SCPH. Note that this approach avoids entirely the question
of testability.

Example 1

A two-way analysis-of-variance model is fitted to balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
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weight gains (in grams) of rats fed diets varying in two components-level of
protein and source of protein. The model is

yLMN = µ + αL + βM + γLM + εLMN      i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

α β γ γi j ij
iji

ij
j

j i= = = = = =
=== =
∑∑∑ ∑0 0 0 1 2 3 0 1 2

1

2

1

3

1
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The model is fitted using routine RGLM (page 117). Next, the sum of squares for
interaction

H0
11 12 21 22

11 13 21 23

0

0
:   

γ γ γ γ
γ γ γ γ

− − + =
− − + =

is computed using RHPSS. Finally, the F statistic is computed along with the
associated p-value using routine FDF (page 1137).

      INTEGER    LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX, LINDEF,
     &           MAXB, MAXCL, NCLVAR, NCOL, NDEP, NEF, NH, NROW
      PARAMETER  (NDEP=1, LDU=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2,
     &           NCOL=3, NEF=3, NH=2, NROW=60, LDB=MAXB, LDG=NH,
     &           LDH=NH, LDR=MAXB, LDSCPE=NDEP, LDSCPH=NDEP, LDX=NROW)
C
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(NDEP),
     &           INDEF(LINDEF), INTCEP, IRANK, IRBEF(NEF+1), ISUB,
     &           IWT, NCLVAL(NCLVAR), NCOEF, NOUT, NRMISS, NU,
     &           NVEF(NEF)
      REAL       AMACH, B(LDB,NDEP), CLVAL(MAXCL), D(MAXB), DFE, DFH,
     &           F, FDF, G(LDG,NDEP), H(LDH,MAXB), PVALUE,
     &           R(LDR,MAXB), SCPE(LDSCPE,NDEP), SCPH(LDSCPH,NDEP),
     &           TOL, U(LDU,1), X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)
      EXTERNAL   AMACH, FDF, RGLM, RHPSS, UMACH
C
      DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
     &     117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0,
     &     77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
     &     108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0,
     &     51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
     &     98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
     &     81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0,
     &     10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
      DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
      DATA (H(1,J),J=1,MAXB)/6*0.0, 1.0, -1.0, 0.0, -1.0, 1.0, 0.0/
      DATA (H(2,J),J=1,MAXB)/6*0.0, 1.0, 0.0, -1.0, -1.0, 0.0, 1.0/
      DATA G/2*0.0/
C
      IDO    = 0
      INTCEP = 1
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 0
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF,



IMSL STAT/LIBRARY Chapter 2: Regression • 169

  &           NVEF, INDEF, NDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      NCOEF = IRBEF(NEF+1) - 1
      NU    = 0
      CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG,
     &            R, LDR, DFH, SCPH, LDSCPH)
C
      F      = (SCPH(1,1)/DFH)/(SCPE(1,1)/DFE)
      PVALUE = 1.0 - FDF(F,DFH,DFE)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’Degrees of    Sum of                 Prob. of’
      WRITE (NOUT,*) ’   Freedom   Squares   F-statistic   Larger F’
      WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
      END

Output
Degrees of    Sum of                 Prob. of
   Freedom   Squares   F-statistic   Larger F
     2.0     1178.135      2.746      0.0732

Example 2

The data for the second example are taken from Maindonald (1984, pages 203−
204). The data are saved in the matrix X. A multivariate regression model
containing two dependent variables and three independent variables is fit using
routine RGIVN (page 107). The sum of squares and crossproducts matrix is
computed for the third independent variable in the model.

      INTEGER    INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX,
     &           NCOEF, NCOL, NDEP, NH, NIND, NROW
      PARAMETER  (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3,
     &           NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP,
     &           LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
C
      INTEGER    IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1), IRANK,
     &           ISUB, IWT, NOUT, NRMISS, NU
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, DFH, G(LDG,NDEP),
     &           H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP),
     &           SCPH(LDSCPH,NDEP), TOL, U(LDU,1), X(LDX,NCOL),
     &           XMAX(NCOEF), XMIN(NCOEF)
      EXTERNAL   AMACH, RGIVN, RHPSS, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
      DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
      DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
      DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
      DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
      DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
      DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
      DATA H/3*0.0, 1.0/, G/0.0, 0.0/
C
      IDO  = 0
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      IIND = -NIND
      IDEP = -NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      NU = 0
      CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG,
     &            R, LDR, DFH, SCPH, LDSCPH)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’DFH = ’, DFH
      CALL WRRRN (’SCPH’, NDEP, NDEP, SCPH, LDSCPH, 0)
      END

Output
DFH =     1.00000

     SCPH
        1       2
1   100.0   -40.0
2   -40.0    16.0

RHPTE/DRHPTE (Single/Double precision)
Perform tests for a multivariate general linear hypothesis H BU = G given the
hypothesis sums of squares and crossproducts matrix S+ and the error sums of
squares and crossproducts matrix S(.

Usage
CALL RHPTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH,
            LDSCPH, TEST)

Arguments

DFE — Degrees of freedom for error matrix SCPE.   (Input)

NDEP — Number of dependent variables.   (Input)

SCPE — NDEP by NDEP matrix S( containing sums of squares and crossproducts
for error.   (Input)

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension
statement in the calling program.   (Input)

NU — U matrix option.   (Input)
For positive NU, NU is the number of linear combinations of the dependent
variables to be considered. If NU = 0, the hypothesis is HB = G, i.e., U is
automatically taken to be the identity.
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U — NDEP by NU matrix used to test H BU = G.   (Input, if NU is positive)
The rank of the matrix U must equal the number of columns. If NU = 0, U is not
referenced and can be a vector of length 1.

LDU — Leading dimension of U exactly as specified in the dimension statement
in the calling program.   (Input)

DFH — Degrees of freedom for hypothesis matrix S+.   (Input)

SCPH — Matrix S+ containing sums of squares and crossproducts attributable to
the hypothesis.   (Input)
If NU = 0, S+ is a NDEP by NDEP matrix; otherwise, S+ is a NU by NU matrix.

LDSCPH — Leading dimension of SCPH exactly as specified in the dimension
statement in the calling program.   (Input)

TEST — Vector of length 8 containing test statistics and p-values for the
hypothesis H BU = G.   (Output)

Elem. Description
1, 5 Wilks’ lambda and p-value
2, 6 Roy’s maximum root criterion and p-value
3, 7 Hotelling’s trace and p-value
4, 8 Pillai’s trace and p-value

Comments

1. Automatic workspace usage is

RHPTE 2 * p2 + 2 * p + NDEP+ 2 * NU2 units, or

DRHPTE 4 * p2 + 4 * p + 2 * NDEP+ 4 * NU2 units,

where p = NDEP if NU is equal to 0 and p = NU otherwise. Workspace
may be explicitly provided, if desired, by use of R2PTE/DR2PTE. The
reference is
CALL R2PTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU,
            DFH, SCPH, LDSCPH, TEST, WK)

The additional argument is

WK — Work vector of length 2 * p2 + 2 * p + NDEP + 2 * NU2.

2. Informational errors
Type Code

   3    1 U7S(U is singular. Only the Pillai trace statistic can be
computed. Other statistics are set to NaN.

   4    2 U7S(U + S+ is singular. No tests can be computed.
   4    3 Iterations for eigenvalues for the generalized

eigenvalue problem S+x = λ(S+ + U7S(U)x failed to
converge. Statistics cannot be computed.
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Algorithm

Routine RHPTE computes test statistics and p-values for the general linear
hypothesis H BU = G for the multivariate general linear model. See the section
“Multivariate General Linear Model” in the chapter introduction (page 67).

Routines RGLM (page 117), RGIVN (page 107), RLEQU (page 131), and RCOV
(page 104) can be used to compute the fit of the general linear model prior to
invoking RHPTE. The error sum of squares and crossproducts matrix (SCPE) is
required for input to RHPTE. In addition, the hypothesis sum of squares and
crossproducts matrix (SCPH), which can be computed using routine RHPSS (page
163), is required for input to RHPTE.

The hypothesis sum of squares and crossproducts matrix input in SCPH is

S H BU G C DC H BU GH
T T= − −

−$ $3 8 3 8 3 8
where C is a solution to R7C = H and where D is a diagonal matrix with diagonal
elements

d
r

ii
ii=

>%&'
1 0

0

if 

otherwise

See the section “Linear Dependence and the R Matrix” in the chapter introduction
(page 70).

The error sum of squares and crossproducts matrix for the model Y = XB + E is

( $) ( $)Y XB Y XBT− −
which is input in SCPE. The error sum of squares and crossproducts matrix for the
hypothesis H BU = G computed by RHPTE is

S U Y XB Y XB UE
T T= − −( $) ( $)

Let p equal the order of the matrices S( and S+, i.e.,

p = %&'
NU

NDEP

if NU > 0

otherwise

Let q (stored in DFH) be the degrees of freedom for the hypothesis. Let v (stored
in DFE) be the degrees of freedom for error. Routine RHTPE computes three test
statistics based on eigenvalues λL (i = 1, 2, …, p) of the generalized eigenvalue

problem S+x = λS(x. These test statistics are as follows:



IMSL STAT/LIBRARY Chapter 2: Regression • 173

Wilks’ lambda

Λ =
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+=
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det(SE )
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11 λ

Λ is output in TEST(1). The p-value output in TEST(5) is based on an
approximation discussed by Rao (1973, page 556). The statistic

F
ms pq

pq

s
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1  
Λ

Λ
has an approximate F distribution with pq and ms − pq/2 + 1 numerator and
denominator degrees of freedom, respectively, where
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p q

p q

p q

=
= =

−
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if  or 

otherwise

and

m = v − (p − q + 1)/2

The F test is exact if min(p, q) ≤ 2 (Kshirsagar 1972, Theorem 4, pages 299−
300).

Roy’s maximum root

c
i

i= max λ

c is output in TEST(2). The p-value output in TEST(6) is based on the
approximation

F
v q s

s
c= + −

where s = max(p, q) has an approximate F distribution with s and v + q − s
numerator and denominator degrees of freedom, respectively. The F test is exact
if s = 1, and then the p-value output in TEST(7) is exact. In general, the value
output in TEST(7) is a lower bound on the actual p-value.

Hotelling’s trace

U HE i
i

p

= =−

=
∑tr( )1

1

λ
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U is output in TEST(3). The p-value output in TEST(7) is based on the
approximation of McKeon (1974) that supersedes the approximation of Hughes
and Saw (1972). McKeon’s approximation is also discussed by Seber (1984, page
39). For

b
pq

v q p v

v p v p

= + +
+ − − −

− − −
−

4
2

1 1

3
1

( )( )

( )( )

the p-value output in TEST(7) is based on the result that

F
b v p

b pq
U= − −

−
( )

( )

1

2

has an approximate F distribution with pq and b degrees of freedom. The test is
exact if min(p, q) = 1. For v ≤ p + 1, the approximation is not valid, and TEST(7)
is set to NaN (not a number).

These three test statistics are valid when S( is positive definite. A necessary

condition for S(�to be positive definite is v ≥ p. If S(�is not positive definite, a
warning error message with error code 1 is issued, and the entries in TEST

corresponding to the computed test statistics and p-values are set to NaN (not a
number).

Because the requirement v ≥ p can be a serious drawback, RHTPE computes a
fourth test statistic based on eigenvalues θL(i = 1, 2, …, p) of the generalized

eigenvalue problem S+w = θ(S+ + S()w. This test statistic requires a less
restrictive assumption—S+ + S(�is positive definite. A necessary condition for

S+ + S(�to be positive definite is v + q ≥ p. If S(�is positive definite, RHPTE avoids
the computation of this generalized eigenvalue problem from scratch. In this case,
the eigenvalues θL are obtained from λL by

θ
λ

λi
i

i
=

+1

The fourth test statistic is as follows:

Pillai’s trace

V S S SH H E

i
i

p

= +

=

−

=
∑

tr 1 6 1

1

θ

V is output in TEST(4). The p-value output in TEST(8) is based on an
approximation discussed by Pillai (1985). The statistic
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F
n s

m s

V

s V
= + +

+ + −
2 1

2 1
 

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator
and denominator degrees of freedom, respectively, where

s p q

m p q

n v p

=

= − −

= − −

min( , )

( )

1
2

1
2

1

1

2 7

The F test is exact if min(p, q) = 1

Example

The data for the example are taken from Maindonald (1984, pages 203−204). The
data are stored in the matrix X. A multivariate regression model containing two
dependent variables and three independent variables is fit using routine RGIVN
(page 107). The sum of squares and crossproducts matrix is computed for the
third independent variable in the model using RHPSS (page 163). Routine RHPTE
is used to test whether the third independent variable should be included in the
regression.

      INTEGER    INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX,
     &           NCOEF, NCOL, NDEP, NH, NIND, NROW
      PARAMETER  (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3,
     &           NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP,
     &           LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
C
      INTEGER    IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1), IRANK,
     &           ISUB, IWT, NRMISS, NU
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, DFH, G(LDG,NDEP),
     &           H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP),
     &           SCPH(LDSCPH,NDEP), TEST(8), TOL, U(LDU,1),
     &           X(LDX,NCOL), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  CLABEL(3)*14, RLABEL(4)*9
      EXTERNAL   AMACH, RGIVN, RHPSS, RHPTE, WRRRL
C
      DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
      DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
      DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
      DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
      DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
      DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
      DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
      DATA H/3*0.0, 1.0/, G/0.0, 0.0/
      DATA RLABEL/’Wilks’, ’Roy’, ’Hotelling’, ’Pillai’/
      DATA CLABEL/’ ’, ’Test statistic’, ’p-value’/
C
      IDO  = 0
      IIND = -NIND
      IDEP = -NDEP
      IFRQ = 0
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      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      NU = 0
      CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG,
     &            R, LDR, DFH, SCPH, LDSCPH)
      CALL RHPTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH,
     &            LDSCPH, TEST)
      CALL WRRRL (’ ’, 4, 2, TEST, 4, 0, ’(F14.3,F9.6)’, RLABEL,
     &            CLABEL)
      END

Output
           Test statistic    p-value
Wilks               0.003   0.000010
Roy               316.601   0.000010
Hotelling         316.601   0.000010
Pillai              0.997   0.000010

RLOFE/DRLOFE (Single/Double precision)
Compute a lack of fit test based on exact replicates for a fitted regression model.

Usage
CALL RLOFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ,
            IWT, DFE, SSE, IGROUP, NGROUP, TESTLF)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IREP — Variable option.   (Input)

IREP Meaning
< 0 The first −IREP columns of X contain the variables used to determine

exact replicates.
> 0 The IREP variables used to determine exact replicates are specified by

the column numbers in INDREP.
   0 The exact replicates are specified in IGROUP.

INDREP — Index vector of length IREP containing the column numbers of X

that are the variables used to determine replication.   (Input, if IREP is positive)
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If IREP is less than or equal to 0, INDREP is not referenced and can be a vector of
length one.

IRSP — Column number IRSP of X contains data for the response (dependent)
variable.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

DFE — Degrees of freedom for error from the fitted regression.   (Input)

SSE — Sum of squares for error from the fitted regression.   (Input)

IGROUP — Vector of length NOBS specifying group numbers.   (Output, if IREP

is nonzero; input, if IREP = 0)
On output, IGROUP(I) = J means row I of X is in the J-th group of replicates (J =
0, 1, 2, …, NGROUP). Here, J = 0 indicates the group of observations not used in
the analysis because NaN (not a number) was input for one of more of the values
of the response, replication, frequency, or weight variables. On input,
IGROUP(I) = IGROUP(K), K ≠ I, indicates that row I and row K of X are in the
same group. IGROUP(I) must equal 0 if row I of X has NaN as one or more of the
values of the response, replication, frequency, or weight variables.

NGROUP — Number number of groups in the lack of fit test.   (Output)

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model.   (Output)

Elem. Description
1 Degrees of freedom for lack of fit
2 Degrees of freedom for pure error
3 Degrees of freedom for error (TESTLF(1)+ TESTLF(2))
4 Sum of squares for lack of fit
5 Sum of squares for pure error
6 Sum of squares for error
7 Mean square for lack of fit
8 Mean square for pure error
9 F statistic
10 p-value

If there are no replicates in the data set, a test for lack of fit cannot be performed.
In this case, elements 8, 9, and 10 of TESTLF are set to NaN (not a number).

Comments

1. Automatic workspace usage is
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RLOFE If IREP = 0, 3 * NOBS units; otherwise 3 * m + 2.8854 * ln(m)
+ |IREP| + 3 * NOBS + 5 units.

DRLOFE If IREP = 0, 3 * NOBS units; otherwise 5 * m + 2.8854 * ln(m)
+  |IREP| + 3 * NOBS+ 3 units.

Here, m = max{NOBS, NCOL}.

Workspace may be explicitly provided, if desired, by use of
R2OFE/DR2OFE. The reference is

CALL R2OFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP,
            IFRQ, IWT, DFE, SSE, IGROUP, NGROUP,
            TESTLF, IWK, WK)

The additional arguments are as follows:

IWK — Work vector. If IREP = 0, the length of IWK is 3 * NOBS;
otherwise, the length of IWK is |IREP| + m + 2.8854 * ln(m) + 3 *
NOBS + 5.

WK — Work vector. If IREP= 0, WK is not referenced and can be a
vector of length 1; otherwise, WK is of length 2 * m.

2. Informational errors
Type Code
   3    1 DFE is less than the degrees of freedom for pure error.

The degrees of freedom for lack of fit is set to zero.
   3    2 SSE is less than the sum of squares for pure error. The

sum of squares for lack of fit is set to zero.
   4    3 An invalid weight or frequency is encountered.

Weights and frequencies must be nonnegative.
   4    4 An element in X contains NaN (not a number), but the

corresponding element in IGROUP is not zero. When
IREP = 0, missing values in a row of X are indicated
by setting the corresponding row of IGROUP to zero.

Algorithm

Routine RLOFE computes a lack of fit test based on exact replicates for a fitted
regression model. The data need not be sorted prior to invoking RLOFE. The
column indices of X for determining exact replicates can be input in INDREP. If
the groups of exact replicates are known prior to invoking RLOFE, the option
IREP = 0 allows RLOFE to bypass the computation of the groups. This option is
particularly useful for computing a second lack of fit for a different dependent
variable that uses the same columns of X for determining exact replicates as the
first test.

If IREP is nonzero, routine SROWR (page 1280) is used to compute a permutation
vector that specifies the sorted X along with the nL’s, the number of rows of X in
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each group. If IREP is zero, the permutation vector and the nL’s are computed from
IGROUP.

Let nL be the number of rows of X in the i-th group of replicates (i = 1, 2, …, k).
Let yLM be the response for the j-th row within the i-th group. Let wLM and fLM be the
associated weight and frequency, respectively. The pure error (within group) sum
of squares is

SSPE = − •
==
∑∑ w f y yij ij ij i
j

n

i

k i

3 82

11

The associated degrees of freedom are

DFPE =
�
��

�
��

−
==
∑∑ f kij
j

n

i j

k i

1

The lack of fit sum of squares is SSE − SSPE and the lack of fit degrees of
freedom are DFE − DFPE.

The F statistic for the test of the null hypothesis of no lack of fit is

F = − −( ) / ( )

/

SSE SSPE DFE DFPE

SSPE DFPE

Under the hypothesis of no lack of fit, the computed F has an F distribution with
numerator and denominator degrees of freedom DFE − DFPE and DFPE,
respectively. The p-value for the test is computed as the probability that a random
variable with this distribution is greater than or equal to the computed F statistic.

Example 1

This example uses data from Draper and Smith (1981, page 374), which is input
in X. A multiple linear regression of column 6 of X on an intercept and columns 1,
3, and 4 has already been computed. The fit gave a residual sum of squares
SSE = 163.93 with DFE = 16 degrees of freedom. A test for lack of fit is
computed using routine RLOFE.

      INTEGER    LDX, NCOL, NOBS, NREP
      PARAMETER  (NCOL=6, NOBS=20, NREP=3, LDX=NOBS)
C
      INTEGER    IFRQ, IGROUP(NOBS), INDREP(NREP), IREP, IRSP, IWT,
     &           NGROUP, NOUT
      REAL       DFE, SSE, TESTLF(10), X(LDX,NCOL)
      EXTERNAL   RLOFE, UMACH, WRIRN
C
      DATA (X(1,-),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
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      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDREP/1, 3, 4/
C
      IREP = NREP
      IRSP = 6
      IFRQ = 0
      IWT  = 0
      DFE  = 16.0
      SSE  = 163.93
      CALL RLOFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ, IWT,
     &            DFE, SSE, IGROUP, NGROUP, TESTLF)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ NGROUP = ’, NGROUP
      CALL WRIRN (’IGROUP’, 1, NOBS, IGROUP, 1, 0)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,99999) ’                    Test for Lack of ’//
     &                  ’Fit’
      WRITE (NOUT,99999) ’                        Sum of    Mean  ’//
     &                  ’       Prob. of’
      WRITE (NOUT,99999) ’ Source of Error   DF  Squares  Square  ’//
     &                  ’    F  Larger F’
      WRITE (NOUT,99999) ’ Lack of Fit    ’, TESTLF(1), TESTLF(4),
     &                  TESTLF(7), TESTLF(9), TESTLF(10)
      WRITE (NOUT,99999) ’ Expanded model ’, TESTLF(2), TESTLF(5),
     &                  TESTLF(8)
      WRITE (NOUT,99999) ’ Original model ’, TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output
NGROUP =   6

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
6  6  6   4   5   4   5   6   2   4   4   4   6   6   6   4   1   4   4   3

                    Test for Lack of Fit
                        Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Expanded model  14.0    143.4   10.24
Original model  16.0    163.9
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Example 2

This example uses the same data as in Example 1. Here, the option IREP = 0 is
used because IGROUP is known before invoking routine RLOFE. Routine SROWR
(page 1280) is used to compute the group numbers contained in IGROUP.

      INTEGER    LDX, NCOL, NKEY, NOBS
      PARAMETER  (NCOL=6, NKEY=3, NOBS=20, LDX=NOBS)
C
      INTEGER    I, ICOMP, IFRQ, IGROUP(NOBS), INDKEY(NKEY),
     &           INDREP(1), IORDR, IPERM(NOBS), IREP, IRET, IRSP, IWT,
     &           K, NGROUP, NI(NOBS), NOUT, NRMISS
      REAL       DFE, SSE, TESTLF(10), X(LDX,NCOL)
      EXTERNAL   RLOFE, SROWR, UMACH, WRIRN
C
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDKEY/1, 3, 4/
C
      ICOMP = 0
      IORDR = 0
      IRET  = 1
      CALL SROWR (NOBS, NCOL, X, LDX, ICOMP, IORDR, IRET, NKEY,
     &            INDKEY, IPERM, NGROUP, NI, NRMISS)
      K = 1
      DO 20  I=1, NGROUP
         DO 10  J=1, NI(I)
            IGROUP(IPERM(K)) = I
            K = K + 1
   10    CONTINUE
   20 CONTINUE
      IREP = 0
      IRSP = 6
      IFRQ = 0
      IWT  = 0
      DFE  = 16.0
      SSE  = 163.93
      CALL RLOFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ, IWT,
     &            DFE, SSE, IGROUP, NGROUP, TESTLF)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ NGROUP = ’, NGROUP
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      CALL WRIRN (’IGROUP’, 1, NOBS, IGROUP, 1, 0)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,99999) ’                    Test for Lack of ’//
     &                  ’Fit’
      WRITE (NOUT,99999) ’                        Sum of    Mean  ’//
     &                  ’       Prob. of’
      WRITE (NOUT,99999) ’ Source of Error   DF  Squares  Square  ’//
     &                  ’    F  Larger F’
      WRITE (NOUT,99999) ’ Lack of Fit    ’, TESTLF(1), TESTLF(4),
     &                  TESTLF(7), TESTLF(9), TESTLF(10)
      WRITE (NOUT,99999) ’ Expanded model ’, TESTLF(2), TESTLF(5),
     &                  TESTLF(8)
      WRITE (NOUT,99999) ’ Original model ’, TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output
NGROUP =   6

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
6  6  6   4   5   4   5   6   2   4   4   4   6   6   6   4   1   4   4   3

                    Test for Lack of Fit
                        Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      2.0     20.5   10.25  1.001     0.393
Expanded model  14.0    143.4   10.24
Original model  16.0    163.9

RLOFN/DRLOFN (Single/Double precision)
Compute a lack of fit test based on near replicates for a fitted regression model.

Usage
CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
            IFRQ, IWT, B, R, LDR, DFE, SSE, ICLUST, MAXIT,
            TOL, NGROUP, IGROUP, TESTLF)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.
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IIND — Independent variable option.   (Input)

IIND Meaning
< 0 The first −IIND columns of X contain the independent (explanatory)

variables.
> 0 The IIND independent variables are specified by the column numbers in

INDIND.
= 0 There are no independent variables.

There are NCOEF = INTCEP + |IIND| regressors—the intercept (if INTCEP = 1)
and the independent variables.

INDIND — Index vector of length IIND containing the column numbers of X

that are the independent variables.   (Input, if IIND is positive)
If IIND is nonnegative, INDIND is not referenced and can be a vector of length
one.

IRSP — Column number IRSP of X contains data for the response (dependent)
variable.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

B — Vector of length NCOEF containing a least-squares solution

$β
for the regression coefficients.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

DFE — Degrees of freedom for error from the fitted regression.   (Input)

SSE — Sum of squares for error from the fitted regression.   (Input)
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ICLUST — Clustering option.   (Input)

ICLUST Meaning
0 Cluster groups are input in IGROUP.
1 Cluster groups are obtained using Euclidean distance.
2 Cluster groups are obtained using Mahalanobis distance.

MAXIT — Maximum number of iterations for the cluster analysis to determine
near replicates.   (Input, if ICLUST is positive, otherwise, MAXIT is not
referenced)
MAXIT = 30 is usually sufficient for convergence.

TOL — Tolerance used in determining linear dependence for the one-way
analysis of covariance model using clusters as the groups.   (Input)

TOL = EPS2/3 is a good choice. For RLOFN, EPS = AMACH(4), and for DRLOFN,
EPS = DMACH(4). See documentation for AMACH/DMACH (Reference Material).

NGROUP — Number of groups.   (Input)
A cluster analysis based on NGROUP groups is performed. A good choice for
NGROUP is the number of groups of near replicates in the data set.

IGROUP — Vector of length NOBS specifying group numbers.   (Input, if
ICLUST = 0; output, if ICLUST ≥ 1)
IGROUP(I) = J means row I of X is in the J-th group of near replicates (J = 0, 1,
2, …, NGROUP). Here, J = 0 indicates the group of observations not used in the
analysis because NaN (not a number) was input for one or more of the values of
the response, independent, frequency, or weight variables.

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model.   (Output)

Elem. Description
1 Degrees of freedom for lack of fit.
2 Degrees of freedom for error from the expanded model (one-way

analysis of covariance model using clusters of near replicates as the
groups).

3 Degrees of freedom for error (DFE = TESTLF(1) + TESTLF(2)).
4 Sum of squares for lack of fit.
5 Sum of squares for error from the expanded model.
6 Sum of squares for error (SSE = TESTLF(4) + TESTLF(5)).
7 Mean square for lack of fit.
8 Mean square for error from the expanded model.
9 F statistic.
10 p-value.

Comments

1. Automatic workspace usage is

RLOFN LWK+ ICL * (3 * NOBS + |IIND| + NGROUP + 3 + max{m +
2.8854 * 1n(m) + 2, 3 * NGROUP, NCOEF}) units, or



IMSL STAT/LIBRARY Chapter 2: Regression • 185

DRLOFN 2 * LWK+ ICL * (3 * NOBS+ |IIND| + NGROUP+ 3 + max{m +
2.8854 * ln(m) + 2, 3 NGROUP, NCOEF}) units.

Here, m = max(NOBS , NCOL), and ICL and LWK depend on ICLUST and
are defined as follows.

ICLUST ICL LWK

0 0 NGROUP * NCOEF+ (NGROUP + 1)2 + NCOEF + NGROUP

1 1 NGROUP * NCOEF +(NGROUP + 1)2 + max(NCOEF * NGROUP +
NGROUP + NOBS, 2 * NOBS, 2 * NCOL)

2 1 NOBS * (NCOEF + IFRQ+ IWT) + NGROUP * NCOEF +

(NGROUP + 1)2+ max(2 * NOBS, 2 * NCOL, NCOEF * NGROUP
+ NGROUP + NOBS)

Workspace may be explicitly provided, if desired, by use of
R2OFN/DR2OFN. The reference is

CALL R2OFN (NOBS, NCOL, X, LDX, INTCEP, IIND,
            INDIND, IRSP, FRQ, IWT, B, R, LDR,
            DFE, SSE, ICLUST, MAXIT, TOL, NGROUP,
            IGROUP, TESTLF, IWK, WK)

The additional arguments are as follows.

IWK — Work array of length 3 * NOBS + |IIND| + NGROUP + 3 +
max{m + 2.8854 * ln(m) + 2, 3 * NGROUP, NCOEF}, if ICLUST is
positive. If ICLUST = 0, IWK can be an array of length 1.

WK — Work array of length LWK.

2. Informational errors
Type    Code
    3    1 Convergence did not occur in the cluster analysis for

the lack of fit test within MAXIT iterations. Better
results may be obtained by increasing MAXIT.

   4    2 An invalid weight or frequency is encountered.
Weights and frequencies must be nonnegative.

   3    3 The matrix of sum of squares and crossproducts
computed for the within cluster model for testing lack
of fit is not nonnegative definite within the tolerance
defined by TOL.

   4    4 At least one element in the columns containing the
independent variables, IRSP, IFRQ, or IWT of X
contains NaN (not a number), but the corresponding
element in IGROUP is not zero. When ICLUST = 0,
missing values in a row of X are indicated by setting
the corresponding row of IGROUP to zero.
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Algorithm

Routine RLOFN computes a lack of fit test based on near replicates for a fitted
regression model. The data need not be sorted prior to invoking RLOFN. The column
indices of X for determining near replicates must correspond to the independent
variables in the original fitted model. If the groups of near replicates are known prior
to invoking RLOFN, the option ICLUST = 0 allows RLOFN to bypass the computation
of the groups.

The data can contain missing values indicated by NaN. (NaN is AMACH(6) in the single
precision version or DMACH(6) in the double precision version. Routines AMACH and
DMACH are described in the section “Machine-Dependent Constants” in the Reference
Material. For ICLUST equal to 1 or 2, any row of X containing NaN as a value for the
response, weight, frequency, or independent variables is omitted from the analysis.
For ICLUST equal to 0, if the i-th row of X contains NaN for one of the variables in
the analysis, the i-th element of IGROUP must be 0 on input.

Routine KMEAN (page 900) is used to compute k clusters or groups of near replicates.
Prior to invoking KMEAN, a detached sort of the independent variables in the
regression model is performed using routine SROWR (page 1280). If there are fewer
than NGROUP distinct observations, a warning message is issued and k is set equal to
the number of distinct observations. Otherwise, k equals NGROUP. For purposes of the
cluster analysis, ICLUST = 1 specifies Euclidean distance and ICLUST = 2 specifies
Mahalanobis distance. For Mahalanobis distance, the data are transformed before
invoking KMEAN so that the Euclidean metric applied by KMEAN for the transformed
data is equivalent to the sample Mahalanobis distance for the original (untransformed)
data.

Let X be the n × p matrix of regressors, and let R be the upper triangular matrix
computed from the fitted regression model. The matrix R can be computed by routines
RGLM (page 117), RGIVN (page 107), or RLEQU (page 131) for fitting the regression
model. A linear equality restriction on the regression parameters corresponds to a row
of R with a negative diagonal element. Let D be a p × p diagonal matrix with diagonal
elements

d
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ii
ii=
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1 0

0

if 

otherwise

Let

xi
T

be the i-th row of X, and let tL = DsL�where sL satisfies

R7sL = xL

Then, the Mahalanobis distance from xL to xM equals the Euclidean distance from tL
to tM because
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Once the clusters are identified by KMEAN an expanded regression model—a one-
way analysis of covariance model–is fitted to the original (untransformed) data.
Denote the original model by y = Xβ + ε and the expanded model by y = Xβ + Zγ
+ ε. The added regressors that are contained in the n × k matrix Z in the expanded
model are indicator variables specifying cluster membership. The lack of fit test
that is computed is an exact test of the hypothesis that γ = 0 in the expanded
model. This test was proposed as a lack of fit test by Christensen (1989).

Let SSE(X, Z) be the error sum of squares from the fit of the expanded model and
let SSE(X) be the error sum of squares from the fit of the original model. The lack
of fit sum of squares is SSE(X) − SSE(X, Z) and the lack of fit degrees of freedom
are DFE(X) − DFE (X, Z). The F statistic for the test of the null hypothesis of no
lack of fit is

F
X X Z X X Z

X Z X Z
= − −( ( ) ( , )) / ( ( ) ( , ))

( , ) / ( , )

SSE SSE DFE DFE

SSE DFE

Under the hypothesis of no lack of fit, the computed F has an F distribution with
numerator and denominator degrees of freedom DFE(X) − DFE(X, Z) and
DFE(X, Z), respectively. The p-value for the test is computed as the probability
that a random variable with this distribution is greater than or equal to the
computed F statistic.

The error degrees of freedom and error sum of squares from the fit of the
expanded model are computed as the error degrees of freedom and sum of
squares from the reduced model where Z and y have been adjusted for X. Routine
RCOV (page 104) is used to fit the reduced model. Let e be the vector of residuals
from the original fitted model, let W be the diagonal matrix whose i-th diagonal
element is the product of the weight and frequency for the i-th observation. The
sum of squares and crossproducts matrix for the adjusted Z and y in the reduced
model, which is input into RCOV, is

Z WZ A A Z We

e We

T T T

T

−�
! 

"
$#

where A is a solution of R7A = DX7W Z.
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Example 1

This example uses data from Draper and Smith (1981, page 374), which is input
in X. A multiple linear regression of column 6 of X on an intercept and columns 1,
3, and 4 is computed using routine RGIVN (page 107). Tests for lack of fit are
computed for choices of NGROUP equal to 4 and 6 using routine RLOFN. Note that
for NGROUP equal to 6 the results are exactly the same as for routine RLOFE
(page 176). (If there are exact replicates in the data and the number of clusters
used by RLOFN equals the number of distinct cases of the independent variables,
then RLOFN and RLOFE produce the same output.)

      INTEGER    INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
     &           NIND, NOBS
      PARAMETER  (INTCEP=1, NCOL=6, NDEP=1, NIND=3, NOBS=20,
     &           LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,
     &           LDR=NCOEF)
C
      INTEGER    ICLUST, IDEP, IDO, IFRQ, IGROUP(NOBS), IIND,
     &           INDDEP(NDEP), INDIND(NIND), IRANK, IRSP, ISUB, IWT,
     &           MAXIT, NGROUP, NOUT, NRMISS, NROW
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF),
     &           SCPE(LDSCPE,NDEP), SSE, TESTLF(10), TOL, X(LDX,NCOL),
     &           XMAX(NCOEF), XMIN(NCOEF)
      EXTERNAL   AMACH, RGIVN, RLOFN, UMACH, WRIRN
C
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDIND/1, 3, 4/, INDDEP/6/
C
      IDO  = 0
      NROW = NOBS
      IIND = NIND
      IDEP = NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
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     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      SSE    = SCPE(1,1)
      IRSP   = 6
      ICLUST = 2
      MAXIT  = 30
      TOL    = AMACH(4)**(2.0/3.0)
      DO 10  NGROUP=4, 6, 2
         CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
     &               IFRQ, IWT, B, R, LDR, DFE, SSE, ICLUST, MAXIT,
     &               TOL, NGROUP, IGROUP, TESTLF)
         CALL UMACH (2, NOUT)
         WRITE (NOUT,*) ’ ’
         WRITE (NOUT,*) ’NGROUP = ’, NGROUP
         CALL WRIRN (’IGROUP’, 1, NOBS, IGROUP, 1, 0)
         WRITE (NOUT,*) ’ ’
         WRITE (NOUT,99999) ’                    Test for Lack of ’//
     &                     ’Fit’
         WRITE (NOUT,99999) ’                        Sum of    Mean  ’//
     &                     ’       Prob. of’
         WRITE (NOUT,99999) ’ Source of Error   DF  Squares  Square  ’//
     &                     ’    F  Larger F’
         WRITE (NOUT,99999) ’ Lack of Fit    ’, TESTLF(1), TESTLF(4),
     &                     TESTLF(7), TESTLF(9), TESTLF(10)
         WRITE (NOUT,99999) ’ Expanded model ’, TESTLF(2), TESTLF(5),
     &                     TESTLF(8)
         WRITE (NOUT,99999) ’ Original model ’, TESTLF(3), TESTLF(6)
   10 CONTINUE
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output
NGROUP =   4

                                 IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
4  4  4   4   2   4   2   4   2   4   4   4   4   4   4   4   1   4   4   3

                Test for Lack of Fit
                       Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      1.0      0.4    0.38  0.035     0.855
Expanded model  15.0    163.6   10.90
Original model  16.0    163.9

NGROUP =   6

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
6  6  6   4   5   4   5   6   2   4   4   4   6   6   6   4   1   4   4   3

                    Test for Lack of Fit
                       Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      2.0     20.5   10.25  1.001     0.393
Expanded model  14.0    143.4   10.24
Original model  16.0    163.9
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Example 2

This example uses the same data and model from Example 1. Here, the option
ICLUST = 0 is input so that the group numbers for performing the lack of fit test
are input.

      INTEGER    INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
     &           NIND, NOBS
      PARAMETER  (INTCEP=1, NCOL=6, NDEP=1, NIND=3, NOBS=20,
     &           LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,
     &           LDR=NCOEF)
C
      INTEGER    ICLUST, IDEP, IDO, IFRQ, IGROUP(NOBS), IIND,
     &           INDDEP(NDEP), INDIND(NIND), IRANK, IRSP, ISUB, IWT,
     &           MAXIT, NGROUP, NOUT, NRMISS, NROW
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF),
     &           SCPE(LDSCPE,NDEP), SSE, TESTLF(10), TOL, X(LDX,NCOL),
     &           XMAX(NCOEF), XMIN(NCOEF)
      EXTERNAL   AMACH, RGIVN, RLOFN, UMACH, WRIRN
C
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDIND/1, 3, 4/, INDDEP/6/
      DATA IGROUP/4*4, 2, 4, 2, 4, 2, 7*4, 1, 2*4, 3/
C
      IDO  = 0
      NROW = NOBS
      IIND = NIND
      IDEP = NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      SSE    = SCPE(1,1)
      IRSP   = 6
      ICLUST = 0
      MAXIT  = 30
      TOL    = AMACH(4)**(2.0/3.0)
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      NGROUP = 4
      CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
     &            IFRQ, IWT, B, R, LDR, DFE, SSE, ICLUST, MAXIT, TOL,
     &            NGROUP, IGROUP, TESTLF)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’NGROUP = ’, NGROUP
      CALL WRIRN (’IGROUP’, 1, NOBS, IGROUP, 1, 0)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,99999) ’                    Test for Lack of ’//
     &                  ’Fit’
      WRITE (NOUT,99999) ’                        Sum of    Mean  ’//
     &                  ’       Prob. of’
      WRITE (NOUT,99999) ’ Source of Error   DF  Squares  Square  ’//
     &                  ’    F  Larger F’
      WRITE (NOUT,99999) ’ Lack of Fit    ’, TESTLF(1), TESTLF(4),
     &                  TESTLF(7), TESTLF(9), TESTLF(10)
      WRITE (NOUT,99999) ’ Expanded model ’, TESTLF(2), TESTLF(5),
     &                  TESTLF(8)
      WRITE (NOUT,99999) ’ Original model ’, TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output
NGROUP =   4

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
4  4  4   4   2   4   2   4   2   4   4   4   4   4   4   4   1   4   4   3

                    Test for Lack of Fit
                       Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      1.0      0.4    0.38  0.035     0.855
Expanded model  15.0    163.6   10.90
Original model  16.0    163.9

RCASE/DRCASE (Single/Double precision)
Compute case statistics and diagnostics given data points, coefficient estimates

$β
and the R matrix for a fitted general linear model.

Usage
CALL RCASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF, NCLVAR,
            INDCL, NCLVAL, CLVAL, NVEF, INDEF, IDUMMY,
            IRSP, IWT, IPRED, CONPCM, CONPCP, PRINT, IOBS,
            NCOEF, B, R, LDR, DFE, SSE, CASE, LDCASE,
            NRMISS)

Arguments

IDO — Processing option.   (Input)
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IDO Action
0 This is the only invocation of RCASE for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to RCASE will be made.

Case statistics are computed for the data in X.
2 This is an intermediate or final invocation of RCASE. Case statistics are

computed for the data in X.

NRX — Number of rows in X.   (Input)

NCOL — Number of columns in X.   (Input)

X — NRX by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IEF — Effect option.   (Input)
The absolute value of IEF is the number of effects (sources of variation) due to
the model. The sign of IEF specifies the following options.

IEF Meaning
< 0 Each effect corresponds to a single regressor (coefficient) in the model.

In this case, arguments NCLVAR, INDCL, NCLVAL, CLVAL, NVEF, INDEF,
and IDUMMY are not referenced.

> 0 Each effect corresponds to one or more regressors. A general linear
model is specified through the arguments NCLVAR, INDCL, NCLVAL,
CLVAL, NVEF, INDEF, and IDUMMY.

0 There are no effects in the model. INTCEP must equal 1.

NCLVAR — Number of classification variables.   (Input, if IEF is positive)

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are the classification variables.   (Input, if IEF is positive)

NCLVAL — Vector of length NCLVAR containing the number of values taken on
by each classification variable.   (Input, if IEF is positive)
NCLVAL(I) is the number of distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the values of the classification variables.   (Input, if IEF is positive)
The first NCLVAL(1) variables contain the values of the first classification
variable. The next NCLVAL(2) variables contain the values of the second
classification variable. … The last NCLVAL(NCLVAR) variables contain the values
of the last classification variable.
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NVEF — Vector of length IEF containing the number of variables associated
with each effect in the model.   (Input, if IEF is positive)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(IEF).   (Input,
if IEF is positive)
The first NVEF(1) elements give the column numbers of X for each variable in the
first effect. The next NVEF(2) elements give the column numbers for each variable
in the second effect. … The last NVEF(NEF) elements give the column numbers
for each variable in the last effect.

IDUMMY — Dummy variable option.   (Input, if IEF is positive)
Some indicator variables are defined for the I-th class variable as follows: Let
J = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(I − 1). NCLVAL(I) indicator
variables are defined such that for K = 1, 2, …, NCLVAL(I) the K-th indicator
variable for row M of X takes the value 1.0 if X(M, INDCL(I)) = CLVAL(J + K) and
equals 0.0 otherwise. Dummy variables are generated from these indicator
variables in one of the three following ways:

IDUMMY Method
0, 1 The NCLVAL(I) indicator variables are the dummy variables (In RCASE,

the computations for IDUMMY = 0 and IDUMMY = 1 are the same. The two
values 0 and 1 are provided so that RCASE can be called after routine
RGLM (page 117) with no change in IDUMMY.)

2 The first NCLVAL(I) − 1 indicator variables are the dummy variables.
The last indicator variable is omitted.

3 The K-th indicator variable minus the NCLVAL (I)-th indicator variable is
the K-th dummy variable (K = 1, 2, …, NCLVAL(I) − 1).

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights, and the computed prediction interval uses SSE/(DFE *
X(I, IWT)) for the estimated variance of a future response.

IPRED — Prediction interval option.   (Input)
IPRED = 0 means that prediction intervals are desired for a single future response.
For positive IPRED, column number IPRED of X contains the number of future
responses for which a prediction interval is desired on the average of the future
responses.

CONPCM — Confidence level for two-sided interval estimates on the mean, in
percent.   (Input)
CONPCM percent confidence intervals are computed, hence, CONPCM must be
greater than or equal to 0.0 and less than 100.0. CONPCM often will be 90.0, 95.0,
or 99.0. For one-sided intervals with confidence level ONECL, where ONECL is
greater than or equal to 50.0 and less than 100.0, set CONPCM = 100.0 − 2.0 *
(100.0 − ONECL).
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CONPCP — Confidence level for two-sided prediction intervals, in percent.
(Input)
CONPCP percent prediction intervals are computed, hence, CONPCP must be
greater than or equal to 0.0 and less than 100.0. CONPCP often will be 90.0, 95.0,
or 99.0. For one-sided intervals with confidence level ONECL, where ONECL is
greater than or equal to 50.0 and less than 100.0, set CONPCP = 100.0 − 2.0 *
(100.0 − ONECL).

PRINT — Printing option.   (Input)
PRINT is a character string indicating what is to be printed. The PRINT string is
composed of one-character print codes to control printing. These print codes are
given as follows:

PRINT(I : I) Printing that Occurs
‘A’          All
‘N’          None
‘1’          Observed response
‘2’          Predicted response
‘3’          Residual
‘4’          Leverage
‘5’          Standardized residual
‘6’          Jackknife residual
‘7’          Cook’s distance
‘8’          DFFITS
‘M’          Confidence interval on the mean
‘P’          Prediction interval
‘X’          Influential cases (unusual “x-value”)
‘Y’          Outlier cases (unusual “y-value”)

The concatenated print codes ‘A’, ‘N’, ‘1’, …, ‘P’ that comprise the PRINT string
give the combination of statistics to be printed. Concatenation of these codes with
print codes ‘X’ or ‘Y’ restricts printing to cases determined to be influential or
outliers. Here are a few examples.

PRINT Printing Action
‘A’ All.
‘N’ None.
‘46’ Leverage and jackknife residual for all cases.
‘AXY’ All statistics are printed for cases that are highly influential or are

outliers.
‘46XY’ Leverage and jackknife residual are printed forcases that are highly

influential or are outliers.

IOBS — Number of the observation corresponding to the first row of X.   (Input)
This observation number is used only for printing the row labels for the individual
case statistics.

NCOEF — Number of regression coefficients in the model.   (Input)

B — Vector of length NCOEF containing a least-squares solution
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$β
for the regression coefficients.   (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements. Only the upper
triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

DFE — Degrees of freedom for error.   (Input)

SSE — Sum of squares for error.   (Input)

CASE — NRX by 12 matrix containing the case statistics.   (Output)
Columns 1 through 12 contain the following:

Col. Description
1 Observed response
2 Predicted response
3 Residual
4 Leverage
5 Standardized residual
6 Jackknife residual
7 Cook’s distance
8 DFFITS
9, 10 Confidence interval on the mean
11, 12 Prediction interval

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of CASE containing NaN (not a number).   (Output)
If any row of data contains NaN as a value of a variable other than the response
variable, columns 3 through 12 of the corresponding row in CASE are set to NaN.
If the response is missing, columns 1, 3, and 5 through 8 are set to NaN.

Comments

1. Automatic workspace usage is
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RCASE NCOEF + 1 units, or
DRCASE 2 * (NCOEF + 1) units.

Workspace may be explicitly provided, if desired, by use of
R2ASE/DR2ASE. The reference is
CALL R2ASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF,
            NCLVAR, INDCL, NCLVAL, CLVAL, NVEF,
            INDEF, IDUMMY, IRSP, IWT, IPRED, CONPCM,
            CONPCP, PRINT, IOBS, NCOEF, B, R, LDR,
            DFE, SSE, CASE, LDCASE,
            NRMISS, WK)

The additional argument is

WK — Work vector of length NCOEF + 1.

2. Informational errors
Type Code
   4    1 A weight is negative. Weights must be nonnegative.
   3    2 The linear combination of the regression coefficients

specified is not estimable within the preset tolerance.
   3    3 A leverage much greater than 1.0 was computed. It is

set to 1.0.
   3    4 A deleted residual mean square much less than 0.0 was

computed. It is set to 0.0.
   4     5 A number of future observations for the prediction

interval is nonpositive. It must be positive.

Algorithm

The general linear model used by routine RCASE is

y = Xβ + ε

where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is
the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors
whose elements are independently normally distributed with mean 0 and variance 

σ2/wL. The model used by RCASE also permits linear equality restrictions on β.
From a general linear model fitted using the wL’s as the weights, routine RCASE

computes confidence intervals and statistics for the individual cases that
constitute the data set. Let xL be a column vector containing elements of the i-th

row of X. Let W = diag(w1, w2, …, wQ). The leverage is defined as

h x X WX x wi i
T T

i i=
−3 8

(In the case of linear equality restrictions on β , the leverage is defined in terms of the reduced model.)
Put D = diag(d1, d2, …, dS) with dM = 1 if the j-th diagonal element of R is positive and 0 otherwise. The

leverage is computed as hL = (a7Da)wL where a is a solution to R7a = xL� The estimated variance of



IMSL STAT/LIBRARY Chapter 2: Regression • 197

$ $y xi i
T= β

is given by hLs2/wL, where s2 = SSE/DFE. The computation of the remainder of the
case statistics follows easily from their definitions. See the chapter introduction
(page 75) for definitions of the case diagnostics.

Often predicted values and confidence intervals are desired for combinations of
settings of the effect variables not used in computing the regression fit. This can
be accomplished using a single data matrix by including these settings of the
variables as part of the data matrix and by setting the response equal to NaN (not
a number). NaN can be retrieved by the invocation of the function AMACH(6) (or
function DMACH(6) when using double precision regression routines). The
regression routine performing the fit will omit the case, and RCASE will compute
a predicted value and confidence interval for the missing response from the given
settings of the effect variables.

The type 3 informational errors can occur if the input variables X, R, B and SSE
are not consistent with each other or if excessive rounding has occurred in their
computation. The type 3 error message with error code 2 arises when X contains a
row not in the space spanned by the rows of R. An examination of the model that
was fitted and the X for which diagnostics are to be computed is required in order
to insure that only linear combinations of the regression coefficients that can be
estimated from the fitted model are specified in X. For further details, see the
discussion of estimable functions given by Maindonald (1984, pages 166−168)
and Searle (1971, pages 180−188).

Example 1

A multiple linear regression model is fitted and case statistics computed for data
discussed by Cook and Weisberg (1982, page 103). The fitted model is

$ $ $ $y x x= + +β β β0 1 1 2 2

Some of the statistics in row 6 of the output matrix CASE are undefined (0.0/0.0)
and are set to NaN (not a number). Some statistics in row 4 of CASE are set to Inf
(positive machine infinity). The values of NaN and positive machine infinity can
be retrieved by routine AMACH (or DMACH when using double precision), which is
documented in the section “Machine-Dependent Constants” in Reference
Material.

      INTEGER    INTCEP, LDB, LDCASE, LDR, LDSCPE, LDX, NCOEF, NCOL,
     &           NDEP, NIND, NROW
      PARAMETER  (INTCEP=1, NCOL=3, NDEP=1, NIND=2, NROW=7,
     &           LDCASE=NROW, LDSCPE=NDEP, LDX=NROW,
     &           NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
C
      INTEGER    IDEP, IDO, IDUMMY, IEF, IFRQ, IIND, INDCL(1),
     &           INDDEP(1), INDEF(1), INDIND(1), IOBS, IPRED, IRANK,
     &           IRSP, ISUB, IWT, NCLVAL(1), NCLVAR, NRMISS, NVEF(1)
      REAL       AMACH, B(LDB,NDEP), CASE(LDCASE,12), CLVAL(1),
     &           CONPCM, CONPCP, D(NCOEF), DFE, R(LDR,NCOEF),
     &           SCPE(LDSCPE,NDEP), SSE, TOL, X(LDX,NCOL),
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     &           XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  PRINT*1
      EXTERNAL   AMACH, RCASE, RGIVN
C
      DATA (X(1,J),J=1,NIND+NDEP) /1.0, 1.0, 3.0/
      DATA (X(2,J),J=1,NIND+NDEP) /1.0, 2.0, 4.0/
      DATA (X(3,J),J=1,NIND+NDEP) /1.0, 3.0, 5.0/
      DATA (X(4,J),J=1,NIND+NDEP) /1.0, 4.0, 7.0/
      DATA (X(5,J),J=1,NIND+NDEP) /1.0, 5.0, 7.0/
      DATA (X(6,J),J=1,NIND+NDEP) /0.0, 6.0, 8.0/
      DATA (X(7,J),J=1,NIND+NDEP) /1.0, 7.0, 9.0/
C
      IDO  = 0
      IIND = -NIND
      IDEP = -NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = 100.0*AMACH(4)
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      IEF    = -NIND
      NCLVAR = 0
      IRSP   = NCOL
      IPRED  = 0
      CONPCM = 95.0
      CONPCP = 95.0
      PRINT  = ’A’
      IOBS   = 1
      SSE    = SCPE(1,1)
      CALL RCASE (IDO, NROW, NCOL, X, LDX, INTCEP, IEF, NCLVAR, INDCL,
     &            NCLVAL, CLVAL, NVEF, INDEF, IDUMMY, IRSP, IWT,
     &            IPRED, CONPCM, CONPCP, PRINT, IOBS, NCOEF, B, R,
     &            LDR, DFE, SSE, CASE, LDCASE, NRMISS)
C
      END

Output
                     * * * Case Analysis * * *
     Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
            Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
        1     3.0000     3.1286    -0.1286     0.4714    -0.3886    -0.3430
              0.0449    -0.3240     2.2609     3.9962     1.5957     4.6614
        2     4.0000     4.1429    -0.1429     0.2857    -0.3714    -0.3273
              0.0184    -0.2070     3.4674     4.8183     2.7100     5.5757
        3     5.0000     5.1571    -0.1571     0.1857    -0.3826    -0.3376
              0.0111    -0.1612     4.6126     5.7017     3.7812     6.5331
Y       4     7.0000     6.1714     0.8286     0.1714     2.0000        Inf
              0.2759        Inf     5.6482     6.6946     4.8038     7.5391
        5     7.0000     7.1857    -0.1857     0.2429    -0.4689    -0.4178
              0.0235    -0.2366     6.5630     7.8084     5.7770     8.5945
X       6     8.0000     8.0000     0.0000     1.0000        NaN        NaN
                 NaN        NaN     6.7364     9.2636     6.2129     9.7871
        7     9.0000     9.2143    -0.2143     0.6429    -0.7878    -0.7423
              0.3724    -0.9959     8.2011    10.2275     7.5946    10.8339
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Figure 2-6   Plot of Leverages hi and the Average (p/n = 3/7)

Example 2

A one-way analysis of covariance model is fitted to the turkey data discussed by
Draper and Smith (1981, pages 243−249). The response variable is turkey weight
y (in pounds). There are three groups of turkeys corresponding to the three states
where they were reared. The age of a turkey (in weeks) is the covariate. The
explanatory variables are group, age, and interaction. The model is

y x x i j nij i ij i ij ij i= + + + + = =µ α β β ε 1 2 3 1 2, , ; , , ,K

where α3 = 0 and β3 = 0. Routine RGLM (page 117) is used to fit the model. The
option IDUMMY = 2 is used. The fitted model gives three separate lines, one for
each state where the turkeys were reared. Then, RCASE is used to compute case
statistics from the fitted model.

      INTEGER    IDEP, IEF, INTCEP, LDB, LDCASE, LDR, LDSCPE, LDX,
     &           MAXB, MAXCL, NCLVAR, NCOL, NROW
      PARAMETER  (IDEP=1, IEF=3, INTCEP=1, MAXB=6, MAXCL=3, NCLVAR=1,
     &           NCOL=3, NROW=13, LDB=MAXB, LDCASE=NROW, LDR=MAXB,
     &           LDSCPE=IDEP, LDX=NROW)
C
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP),
     &           INDEF(4), IOBS, IPRED, IRANK, IRBEF(IEF+1), IRSP,
     &           ISUB, IWT, NCLVAL(NCLVAR), NCOEF, NRMISS, NVEF(IEF)
      REAL       AMACH, B(LDB,IDEP), CASE(LDCASE,12), CLVAL(MAXCL),
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     &           CONPCM, CONPCP, D(MAXB), DFE, R(LDR,MAXB),
     &           SCPE(LDSCPE,IDEP), SSE, TOL, X(LDX,NCOL), XMAX(MAXB),
     &           XMIN(MAXB)
      CHARACTER  PRINT
      EXTERNAL   AMACH, RCASE, RGLM
C
      DATA (X(1,J),J=1,3)  /25.0, 13.8, 3.0/
      DATA (X(2,J),J=1,3)  /28.0, 13.3, 1.0/
      DATA (X(3,J),J=1,3)  /20.0,  8.9, 1.0/
      DATA (X(4,J),J=1,3)  /32.0, 15.1, 1.0/
      DATA (X(5,J),J=1,3)  /22.0, 10.4, 1.0/
      DATA (X(6,J),J=1,3)  /29.0, 13.1, 2.0/
      DATA (X(7,J),J=1,3)  /27.0, 12.4, 2.0/
      DATA (X(8,J),J=1,3)  /28.0, 13.2, 2.0/
      DATA (X(9,J),J=1,3)  /26.0, 11.8, 2.0/
      DATA (X(10,J),J=1,3) /21.0, 11.5, 3.0/
      DATA (X(11,J),J=1,3) /27.0, 14.2, 3.0/
      DATA (X(12,J),J=1,3) /29.0, 15.4, 3.0/
      DATA (X(13,J),J=1,3) /23.0, 13.1, 3.0/
      DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/3, 1, 1, 3/, INDDEP/2/
C
      IDO    = 0
      IFRQ   = 0
      IWT    = 0
      IDUMMY = 2
      ISUB   = 1
      TOL    = 100.0*AMACH(4)
      CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, IEF,
     &           NVEF, INDEF, IDEP, INDDEP, IFRQ, IWT, IDUMMY, ISUB,
     &           TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, R, LDR, D,
     &           IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
C
      PRINT  = ’A’
      IRSP   = INDDEP(1)
      IPRED  = 0
      CONPCM = 95.0
      CONPCP = 95.0
      PRINT  = ’A’
      IOBS   = 1
      NCOEF  = IRBEF(IEF+1) - 1
      SSE    = SCPE(1,1)
      CALL RCASE (IDO, NROW, NCOL, X, LDX, INTCEP, IEF, NCLVAR, INDCL,
     &            NCLVAL, CLVAL, NVEF, INDEF, IDUMMY, IRSP, IWT,
     &            IPRED, CONPCM, CONPCP, PRINT, IOBS, NCOEF, B, R,
     &            LDR, DFE, SSE, CASE, LDCASE, NRMISS)
C
      END

Output
                            * * * Case Analysis * * *
Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
        Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
 1    13.8000    13.6000     0.2000     0.2000     0.7040     0.6762
        0.0207     0.3381    13.2641    13.9359    12.7773    14.4227
 2    13.3000    13.1901     0.1099     0.3187     0.4192     0.3930
        0.0137     0.2688    12.7661    13.6141    12.3276    14.0526
 3     8.9000     9.1418    -0.2418     0.5824    -1.1779    -1.2178
        0.3225    -1.4383     8.5686     9.7149     8.1970    10.0865
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 4    15.1000    15.2143    -0.1143     0.7143    -0.6732    -0.6444
        0.1888    -1.0189    14.5795    15.8490    14.2309    16.1976
 5    10.4000    10.1538     0.2462     0.3846     0.9879     0.9860
        0.1017     0.7795     9.6881    10.6196     9.2701    11.0376
 6    13.1000    13.3300    -0.2300     0.7000    -1.3221    -1.4131
         0.6797    -2.1585    12.7016    13.9584    12.3507    14.3093
 7    12.4000    12.3900     0.0100     0.3000     0.0376     0.0348
        0.0001     0.0228    11.9786    12.8014    11.5337    13.2463
 8    13.2000    12.8600     0.3400     0.3000     1.2795     1.3533
        0.1169     0.8859    12.4486    13.2714    12.0037    13.7163
 9    11.8000    11.9200    -0.1200     0.7000    -0.6898    -0.6615
        0.1850    -1.0104    11.2916    12.5484    10.9407    12.8993
10    11.5000    11.8200    -0.3200     0.6000    -1.5930    -1.8472
        0.6344    -2.2623    11.2382    12.4018    10.8700    12.7700
11    14.2000    14.4900    -0.2900     0.3000    -1.0913    -1.1091
        0.0851    -0.7261    14.0786    14.9014    13.6337    15.3463
12    15.4000    15.3800     0.0200     0.6000     0.0996     0.0922
        0.0025     0.1130    14.7982    15.9618    14.4300    16.3300
13    13.1000    12.7100     0.3900     0.3000     1.4676     1.6330
        0.1538     1.0691    12.2986    13.1214    11.8537    13.5663

ROTIN/DROTIN (Single/Double precision)
Compute diagnostics for detection of outliers and influential data points given
residuals and the R matrix for a fitted general linear model.

Usage
CALL ROTIN (NRX, NCOL, X, LDX, INTCEP, IIND, INDIND, IWT,
            R, LDR, DFE, SSE, E, OTIN, LDOTIN, NRMISS)

Arguments

NRX — Number of rows of data.   (Input)

NCOL — Number of columns in X.   (Input)

X — NRX by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IIND — Independent variable option.   (Input)
The absolute value of IIND is the number of independent (explanatory) variables.
The sign of IIND specifies the following options:

IIND Meaning
 < 0 The data for the −IIND independent variables are given in the first

−IIND columns of X.
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> 0 The data for the IIND independent variables are in the columns of X
whose column numbers are given by the elements of INDIND.

= 0 There are no independent variables.

The regressors are the constant regressor (if INTCEP = 1) and the independent
variables.

INDIND — Index vector of length IIND containing the column numbers of X

that are the independent (explanatory) variables.   (Input, if IIND is positive)
If IIND is nonpositive, INDIND is not referenced and can be a vector of length
one.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

R — INTCEP + |IIND| by INTCEP + |IIND| upper triangular matrix containing the
R matrix.   (Input)
The R matrix can come from a regression fit based on a QR decomposition of the

matrix of regressors or based on a Cholesky factorization R7R of the matrix of
sums of squares and crossproducts of the regressors. Elements to the right of a
diagonal element of R that is zero must also be zero. A zero row indicates a
nonfull rank model. For an R matrix that comes from a regression fit with linear
equality restrictions on the parameters, each row of R corresponding to a
restriction must have a corresponding diagonal element that is negative. The
remaining rows of R must have positive diagonal elements.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

DFE — Degrees of freedom for error.   (Input)

SSE — Sum of squares for error.   (Input)

E — Vector of length NRX with the residuals.   (Input)
If a residual is not known, e.g., the value for the dependent (response) variable
was missing, the input value of the corresponding element of E should equal NaN
(not a number).

OTIN — NRX by 6 matrix containing diagnostics for detection of outliers and
influential cases.   (Output)
The columns of OTIN contain the following:

Col. Description
1 Residual
2 Leverage (diagonal element of the ‘Hat’ matrix)
3 Standardized residual
4 Jackknife (deleted) residual
5 Cook’s Distance
6 DFFITS
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LDOTIN — Leading dimension of OTIN exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of OTIN containing NaN (not a number).   (Output)
If any row of data contains NaN as a value of the independent variable or weight,
elements in columns 2 thru 6 of the corresponding row in OTIN are set to NaN. If
the residual is missing, elements in columns 3 thru 6 are set to NaN.

Comments

1. Automatic workspace usage is

ROTIN INTCEP + |IIND| units, or
DROTIN 2 * (INTCEP + |IIND|) units.

Workspace may be explicitly provided, if desired, by use of
R2TIN/DR2TIN. The reference is

CALL R2TIN (NRX, NCOL, X, LDX, INTCEP, IIND, INDIND,
            IWT, R, LDR, DFE, SSE, E, OTIN, LDOTIN,
            NRMISS, WK)

The additional argument is

WK — Work vector of length INTCEP + |IIND|.

2. Informational errors
Type Code
   3 2 The linear combination of the regression coefficients

specified is not estimable within the preset tolerance.
   3 3 A leverage much greater than 1.0 was computed. It is

set to 1.0.
   3 4 A deleted residual mean square much less than 0.0 was

computed. It is set to 0.0.
   4 1 A weight is negative. Weights must be nonnegative.

Algorithm

The multiple regression model used by routine ROTIN is

y = Xβ + ε

where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is
the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors
whose elements are independently normally distributed with mean 0 and variance 

σ2/wL. The model used by ROTIN also permits linear equality restrictions on β.
From a multiple regression model fit using the wL’s as the weights, routine ROTIN

computes diagnostics for outliers and influential cases. Let xL be a column vector

containing elements of the i-th row of X. Let W = diag(w1, w2, …, wQ). The
leverage is defined as
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h x X W X x wi i
T T

i i= −( )

(In the case of linear equality restrictions on β, the leverage is defined in terms of
the reduced model.) Put D = diag(d1, d2, …, dS) with dM = 1 if the j-th diagonal
element of R is positive and 0 otherwise. The leverage is computed as

hL = (a7Da)wL where a is a solution to R7a = xL. The computation of the
remainder of the case diagnostics follows easily from their definitions. See the
chapter introduction (page 75) for definitions of the case diagnostics.

The type 3 informational errors can occur if the input variables X, R, E and SSE
are not consistent with each other or if excessive rounding has occurred in their
computation.The type 3 error message with error code 2 arises when X contains a
row not in the space spanned by the rows of R. An examination of the model that
was fitted and the X for which diagnostics are to be computed is required in order
to insure that only linear combinations of the regression coefficients that can be
estimated from the fitted model are specified in X. For further details, see the
discussion of estimable functions given by Maindonald (1984, pages 166−168)
and Searle (1971, pages 180−188).

Example 1

A multiple linear regression model is fit and case statistics computed for data
discussed by Cook and Weisberg (1982, page 103). The fitted model is

$ $ $ $y x x= + +β β β0 1 1 2 2

Some of the statistics in row 6 of the output matrix OTIN are undefined (0.0/0.0)
and are set to NaN (not a number). Some statistics in row 4 of OTIN are infinite
and are set to machine infinity. The values of NaN and machine infinity can be
retrieved by routine AMACH (or DMACH when using double precision), which is
documented in Reference Material.

C                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    INTCEP, LDB, LDOTIN, LDR, LDSCPE, LDX, NCOEF, NCOL,
     &           NDEP, NIND, NROW
      PARAMETER  (INTCEP=1, NCOL=3, NDEP=1, NIND=2, NROW=7,
     &           LDOTIN=NROW, LDSCPE=NDEP, LDX=NROW,
     &           NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
C
      INTEGER    I, IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1),
     &           IRANK, ISUB, IWT, NOUT, NRMISS
      REAL       AMACH, B(LDB,NDEP), D(NCOEF), DFE, E(NROW),
     &           OTIN(LDOTIN,6), R(LDR,NCOEF), SCPE(LDSCPE,NDEP),
     &           SDOT, SSE, TOL, X(LDX,NCOL), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  CLABEL(7)*10, RLABEL(1)*6
      EXTERNAL   AMACH, RGIVN, ROTIN, SDOT, UMACH, WRRRL
C
      DATA CLABEL/’Obs.’, ’Residual’, ’Leverage’, ’Std. Res.’,
     &     ’Jack. Res.’, ’Cook’’s D’, ’DFFITS’/
      DATA RLABEL/’NUMBER’/
C
      DATA (X(1,J),J=1,NIND+NDEP) /1.0, 1.0, 3.0/
      DATA (X(2,J),J=1,NIND+NDEP) /1.0, 2.0, 4.0/
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      DATA (X(3,J),J=1,NIND+NDEP) /1.0, 3.0, 5.0/
      DATA (X(4,J),J=1,NIND+NDEP) /1.0, 4.0, 7.0/
      DATA (X(5,J),J=1,NIND+NDEP) /1.0, 5.0, 7.0/
      DATA (X(6,J),J=1,NIND+NDEP) /0.0, 6.0, 8.0/
      DATA (X(7,J),J=1,NIND+NDEP) /1.0, 7.0, 9.0/
C
      IDO  = 0
      IIND = -NIND
      IDEP = -NDEP
      IFRQ = 0
      IWT  = 0
      ISUB = 1
      TOL  = AMACH(4)*100.0
      CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP,
     &            INDDEP, IFRQ, IWT, ISUB, TOL, B, LDB, R, LDR, D,
     &            IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
      SSE = SCPE(1,1)
C                                 Compute residuals.
      DO 10  I=1, NROW
         E(I) = X(I,NCOL) - B(1,1) - SDOT(NIND,B(INTCEP+1,1),1,X(I,1),
     &          LDX)
   10 CONTINUE
C
      CALL ROTIN (NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IWT, R,
     &            LDR, DFE, SSE, E, OTIN, LDOTIN, NRMISS)
C
      CALL WRRRL (’OTIN’, NROW, 6, OTIN, LDOTIN, 0, ’(F10.3)’, RLABEL,
     &            CLABEL)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
C
      END

Output
                                      OTIN
Obs.   Residual    Leverage   Std. Res.  Jack. Res.    Cook’s D      DFFITS
  1      -0.129       0.471      -0.389      -0.343       0.045      -0.324
  2      -0.143       0.286      -0.371      -0.327       0.018      -0.207
  3      -0.157       0.186      -0.383      -0.338       0.011      -0.161
  4       0.829       0.171       2.000         Inf       0.276         Inf
  5      -0.186       0.243      -0.469      -0.418       0.024      -0.237
  6       0.000       1.000         NaN         NaN         NaN         NaN
  7      -0.214       0.643      -0.788      -0.742       0.372      -0.996
NRMISS =   1

Example 2

In this example, routine RNLIN (page 280) is first invoked to fit the following
nonlinear regression model discussed by Neter, Wasserman, and Kutner (1983,
pages 475−478):

y e ii
x

i
i= + =θ εθ

1
2 1 2 15, , ,K

Then, ROTIN is used to compute case diagnostics. In addition, the leverage output
by ROTIN is used to construct asymptotic confidence intervals on the
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mean of the nonlinear regression function evaluated at xL. The asymptotic 95%
confidence intervals are computed using the formula:

$ . ,y t s hi im 975
2

DFE

where hL is the computed leverage, t.975,')( is the 97.5 percentile of the t
distribution with DFE degrees of freedom as computed by routine TIN

(page 1145), and s2 equals SSE/DFE.
      INTEGER    LDOTIN, LDR, NOBS, NPARM, NRX
      PARAMETER  (NOBS=15, NPARM=2, NRX=1, LDOTIN=NRX, LDR=NPARM)
C
      INTEGER    IDERIV, IDUMMY(1), IEND, IOBS, IRANK, J, NOUT, NRMISS
      REAL       A, DE(NPARM), DFE, E, FRQ, OTIN(LDOTIN,6),
     &           R(LDR,NPARM), SQRT, SSE, THETA(NPARM), TIN, WT, Y,
     &           YHAT
      INTRINSIC  SQRT
      EXTERNAL   EXAMPL, RNLIN, ROTIN, TIN, UMACH
C
      DATA THETA/60.0, -0.03/
C
      CALL UMACH (2, NOUT)
C
      IDERIV = 1
      CALL RNLIN (EXAMPL, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE,
     &            SSE)
C
      WRITE (NOUT,*) ’ Obs.  Pred.   Res.   Lev. St Res Del Res Cook ’//
     &              ’D DFFIT Conf Interval’
      DO 10  IOBS=1, NOBS
         CALL EXAMPL (NPARM, THETA, 0, IOBS, FRQ, WT, E, DE, IEND)
         CALL EXAMPL (NPARM, THETA, 1, IOBS, FRQ, WT, E, DE, IEND)
         CALL EXAMPL (NPARM, THETA, 2, IOBS, FRQ, WT, Y, DE, IEND)
         YHAT = Y + E
         CALL ROTIN (NRX, NPARM, DE, 1, 0, -NPARM, IDUMMY, 0, R, LDR,
     &               DFE, SSE, E, OTIN, LDOTIN, NRMISS)
         A = TIN(0.975,DFE)*SQRT((SSE/DFE)*OTIN(1,2))
         WRITE (NOUT,’(F5.1,10F7.2)’) Y, YHAT, (OTIN(1,J),J=1,6),
     &                               YHAT - A, YHAT + A
   10 CONTINUE
      END
C
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE,
     &                   IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(NPARM)
C
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
C
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
C
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0,
     &     13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
     &     38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
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C
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         IF (IOPT .EQ. 0) THEN
            E = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
         ELSE IF (IOPT .EQ. 1) THEN
            DE(1) = -EXP(THETA(2)*XDATA(IOBS))
            DE(2) = -THETA(1)*XDATA(IOBS)*EXP(THETA(2)*XDATA(IOBS))
         ELSE IF (IOPT .EQ. 2) THEN
            E = YDATA(IOBS)
         END IF
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output
 Obs.  Pred.   Res.   Lev. St Res Del Res Cook D DFFIT Conf Interval
54.0  53.86  -0.14   0.40  -0.09  -0.09   0.00  -0.07  51.19  56.53
50.0  51.92   1.92   0.24   1.13   1.14   0.21   0.65  49.84  54.00
45.0  45.58   0.58   0.18   0.33   0.32   0.01   0.15  43.79  47.37
37.0  34.55  -2.45   0.13  -1.34  -1.39   0.13  -0.54  33.04  36.07
35.0  36.33   1.33   0.11   0.72   0.71   0.03   0.24  34.96  37.70
25.0  22.37  -2.63   0.11  -1.42  -1.49   0.12  -0.52  21.00  23.75
20.0  19.06  -0.94   0.12  -0.51  -0.50   0.02  -0.18  17.61  20.51
16.0  14.82  -1.18   0.12  -0.65  -0.63   0.03  -0.23  13.35  16.29
18.0  20.74   2.74   0.12   1.50   1.58   0.15   0.58  19.29  22.20
13.0  12.98  -0.02   0.11  -0.01  -0.01   0.00   0.00  11.56  14.40
 8.0   6.13  -1.87   0.10  -1.01  -1.01   0.06  -0.33   4.81   7.45
11.0  14.52   3.52   0.08   1.88   2.12   0.15   0.62  13.33  15.70
 8.0   8.81   0.81   0.08   0.43   0.42   0.01   0.12   7.64   9.97
 4.0   2.55  -1.45   0.06  -0.77  -0.75   0.02  -0.19   1.53   3.57
 6.0   7.53   1.53   0.05   0.80   0.79   0.02   0.18   6.61   8.45

GCLAS/DGCLAS (Single/Double precision)
Get the unique values of each classification variable.

Usage
CALL GCLAS (IDO, NROW, NCOL, X, LDX, NCLVAR, INDCL, MAXCL,
            NCLVAL, CLVAL, NMISS)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of GCLAS for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to GCLAS will be made.

Unique values for the classification variables are retrieved from X.
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2 This is an intermediate invocation of GCLAS. Unique values for the
classification variables are retrieved from X.

3 This is the final invocation of GCLAS. Unique values for the
classification variables are retrieved from X, and the values in CLVAL are
sorted in ascending order for each classification variable.

NROW — Number of rows of data in X.   (Input)

NCOL — Number of columns in X.   (Input)

X — NROW by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NCLVAR — Number of classification variables.   (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are the classification variables.   (Input)

MAXCL — An upper bound on the sum of the number of distinct values taken on
by each classification variable.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken on
by each classification variable.   (Output, if IDO = 0 or IDO = 1; input/output, if
IDO = 2 or IDO = 3)
NCLVAL(I) is the number of distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCVAR)
containing the values of the classification variables.   (Output, if IDO = 0 or IDO =
1; input/output, if IDO = 2 or IDO = 3)
Since in general the length of CLVAL will not be known in advance, MAXCL (an
upper bound for this length) should be used for purposes of dimensioning CLVAL.
The first NCLVAL(1) variables contain the values of the first classification
variable. The next NCLVAL(2) variables contain the values of the second
classification variable. … The last NCLVAL(NCLVAR) variables contain the values
of the last classification variable. After invocation of GCLAS with IDO = 3, CLVAL
contains the values sorted in ascending order by the classification variable.

NMISS — Vector of length NCLVAR containing the number of elements of the
data containing NaN for any classification variable.   (Output, if IDO = 0 or IDO =
1; input/output if IDO = 2 or IDO = 3)

Comments

Informational error
Type Code
   4    1 MAXCL is too small. Increase MAXCL and the dimension of

CLVAL.
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Algorithm

Routine GCLAS gets the unique values of m (Input in NCLVAR) classification
variables. The routine can be used in conjunction with routine GRGLM (page 210).
Routine GRGLM requires the values of the classification variables output by GCLAS
in order to generate dummy variables for the general linear model.

In the input array X, missing values for a classification variable can be indicated
by NaN (not a number). This is AMACH(6) in single precision and DMACH(6) in
double precision. (See the section “Machine-Dependent Constants” found under
Reference Material for a further discussion of AMACH, DMACH, and missing
values.) The nonmissing values of the classifications variables are output in
CLVAL. If for a particular row of X a value of a classification variable is missing,
nonmissing values of the other classification variables are still used. The number
of elements equal to NaN for each classification variable is output in NMISS.

Example

In the following example, the unique values of two classification variables are
obtained from a data set XX with six rows. Here, routine GCLAS is invoked
repeatedly with one row of the data set input into X at a time. Initially, GCLAS is
invoked with IDO = 1, then with IDO = 2 for each of the six rows of data, and
finally with IDO = 3.

      INTEGER    LDX, LDXX, MAXCL, NCLVAR, NCOL, NOBS
      PARAMETER  (LDX=1, MAXCL=5, NCLVAR=2, NCOL=2, NOBS=6, LDXX=NOBS)
C
      INTEGER    I, IDO, INDCL(NCLVAR), NCLVAL(NCLVAR), NMISS(NCLVAR),
     &           NROW
      REAL       CLVAL(MAXCL), X(LDX,NCOL), XX(LDXX,NCOL)
      CHARACTER  CLABEL(2)*8, RLABEL(1)*17
      EXTERNAL   GCLAS, SCOPY, WRIRL, WRRRL
C
      DATA INDCL/1, 2/, NCLVAL/2, 3/
      DATA (XX(1,J),J=1,NCOL)/10.0,  5.0/
      DATA (XX(2,J),J=1,NCOL)/20.0, 15.0/
      DATA (XX(3,J),J=1,NCOL)/20.0, 10.0/
      DATA (XX(4,J),J=1,NCOL)/10.0, 10.0/
      DATA (XX(5,J),J=1,NCOL)/10.0, 15.0/
      DATA (XX(6,J),J=1,NCOL)/20.0,  5.0/
C
      IDO = 1
      NROW = 0
      CALL GCLAS (IDO, NROW, NCOL, X, LDX, NCLVAR, INDCL, MAXCL,
     &            NCLVAL, CLVAL, NMISS)
      IDO = 2
      NROW = 1
      DO 10  I=1, NOBS
         CALL SCOPY (NCOL, XX(I,1), LDXX, X, LDX)
         CALL GCLAS (IDO, NROW, NCOL, X, LDX, NCLVAR, INDCL, MAXCL,
     &               NCLVAL, CLVAL, NMISS)
   10 CONTINUE
      IDO = 3
      NROW = 0
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      CALL GCLAS (IDO, NROW, NCOL, X, LDX, NCLVAR, INDCL, MAXCL,
     &            NCLVAL, CLVAL, NMISS)
      I         = 1
      RLABEL(1) = ’Variable   CLVAL:’
      CLABEL(1) = ’None’
      DO 20  J=1, NCLVAR
         WRITE (RLABEL(1)(9:10),’(I2)’) J
         CALL WRRRL (’ ’, 1, NCLVAL(J), CLVAL(I), 1, 0, ’(F5.2)’,
     &               RLABEL, CLABEL)
         I = I + NCLVAL(J)
   20 CONTINUE
      RLABEL(1) = ’NUMBER’
      CLABEL(1) = ’Variable’
      CLABEL(2) = ’NMISS’
      CALL WRIRL (’%/’, NCLVAR, 1, NMISS, NCLVAR, 0, ’(I2)’, RLABEL,
     &            CLABEL)
      END

Output
Variable 1 CLVAL:  10.00  20.00
Variable 2 CLVAL:   5.00  10.00  15.00

Variable  NMISS
       1      0
       2      0

GRGLM/DGRGLM (Single/Double precision)
Generate regressors for a general linear model.

Usage
CALL GRGLM (NROW, NCOL, X, LDX, NCLVAR, INDCL, NCLVAL,
            CLVAL, NEF, NVEF, INDEF, IDUMMY, NREG, REG,
            LDREG, NRMISS)

Arguments

NROW — Number of rows of data in X.   (Input)

NCOL — Number of columns in X.   (Input)

X — NROW by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NCLVAR — Number of classification variables.   (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are the classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken on
by each classification variable.   (Input)
NCLVAL(I) is the number of distinct values for the I-th classification variable.
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CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the values of the classification variables.   (Input)
The first NCLVAL(1) elements contain the values of the first classification
variable. The next NCLVAL(2) elements contain the values of the second
classification variable. … The last NCLVAL(NCLVAR) elements contain the values
of the last classification variable.

NEF — Number of effects (sources of variation) in the model.   (Input)

NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF).
(Input)
The first NVEF(1) elements give the column numbers of X for each variable in the
first effect. The next NVEF(2) elements give the column numbers for each variable
in the second effect. … The last NVEF(NEF) elements give the column numbers
for each variable in the last effect.

IDUMMY — Dummy variable option.   (Input)
Some indicator variables are defined for the I-th class variable as follows: Let
J = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(I − 1). NCLVAL(I) indicator
variables are defined such that for K = 1, 2, …, NCLVAL(I) the K-th indicator
variable for observation number IOBS takes the value 1.0 if X(IOBS, INDCL(I)) =
CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are generated from
these indicator variables in one of the three following ways:

IDUMMY Method
−1, 1 The NCLVAL(I) indicator variables are the dummy variables.
−2, 2 The first NCLVAL(I) − 1 indicator variables are the dummy variables.

The last indicator variable is omitted.
−3, 3 The K-th indicator variable minus the NCLVAL(I)-th indicator variable is

the K-th dummy variable (K = 1, 2, …, NCLVAL(I) − 1).

If IDUMMY < 0, only NREG is computed; and X, CLVAL, and REG are not
referenced.

NREG — Number of columns in REG.   (Output)

REG — NROW by NREG matrix containing the regressor variables generated from
the matrix X.   (Output, if IDUMMY > 0)
Since, in general, NREG will not be known in advance, the user may need to
invoke GRGLM first with IDUMMY < 0, dimension REG, and then invoke GRGLM
with IDUMMY > 0.

LDREG — Leading dimension of REG exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of REG containing NaN (not a number).   (Output)
A row of REG contains NaN for a regressor when any of the variables involved in
generation of the regressor equals NaN or if a value of one of the classification
variables in the model is not given by CLVAL.
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Comments

Let the data matrix X = (A, B, X1) where A and B are classification variables, and
X1 is a continuous variable. The model containing the effects A, B, AB, X1, AX1,
BX1 and ABX1 is specified as follows:
NCLVAR = 2, INDCL = (1, 2), NEF = 7, NVEF = (1, 1, 2, 1, 2, 2, 3), and
INDEF = (1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3).

For this model, suppose NCLVAL(1) = 2, NCLVAL(2) = 3, and CLVAL= (1.0, 2.0,
1.0, 2.0, 3.0). Let A1, B1, B2, and B3 be the associated indicator variables. Given
below, for each IDUMMY option, are the regressors in their order of appearance in
REG.

IDUMMY REG

1 A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3, X1, A1X1, A2X1,
B1X1, B2X1, B3X1, A1B1X1, A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1

2 A1,  B1, B2,  A1B1, A1B2, X1, A1X1, B1X1, B2X1, A1B1X1, A1B2X1
3 A1 − A2, B1 − B3, B2 − B3, (A1 − A2)(B1 − B2), (A1 − A2)(B2 − B3), X1, (A1

− A2)X1, (B1 − B3)X1, (B2 − B3)X1, (A1 − A2)(B1 − B2)X1, (A1 − A2)(B2 −
B3)X1

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, vary next most rapidly for the next to last classification variable, etc.

Algorithm

Routine GRGLM generates regressors for a general linear model from a data
matrix. The data matrix can contain classification variables as well as continuous
variables.

Regressors for effects composed solely of continuous variables are generated as
powers and crossproducts. Consider a data matrix containing continuous variables
as columns 3 and 4. The effect indices (3,3) (stored in INDEF) generates a
regressor whose i-th value is the square of the i-th value in column 3. The effect
indices (3,4) generates a regressor whose i-th value is the product of the i-th value
in column 3 with the i-th value in column 4.

Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable A
take on values a1, a2, …, aQ (stored in CLVAL). From this classification variable,

GRGLM creates n indicator variables. For k = 1, 2, …, n we have

I
A a

k
k=

=%&'
1

0

if

otherwise

For each classification variable, another set of variables is created from the
indicator variables. We call these new variables dummy variables. Dummy
variables are generated from the indicator variables in one of three manners:
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1. the dummies are the n indicator variables,

2. the dummies are the first n − 1 indicator variables,

3 the n − 1 dummies are defined in terms of the indicator variables so that
for balanced data, the usual summation restrictions are imposed on the
regression coefficients.

In particular, for IDUMMY = 1, the dummy variables are AN = IN (k = 1, 2, …, n).

For IDUMMY = 2, the dummy variables are AN = IN (k = 1, 2, …, n − 1). For

IDUMMY = 3, the dummy variables are AN = IN − IQ (k = 1, 2, …, n − 1). The
regressors generated for an effect composed of a single classification variable are
the associated dummy variables.

Let mM be the number of dummies generated for the j-th classification variable.
Suppose there are two classification variables A and B with dummies

A A A B B Bm m1 2 1 21 2
, , , , , ,K Kand 

respectively. The regressors generated for an effect composed of two
classification variables A and B are

A ⊗ B

=

=

A A A B B B

A B A B A B A B A B A B A B A B A B

m m

m m m m m m

1 2 1 2

1 1 1 2 1 2 1 2 2 2 1 2

1 2

2 2 1 1 1 2

, , , , , ,
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K K

K K K

3 8 3 8
3 8

 

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variables is specified in
INDEF. Consider a data matrix containing classification variables in columns 1
and 2 and continuous variables in columns 3 and 4. Label these four columns A,
B, X1, and X2. The regressors generated by the effect indices (1, 2, 3, 3, 4) is
A ⊗ B ⊗ X1X1X2.

Example

In this example, regressors are generated for a two-way analysis-of-covariance
model containing all the interaction terms. The model could be fitted by a
subsequent invocation of routine RGIVN (see page 107) with INTCEP = 1. The
regressors generated with the option IDUMMY = 2 are for the model whose mean
function is

µ + αL+ βM+ γLM+ δxLM+ ζLxLM+ ηMxLM+ θLMxLM       i = 1, 2; j = 1, 2, 3

where α2 = β3 = γ13= γ21= γ22= γ23= ζ2 = η3 = θ13= θ21= θ22= θ23= 0.

      INTEGER    LDREG, LDX, LINDEF, MAXCL, NCLVAR, NCOL, NDREG, NEF,
     &           NROW
      PARAMETER  (LINDEF=12, MAXCL=5, NCLVAR=2, NCOL=3, NDREG=20,
     &           NEF=7, NROW=6, LDREG=NROW, LDX=NROW)
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C
      INTEGER    IDUMMY, INDCL(NCLVAR), INDEF(LINDEF), J,
     &           NCLVAL(NCLVAR), NOUT, NREG, NRMISS, NVEF(NEF)
      REAL       CLVAL(MAXCL), REG(LDREG,NDREG), X(LDX,NCOL)
      CHARACTER  CLABEL(12)*7, RLABEL(1)*7
      EXTERNAL   GRGLM, UMACH, WRRRL
C
      DATA INDCL/1, 2/, NCLVAL/2, 3/, CLVAL/1.0, 2.0, 1.0, 2.0, 3.0/
      DATA NVEF/1, 1, 2, 1, 2, 2, 3/, INDEF/1, 2, 1, 2, 3, 1, 3, 2, 3,
     &     1, 2, 3/
      DATA (X(1,J),J=1,NCOL)/1.0, 1.0, 1.11/
      DATA (X(2,J),J=1,NCOL)/1.0, 2.0, 2.22/
      DATA (X(3,J),J=1,NCOL)/1.0, 3.0, 3.33/
      DATA (X(4,J),J=1,NCOL)/2.0, 1.0, 4.44/
      DATA (X(5,J),J=1,NCOL)/2.0, 2.0, 5.55/
      DATA (X(6,J),J=1,NCOL)/2.0, 3.0, 6.66/
      DATA RLABEL/’NUMBER’/, CLABEL/’ ’, ’ALPHA1’, ’BETA1’,
     &     ’BETA2’, ’GAMMA11’, ’GAMMA12’, ’DELTA’, ’ZETA1’,
     &     ’ETA1’, ’ETA2’, ’THETA11’, ’THETA12’/
C
      IDUMMY = 2
      CALL GRGLM (NROW, NCOL, X, LDX, NCLVAR, INDCL, NCLVAL, CLVAL,
     &            NEF, NVEF, INDEF, IDUMMY, NREG, REG, LDREG, NRMISS)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NREG = ’, NREG, ’  NRMISS = ’, NRMISS
      CALL WRRRL (’%/REG’, NROW, NREG, REG, LDREG, 0, ’(F7.2)’, RLABEL,
     &            CLABEL)
      END

Output
NREG =   11  NRMISS =   0

                                    REG
    ALPHA1    BETA1    BETA2  GAMMA11  GAMMA12    DELTA    ZETA1     ETA1
1     1.00     1.00     0.00     1.00     0.00     1.11     1.11     1.11
2     1.00     0.00     1.00     0.00     1.00     2.22     2.22     0.00
3     1.00     0.00     0.00     0.00     0.00     3.33     3.33     0.00
4     0.00     1.00     0.00     0.00     0.00     4.44     0.00     4.44
5     0.00     0.00     1.00     0.00     0.00     5.55     0.00     0.00
6     0.00     0.00     0.00     0.00     0.00     6.66     0.00     0.00

      ETA2  THETA11  THETA12
1     0.00     1.11     0.00
2     2.22     0.00     2.22
3     0.00     0.00     0.00
4     0.00     0.00     0.00
5     5.55     0.00     0.00
6     0.00     0.00     0.00

RBEST/DRBEST (Single/Double precision)
Select the best multiple linear regression models.
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Usage
CALL RBEST (NVAR, COV, LDCOV, NOBS, ICRIT, NBEST, NGOOD,
            IPRINT, ICRITX, CRIT, IVARX, INDVAR, ICOEFX,
            COEF, LDCOEF)

Arguments

NVAR — Number of variables.   (Input)

COV — NVAR by NVAR matrix containing the variance-covariance matrix or sum
of squares and crossproducts matrix.   (Input)
Only the upper triangle of COV is referenced. The last column of COV must
correspond to the dependent variable.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

NOBS — Number of observations.   (Input)

ICRIT — Criterion option.   (Input)

ICRIT Criterion NSIZE

< 0 R2 −ICRIT

1 R2 NVAR − 1

2 Adjusted R2 NVAR − 1

3 Mallows CS NVAR − 1

Subset sizes 1, 2, …, NSIZE are examined.

NBEST — Number of best regressions to be found.   (Input)

If the R2 criterion is selected, the NBEST best regressions for each subset size

examined are found. If the adjusted R2 or Mallows CS criterion is selected, the
NBEST best overall regressions are found.

NGOOD — Maximum number of good regressions of each subset size to be
saved in finding the best regressions.   (Input)
NGOOD must be greater than or equal to NBEST. Normally, NGOOD should be less
than or equal to 10. It need not ever be larger than the maximum number of
subsets for any subset size. Computing time required is inversely related to
NGOOD.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed.

ICRITX — Index vector of length NSIZE + 1 containing the locations in CRIT of
the first element for each subset size.   (Output)
(See argument ICRIT for a definition of NSIZE. ) For I = 1, 2, …, NSIZE,
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element numbers ICRITX(I), ICRITX(I) + 1, …, ICRITX(I + 1) − 1 of CRIT
correspond to the I-th subset size.

CRIT — Vector of length max(ICRITX(NSIZE + 1) − 1, NVAR − 1) containing in
its first ICRITX(NSIZE + 1) − 1 elements the criterion values for each subset
considered, in increasing subset size order.   (Output)
An upper bound on the length of CRIT is max(NGOOD * NSIZE, NVAR − 1).
Within each subset size, results are returned in monotone order according to the
criterion value with the results for the better regressions given first.

IVARX — Index vector of length NSIZE + 1 containing the locations in INDVAR

of the first element for each subset size.   (Output)
For I = 1,2, …, NSIZE, element numbers IVARX(I), IVARX(I) + 1, …, IVARX (I
+ 1) − 1 of INDVAR correspond to the I-th subset size.

INDVAR — Index vector of length IVARX(NSIZE + 1) − 1 containing the
variable numbers for each subset considered and in the same order as in CRIT.
(Output)
An upper bound on the length of INDVAR is NGOOD * NSIZE * (NSIZE + 1)/2.

ICOEFX — Index vector of length NTBEST + 1 containing the locations in COEF

of the first row for each of the best regressions.   (Output)
Here, NTBEST is the total number of best regressions found and is given as
follows:

ICRIT NTBEST

< 0 −NBEST * ICRIT
1 NBEST * (NVAR − 1)
2 NBEST

3 NBEST

For I = 1, 2, …, NTBEST, rows ICOEFX(I), ICOEFX(I) + 1, …, ICOEFX(I + 1) −
1 of COEF correspond to the I-th regression.

COEF — ICOEFX(NTBEST + 1) − 1 by 5 matrix containing statistics relating to
the regression coefficients of the best models.   (Output)
An upper bound on the number of rows in COEF is given as follows:

ICRIT Upper Bound on the Number of Rows in COEF
< 0 −NBEST * ICRIT * (1 − ICRIT)/2
1 NBEST * (NVAR − 1) * NVAR/2
2 NBEST * (NVAR − 1)
3 NBEST * (NVAR − 1)

Each row corresponds to a coefficient for a particular regression. The regressions
are in order of increasing subset size. Within each subset size, the regressions are
ordered so that the better regressions appear first. The statistics in the columns are
as follows:

Col. Description
1 Variable number
2 Coefficient estimate
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3 Estimated standard error of the estimate
4 t-statistic for the test that the coefficient is zero
5 p-value for the two-sided t test

(Inferences are conditional on the selected models.)

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

RBEST (2 * NVAR3 + 4 * NVAR)/3 + 3 * NVAR2 + 2 * NGOOD * NVAR +
12 * NVAR units, or

DRBEST (4 * NVAR3 + 8 * NVAR)/3 + 3 * NVAR2 + 4 * NGOOD * NVAR +
18 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
R2EST/DR2EST. The reference is

CALL R2EST (NVAR, COV, LDCOV, NOBS, ICRIT, NBEST,
            NGOOD, IPRINT, ICRITX, CRIT, IVARX,
            INDVAR, ICOEFX, COEF, LDCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length NVAR * (2 * NGOOD + 6) + (2 * NVAR3 + 4
* NVAR)/3. The first NVAR − 1 locations indicate which variables are in
the full model. If IWK(I) = 0, then variable I is in the full model,
otherwise, the variable has been dropped.

IWK — Integer work vector of length 3 * NVAR2 + 6 * NVAR.

2. Informational errors
Type Code
   3    1 At least one variable is deleted is from the full model

because COV is singular.
   4    3 No variables can enter any model.

Algorithm

Routine RBEST finds the best subset regressions for a regression problem with NVAR

− 1 candidate independent variables. Typically, the intercept is forced into all
models and is not a candidate variable. In this case, a sum of squares and
crossproducts matrix for the independent and dependent variables corrected for the
mean is input for COV. Routine CORVC (page 314) can be used to compute the
corrected sum of squares and crossproducts. IMSL routine RORDM (page 1268) can
be used to reorder this matrix, if required. Other possibilities are

1. The intercept is not in the model. A raw (uncorrected) sum of squares
and crossproducts matrix for the independent and dependent variables
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is required for COV. NOBS must be set to one greater than the number of
observations. Routine MXTXF (IMSL MATH/LIBRARY) can be used to
compute the raw sum of squares and crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum of
squares and crossproducts matrix for the constant regressor ( = 1),
independent, and dependent variables is required for COV. In this case,
COV contains one additional row and column corresponding to the
constant regressor. This row/column contains the sum of squares and
crossproducts of the constant regressor with the independent and
dependent variables. The remaining elements in COV are the same as in
the previous case. NOBS must be set to one greater than the number of
observations.

3. There are m variables to be forced into the models. A sum of squares
and crossproducts matrix adjusted for the m variables is required. NOBS
must be set to m less than the number of observations. Routine RCOV
(page 104) can be used to compute the adjusted sum of squares and
crossproducts matrix. This is accomplished by a regression of the
candidate variables on the variables to be forced into the models. The
error sum of squares and crossproducts matrix, SCPE from RCOV, is the
input to COV in routine RBEST.

“Best” is defined, on option, by one of three criteria:

1. R2 (in percent)
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Note that maximizing this criterion is equivalent to minimizing the
residual mean square, SSES/(n − p).

3. Mallows’ CS statistic

C
SSE

s
p np

p= + −
−NVAR 1

2 2

Here, n is NOBS, and SST is the total sum of squares. SSES is the error
sum of squares in a model containing p regression parameters including 
β0 (or p − 1 of the NVAR − 1 candidate variables).

sNVAR−1
2
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is the error mean square from the model with all NVAR − 1 candidate
variables in the model. Hocking (1972) and Draper and Smith (1981,
pages 296−302) discuss these criteria.

Routine RBEST is based on the algorithm of Furnival and Wilson (1974), this
algorithm finds NGOOD candidate regressions for each possible subset size. These
regressions are used to identify a set of best regressions. In large problems, many
regressions are not computed. They may be rejected without computation based
on results for other subsets, this yields an efficient technique for considering all
possible regressions.

Programming Notes

Routine RBEST can save considerable CPU time over explicitly computing all
possible regressions. However, the routine has some limitations that can cause
unexpected results for users that are unaware of the limitations of the software.

1. For NVAR > − log2(ε) where ε is AMACH(4) (DMACH(4) in the double
precision version, see the section “Machine-Dependent Constants” in
Reference Material), some results can be incorrect. This limitation arises
because the possible models indicated by the model numbers 1, 2, …,

2NVAR-1, are stored as floating-point values, for sufficiently large NVAR,
the model numbers cannot be stored exactly. On many computers, this
means RBEST (for NVAR > 25) and DRBEST (for NVAR > 50) can produce
incorrect results.

2. Routine RBEST eliminates some subsets of candidate variables by
obtaining lower bounds on the error sum of squares from fitting larger
models. First, the full model containing all NVAR − 1 is fit sequentially
using a forward stepwise procedure in which one variable enters the
model at a time, and criterion values and model numbers for all the
candidate variables that can enter at each step are stored. If linearly
dependent variables are removed from the full model, error code 1 is
issued. If this error is issued, some submodels that contain variables
removed from the full model because of linear dependency can be
overlooked, if they have not already been identified during the initial
forward stepwise procedure. If error code 1 is issued and you want the
variables that were removed from the full model to be considered in
smaller models, you may want to rerun the program with a set of linearly
independent variables.

Example

This example uses a data set from Draper and Smith (1981, pages 629−630). This data
set is input to the matrix X by routine GDATA (page 1302). The first four columns
contain the independent variables, and the last column contains the dependent
variable. Routine CORVC (page 314) is invoked to compute the corrected sum of
squares and crossproducts matrix. Routine RBEST is then invoked to find the best

regression for each of the four subset sizes using the R2 criterion.



220 • Chapter 2: Regression IMSL STAT/LIBRARY

      INTEGER    LDCOEF, LDCOV, LDX, NBEST, NGOOD, NSIZE, NTBEST, NVAR
      PARAMETER  (LDX=13, NBEST=1, NGOOD=10, NVAR=5,
     &           LDCOEF=NBEST*(NVAR-1)*NVAR/2, LDCOV=NVAR,
     &           NSIZE=NVAR-1, NTBEST=NBEST*(NVAR-1))
C
      INTEGER    ICOEFX(NTBEST+1), ICOPT, ICRIT, ICRITX(NSIZE+1),
     &           IFRQ, INCD(1,1), INDVAR(NGOOD*NSIZE*(NSIZE+1)/2),
     &           IPRINT, IVARX(NSIZE+1), IWT, MOPT, NMISS, NOBS, NROW,
     &           NVAR1
      REAL       COEF(LDCOEF,5), COV(LDCOV,NVAR), CRIT(NGOOD*NSIZE),
     &           SUMWT, X(LDX,NVAR), XMEAN(NVAR)
      EXTERNAL   CORVC, GDATA, RBEST
C
      CALL GDATA (5, 0, NROW, NVAR1, X, LDX, NVAR)
C
      IFRQ  = 0
      IWT   = 0
      MOPT  = 0
      ICOPT = 1
      CALL CORVC (0, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, ICOPT,
     &            XMEAN, COV, LDCOV, INCD, 1, NOBS, NMISS, SUMWT)
C
      ICRIT  = 1
      IPRINT = 1
      CALL RBEST (NVAR, COV, LDCOV, NOBS, ICRIT, NBEST, NGOOD, IPRINT,
     &            ICRITX, CRIT, IVARX, INDVAR, ICOEFX, COEF, LDCOEF)
C
      END

Output
Regressions with   1 variable(s) (R-squared)
        Criterion         Variables
         67.5              4
         66.6              2
         53.4              1
         28.6              3

Regressions with   2 variable(s) (R-squared)
        Criterion         Variables
         97.9              1  2
         97.2              1  4
         93.5              3  4
         68.0              2  4
         54.8              1  3

Regressions with   3 variable(s) (R-squared)
        Criterion         Variables
         98.2              1  2  4
         98.2              1  2  3
         98.1              1  3  4
         97.3              2  3  4

Regressions with   4 variable(s) (R-squared)
        Criterion         Variables
         98.2              1  2  3  4

         Best Regression with    1 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
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        4      -0.7382          0.1546       -4.775   0.0006
         Best Regression with    2 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
        1        1.468          0.1213        12.10   0.0000
        2        0.662          0.0459        14.44   0.0000

         Best Regression with    3 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
        1        1.452          0.1170        12.41   0.0000
        2        0.416          0.1856         2.24   0.0517
        4       -0.237          0.1733        -1.36   0.2054

         Best Regression with    4 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
        1        1.551          0.7448        2.083   0.0708
        2        0.510          0.7238        0.705   0.5009
        3        0.102          0.7547        0.135   0.8959
        4       -0.144          0.7091       -0.203   0.8441

RSTEP/DRSTEP (Single/Double precision)
Build multiple linear regression models using forward selection, backward
selection, or stepwise selection.

Usage
CALL RSTEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE, NSTEP,
            ISTEP, NOBS, PIN, POUT, TOL, IPRINT, SCALE,
            HIST, IEND, AOV, COEF, LDCOEF, COVS, LDCOVS)

Arguments

INVOKE — Invocation option.   (Input)

INVOKE Action
0 This is the only invocation of RSTEP for this variancecovariance matrix.

Initialization, stepping, and wrap-up computations are performed.
1 This is the first invocation of RSTEP, and additional calls to RSTEP will

be made. Initialization and stepping is performed.
2 This is an intermediate invocation of RSTEP and stepping is performed.
3 This is the final invocation of RSTEP and stepping is performed.

NVAR — Number of variables.   (Input)

COV — NVAR by NVAR matrix containing the variance-covariance matrix or sum
of squares and crossproducts matrix.   (Input)
Only the upper triangle of COV is referenced.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)
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LEVEL — Vector of length NVAR containing levels of priority for variables entering
and leaving the regression.   (Input)
LEVEL(I) = −1 means the I-th variable is the dependent variable. LEVEL(I) = 0
means the I-th variable is never to enter into the model. Other variables must be
assigned a positive value to indicate their level of entry into the model. A variable can
enter the model only after all variables with smaller nonzero levels of entry have
entered. Similarly, a variable can only leave the model after all variables with higher
levels of entry have left. Variables with the same level of entry compete for entry
(deletion) at each step.

NFORCE — Variables with levels 1, 2, …, NFORCE are forced into the model as
the independent variables.   (Input)

NSTEP — Step length option.   (Input)
For nonnegative NSTEP. NSTEP steps are taken. NSTEP = −1 means stepping
continues until completion.

ISTEP — Stepping option.   (Input)

ISTEP Action
−1 An attempt is made to remove a variable from the model (backward step). A

variable is removed if its p-value exceeds POUT. During initialization, all
candidate independent variables enter the model.

1 An attempt is made to add a variable to the model (forward step). A
variable is added if its p-value is less than PIN. During initialization,
only the forced variables enter the model.

0 A backward step is attempted. If a variable is not removed, a forward
step is attempted. This is a stepwise step. Only the forced variables enter
the model during initialization.

NOBS — Number of observations.   (Input)

PIN — Largest p-value for entering variables.   (Input)
Variables with p-values less than PIN may enter the model. A common choice is
PIN = 0.05.

POUT — Smallest p-value for removing variables.   (Input)
Variables with p-values greater than POUT may leave the model. POUT must be
greater or equal to PIN. A common choice is POUT = 0.10 (or 2 * PIN).

TOL — Tolerance used in determining linear dependence.   (Input)
For RSTEP, TOL = 100 * AMACH (4) is a common choice. For DRSTEP, TOL = 100
* DMACH(4) is a common choice. See documentation for AMACH/DMACH in the
Reference Material.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed on the final invocation.
2 Printing is performed after each step and on the final invocation.
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SCALE — Vector of length NVAR containing the initial diagonal entries in COV.
(Output, if INVOKE = 0 or 1; input, if INVOKE = 2 or 3)

HIST — Vector of length NVAR containing the recent history of variables.
(Output, if INVOKE = 0 or 1; input/output, otherwise)

HIST(I) Meaning
k > 0 I-th variable was added to the model during the k-th step.
k < 0 I-th variable was deleted from the model during the k-th step.
0 I-th variable has never been in the model.
0.5 I-th variable was added into the model during initialization.

IEND — Completion indicator.   (Output)

IEND Meaning
0 Additional steps may be possible.
1 No additional steps are possible.

AOV — Vector of length 13 containing statistics relating to the analysis of
variance for the final model in this invocation.   (Output)

I AOV(I)
1 Degrees of freedom for regression
2 Degrees of freedom for error
3 Total degrees of freedom
4 Sum of squares for regression
5 Sum of squares for error
6 Total sum of squares
7 Regression mean square
8 Error mean square
9 F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error

COEF — NVAR − 1 by 5 matrix containing statistics relating to the regression
coefficients for the final model in this invocation.   (Output)
The rows correspond to the NVAR − 1 variables with LEVEL(I) nonnegative, i.e.,
all variables but the dependent variable. The rows are in the same order as the
variables in COV except that the dependent variable is excluded. Each row
corresponding to a variable not in the model is for the model supposing the
additional variable was in the model.

Col. Description
1 Coefficient estimate
2 Estimated standard error of the coefficient estimate
3 t-statistic for the test that the coefficient is zero
4 p-value for the two-sided t test
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5 Variance inflation factor. The square of the multiple correlation
coefficient for the I-th regressor after all others can be obtained from
COEF(I, 5) by the formula 1.0 − 1.0/COEF(I, 5).

LDCOEF — Leading dimension of exactly as specified in the dimension
statement in the calling program.   (Input)

COVS — NVAR by NVAR matrix that results after COV has been swept on the
columns corresponding to the variables in the model.   (Output, if INVOKE = 0 or
1; input/output, if INVOKE = 2 or 3)
The estimated variance-covariance matrix of the estimated regression coefficients
in the final model can be obtained by extracting the rows and columns of COVS

corresponding to the independent variables in the final model and multiplying the
elements of this matrix by AOV(8). If COV is not needed, COV and COVS can
occupy the same storage locations.

LDCOVS — Leading dimension of COVS exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

RSTEP 3 * NVAR units, or
DRSTEP 4 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
R2TEP/DR2TEP. The reference is

CALL R2TEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE,
            NSTEP, ISTEP, NOBS, PIN, POUT, TOL,
            IPRINT, SCALE,HIST, IEND, AOV, COEF,
            LDCOEF, COVS, LDCOVS, SWEPT, IWK)

The additional arguments are as follows:

SWEPT — Work vector of length NVAR with information to indicate the
independent variables in the model.   (Output)
SWEPT(I) = 1.0 indicates that independent variable I is in the model.
Otherwise, SWEPT(I) = −1.0. Routine RSUBM (page 233) can be called
with the arguments COVS and SWEPT to obtain the part of COVS
pertaining to the current model.

IWK — Integer work vector of length 2 * NVAR.

2. Informational errors
Type Code
   3    1 Based on TOL, there are linear dependencies among

the variables to be forced.

  4    2 No variables entered the model. Elements of AOV are
set to NaN.
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Algorithm

Routine RSTEP builds a multiple linear regression model using forward selection,
backward selection, or forward stepwise (with a backward glance) selection. The
routine RSTEP is designed so that the user can monitor, and perhaps change, the
variables added (deleted) to (from) the model after each step. In this case, multiple
calls to RSTEP (with INVOKE = 1, 2, 2, ..., 3) are made. Alternatively, RSTEP can
be invoked once (with INVOKE = 0) in order to perform the stepping until a final
model is selected.

Levels of priority can be assigned to the candidate independent variables. All
variables with a priority level of 1 must enter the model before any variable with
a priority level of 2. Similarly, variables with a level of 2 must enter before
variables with a level of 3, etc.

Variables can also be forced into the model. If equal levels of priority are to be
assumed, the levels of priority can all be set to 1.

Typically, the intercept is forced into all models and is not a candidate variable. In
this case, a sum of squares and crossproducts matrix for the independent and
dependent variables corrected for the mean is input for COV. Routine CORVC
(page 314) can be used to compute the corrected sum of squares and
crossproducts. Routine RORDM (page 1268) can be used to reorder this matrix, if
required. Other possibilities are

1. The intercept is not in the model. A raw (uncorrected) sum of squares and
crossproducts matrix for the independent and dependent variables is
required for COV. NOBS must be set to one greater than the number of
observations. IMSL routine MXTXF (IMSL MATH/LIBRARY) can be used
to compute the raw sum of squares and crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum of
squares and crossproducts matrix for the constant regressor (= 1),
independent and dependent variables is required for COV. In this case, COV
contains one additional row and column corresponding to the constant
regressor. This row/column contains the sum of squares and crossproducts
of the constant regressor with the independent and dependent variables. The
remaining elements in COV are the same as in the previous case. NOBS must
be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). Routine RSTEP uses
sweeps of COV to move variables in and out of the model (Hemmerle 1967, Chapter
3). The SWEEP operator discussed by Goodnight (1979) is used. A description of the
stepwise algorithm is given also by Kennedy and Gentle (1980, pages 335−340). The
advantage of stepwise model building over all possible regressions (see routine
RBEST, page 214) is that it is less demanding computationally when the number of
candidate independent variables is very large. However, there is no guarantee that the

model selected will be the best model (highest R2) for any subset size of independent
variables.
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Example 1

Both examples use a data set from Draper and Smith (1981, pages 629−630). A
corrected sum of squares and crossproducts matrix for this data is given in the
DATA statement and can be computed using routine CORVC (page 314). The first
four columns are for the independent variables and the last column is for the
dependent variable. Here, RSTEP is invoked using the backward stepping option.

      INTEGER    LDCOEF, LDCOV, LDCOVS, NVAR
      PARAMETER  (NVAR=5, LDCOEF=NVAR, LDCOV=NVAR, LDCOVS=NVAR)
C
      INTEGER    IEND, INVOKE, IPRINT, ISTEP, LEVEL(NVAR), NFORCE,
     &           NOBS, NSTEP
      REAL       AMACH, AOV(13), COEF(LDCOEF,5), COV(LDCOV,NVAR),
     &           COVS(LDCOVS,NVAR), HIST(NVAR), PIN, POUT,
     &           SCALE(NVAR), TOL
      EXTERNAL   AMACH, RSTEP
C
      DATA COV/415.231, 251.077, -372.615, -290.000, 775.962, 251.077,
     &     2905.69, -166.538, -3041.00, 2292.95, -372.615, -166.538,
     &     492.308, 38.0000, -618.231, -290.000, -3041.00, 38.0000,
     &     3362.00, -2481.70, 775.962, 2292.95, -618.231, -2481.70,
     &     2715.76/
      DATA LEVEL/4*1, -1/
C
      INVOKE = 0
      NFORCE = 0
      NSTEP  = -1
      ISTEP  = -1
      NOBS   = 13
      PIN    = 0.05
      POUT   = 0.10
      TOL    = 100.0*AMACH(4)
      IPRINT = 2
      CALL RSTEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE, NSTEP,
     &            ISTEP, NOBS, PIN, POUT, TOL, IPRINT, SCALE, HIST,
     &            IEND, AOV, COEF, LDCOEF, COVS, LDCOVS)
C
      END

Output
BACKWARD ELIMINATION
STEP 0:  4 variable(s) entered.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      98.238     97.356           2.446

              * * * Analysis of Variance * * *
                       Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        4      2667.9       667.0    111.480    0.0000
Error             8        47.9         6.0
Total            12      2715.8

              * * * Inference on Coefficients * * *
               (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
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Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.551      0.7448        2.082     0.0709        38.5
       2       0.510      0.7238        0.704     0.5012       254.4
       3       0.102      0.7547        0.135     0.8963        46.9
       4      -0.144      0.7091       -0.204     0.8437       282.5

STEP 1 :  Variable 3 removed.
Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      98.234     97.645           2.309

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        3      2667.8       889.3    166.835    0.0000
Error             9        48.0         5.3
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.452      0.1170       12.410     0.0000        1.07
       2       0.416      0.1856        2.242     0.0517       18.78
       4      -0.237      0.1733       -1.365     0.2054       18.94

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       3       0.102      0.7547        0.135     0.8963       46.87

STEP 2 :  Variable 4 removed.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      97.868     97.441           2.406

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        2      2657.9      1328.9    229.502    0.0000
Error            10        57.9         5.8
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.468      0.1213       12.105     0.0000        1.06
       2       0.662      0.0459       14.442     0.0000        1.06

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       3       0.250      0.1847        1.354     0.2089        3.14
       4      -0.237      0.1733       -1.365     0.2054       18.94

* * * Backward Elimination Summary * * *
        Variable    Step Removed
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               3             1
               4             2

Example 2

This example uses the data set in Example 1. Here, RSTEP is invoked using the
forward stepwise option.

      INTEGER    LDCOEF, LDCOV, LDCOVS, NVAR
      PARAMETER  (NVAR=5, LDCOEF=NVAR, LDCOV=NVAR, LDCOVS=NVAR)
C
      INTEGER    IEND, INVOKE, IPRINT, ISTEP, LEVEL(NVAR), NFORCE,
     &           NOBS, NSTEP
      REAL       AMACH, AOV(13), COEF(LDCOEF,5), COV(LDCOV,NVAR),
     &           COVS(LDCOVS,NVAR), HIST(NVAR), PIN, POUT,
     &           SCALE(NVAR), TOL
      EXTERNAL   AMACH, RSTEP
C
      DATA COV/415.231, 251.077, -372.615, -290.000, 775.962, 251.077,
     &     2905.69, -166.538, -3041.00, 2292.95, -372.615, -166.538,
     &     492.308, 38.0000, -618.231, -290.000, -3041.00, 38.0000,
     &     3362.00, -2481.70, 775.962, 2292.95, -618.231, -2481.70,
     &     2715.76/
      DATA LEVEL/4*1, -1/
C
      INVOKE = 0
      NFORCE = 0
      NSTEP  = -1
      ISTEP  = 1
      NOBS   = 13
      PIN    = 0.05
      POUT   = 0.10
      TOL    = 100.0*AMACH(4)
      IPRINT = 2
      CALL RSTEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE, NSTEP,
     &            ISTEP, NOBS, PIN, POUT, TOL, IPRINT, SCALE, HIST,
     &            IEND, AOV, COEF, LDCOEF, COVS, LDCOVS)
C
      END

Output
FORWARD SELECTION
STEP 0:  No variables entered.

          * * * Statistics for Variables Not in the Model * * *
                  Coef.    Standard  t-statistic   Prob. of    Variance
   Variable    Estimate       Error     to enter   Larger t   Inflation
          1       1.869      0.5264        3.550     0.0046           1
          2       0.789      0.1684        4.686     0.0007           1
          3      -1.256      0.5984       -2.098     0.0598           1
          4      -0.738      0.1546       -4.775     0.0006           1

STEP 1 :  Variable 4 entered.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      67.454     64.496           8.964
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                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        1      1831.9      1831.9     22.799    0.0006
Error            11       883.9        80.4
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       4      -0.738      0.1546       -4.775     0.0006        1.00

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       1       1.440      0.1384       10.403     0.0000        1.06
       2       0.311      0.7486        0.415     0.6867       18.74
       3      -1.200      0.1890       -6.348     0.0001        1.00

    STEP 2 :  Variable 1 entered.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      97.247     96.697           2.734

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        2      2641.0      1320.5    176.636    0.0000
Error            10        74.8         7.5
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.440      0.1384       10.403     0.0000        1.06
       4      -0.614      0.0486      -12.622     0.0000        1.06

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       2       0.416      0.1856        2.242     0.0517       18.78
       3      -0.410      0.1992       -2.058     0.0697        3.46

* * * Forward Selection Summary * * *
       Variable    Step Entered
              1             2
              4             1

Example 3

For an extended version of Example 2 that in addition computes the intercept and
standard error for the final model from RSTEP, see “Example 2” for routine
RSUBM (page 233).



230 • Chapter 2: Regression IMSL STAT/LIBRARY

GSWEP/DGSWEP (Single/Double precision)
Perform a generalized sweep of a row of a nonnegative definite matrix.

Usage
CALL GSWEP (KROW, N, A, LDA, IREV, TOL, SCALE, SWEPT)

Arguments

KROW — Row/column number to be swept.   (Input)

N — Order of the matrix to be swept.   (Input)

A — N by N nonnegative definite matrix whose row KROW is to be swept.
(Input/Output)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

IREV — Reversibility option.   (Input)

IREV Action When Linear Dependence Is Declared
0 Elements of row and column KROW of A are set to 0.0. Reversibility of

the generalized sweep operator is lost.
1 Elements of row and column KROW of A are left unchanged. Reversibility

of the generalized sweep operator is maintained, but some post
processing by the user is required. See Comments.

TOL — Tolerance used in determining linear dependence.   (Input)
For GSWEP, TOL = 100 * AMACH(4) is a common choice. For DGSWEP, TOL = 100
* DMACH(4) is a common choice. See documentation for routines AMACH and
DMACH in the Reference Material.

SCALE — Vector of length N containing the diagonal scaling matrix used in the
tolerance check.   (Input)
A common choice for SCALE(I) is the I-th diagonal element of A before any calls
to GSWEP have been made. If TOL = 0.0, SCALE is not referenced and can be a
vector of length one.

SWEPT — Vector of length N with information to indicate what has and has not
been swept.   (Input/Output)
On the first call to GSWEP all elements must equal −1.0. On output,
SWEPT(KROW) = 1.0 if the sweep was successful. If a linear dependence is
declared, SWEPT(KROW) remains equal to − 1.0.

Comments

Say we wish to sweep k different rows of the matrix A. For purposes of
discussion, let these be rows 1, 2, …, k of A. Partition A into its first k rows and
columns and the remainder,
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For a nonsingular A11, successive invocations of GSWEP with A and KROW equal to
1, 2, …, k yields
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Only the elements in the upper triangle of A are referenced. Thus, the elements in
the lower triangles of the symmetric matrices

A A A A A11
1

22 21 11
1

12
− −− and 

are not returned. For a singular A11and IREV equal to zero, a symmetric g2
inverse of A11, denoted by

Ag
11

2

is used. For a singular A11and IREV not equal to zero, the first k rows of the swept
A are not the same as for the IREV equal to one case. However,

G A H A Ag g= =11 11 12
2 2 and 

can be obtained from the output A as follows:

g

if

if and

if + = 2 and   
ij

i j

ij i j

ji i j

s s

a s s i j

a s s i j

=
+ ≤
+ = ≤

>

%
&K
'K

0 0

2

and

h

i j s

i j s

i j s s

a i j s s

a i j s s

ij

i

i

i j

ij i j

ji i j

=

= = −
= =
≠ + ≠
≤ + =

− > + =

%

&
KKK

'
KKK

0 1

1 1

0 0

0

0

if and

if and

if and

if and

if and

H is the Hermite canonical form (also referred to as the Hermite normal form or a
rowechelon form) of A11.

Algorithm

Routine GSWEP computes an upper triangular generalized sweep of a nonnegative
definite matrix. The versatility of the SWEEP operator for statistical
computations, in particular for regression computations, is discussed by
Goodnight (1979).
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Routine GSWEP is based on UTG2SWEEP and RUTG2SWEEP described by
Goodnight (1979, pages 157-158). (A misprint appears twice in “Step 5”,
page 157 of Goodnight’s article. The “aLM” should be replaced by “aLN.”) The test
for linear dependence is the same as that given by Clarke (1982).

Example

We consider the correlation matrix for the first three regressors from the example
used by Berk (1976) and discussed by Frane (1977). The matrix is “nearly”
singular. The rows of the correlation matrix are swept sequentially with KROW

equal 1, 2, 3. With a tolerance of 0.001, the sweeps for 1 and 2 are successful.
When a sweep on row 3 is attempted a linear dependence is declared. This is
because

1 0 0001 0 0011 2 3
2− = <⋅R , . .

      INTEGER    LDA, N
      PARAMETER  (N=3, LDA=N)
C
      INTEGER    IREV, KROW
      REAL       A(LDA,N), SCALE(N), SQRT, SWEPT(N), TOL
      INTRINSIC  SQRT
      EXTERNAL   GSWEP, SCOPY, SSET, WROPT, WRRRN
C
      A(1,1) = 1.0
      A(1,2) = SQRT(0.99)
      A(1,3) = 0.1*SQRT(0.99)
      A(2,2) = 1.0
      A(2,3) = 0.0
      A(3,3) = 1.0
      IREV   = 0
      TOL    = 0.001
C                                 Copy diagonal of A to SCALE.
      CALL SCOPY (N, A, LDA+1, SCALE, 1)
C                                 Initialize elements of SWEPT to -1.
      CALL SSET (N, -1.0, SWEPT, 1)
      CALL WROPT (-6, 4, 1)
      CALL WRRRN (’A’, N, N, A, LDA, 1)
      CALL WRRRN (’SWEPT’, N, 1, SWEPT, N, 0)
      DO 10  KROW=1, 3
         CALL GSWEP (KROW, N, A, LDA, IREV, TOL, SCALE, SWEPT)
         CALL WRRRN (’A’, N, N, A, LDA, 1)
         CALL WRRRN (’SWEPT’, N, 1, SWEPT, N, 0)
   10 CONTINUE
      END

Output
                A
          1         2         3
1   1.00000   0.99499   0.09950
2             1.00000   0.00000
3                       1.00000

   SWEPT
1  -1.00000
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2  -1.00000
3  -1.00000

                A
          1         2         3
1   1.00000   0.99499   0.09950
2             0.01000  -0.09900
3                       0.99010

   SWEPT
1   1.00000
2  -1.00000
3  -1.00000

                A
          1         2         3
1   100.000   -99.499     9.950
2             100.000    -9.900
3                         0.010

   SWEPT
1   1.00000
2   1.00000
3  -1.00000

                A
          1         2         3
1   100.000   -99.499     0.000
2             100.000     0.000
3                         0.000

   SWEPT
1   1.00000
2   1.00000
3  -1.00000

RSUBM/DRSUBM (Single/Double precision)
Retrieve a symmetric submatrix from a symmetric matrix.

Usage
CALL RSUBM (NA, A, LDA, SWEPT, NASUB, ASUB, LDASUB)

Arguments

NA — Order of matrix A.   (Input)

A — NA by NA symmetric matrix.   (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program.   (Input)
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SWEPT — Vector of length NA.   (Input)
Element A(I, J) is included in submatrix ASUB if and only if SWEPT(I) > 0.0 and
SWEPT(J) > 0.0.

NASUB — Order of submatrix ASUB.   (Output)
NASUB equals the number of elements in SWEPT that are greater than zero.

ASUB — NASUB by NASUB symmetric matrix containing a submatrix of A.
(Output)
If A is not needed, ASUB and A can share the same storage locations.

LDASUB — Leading dimension of ASUB exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

1. Automatic workspace usage is

RSUBM NASUB units, or
DRSUBM NASUB units.

Workspace may be explicitly provided, if desired, by use of
R2UBM/DR2UBM. The reference is

CALL R2UBM (NA, A, LDA, SWEPT, NASUB, ASUB, LDASUB,
            IWK)

The additional argument is

IWK — Vector of length NASUB.

2. Routine RSUBM can be used after invoking routines GSWEP (page 230)
and RSTEP (page 221) in order to retrieve the submatrix for the variables
in the model.

Algorithm

Routine RSUBM retrieves a symmetric submatrix from a symmetric matrix A. If
elements i and j of the input vector SWEPT are greater than zero, then the ij-th
element of A is output in the submatrix ASUB. Otherwise, the ij-th element of A
will not be included in ASUB. (Here, i = 1, 2, …, NA, and j = 1, 2, …, NA, where
NA is the order of A.)

Routine RSUBM can be useful in conjunction with two routines, GSWEP (page 230)
and RSTEP (page 221). The routine RSUBM can be used after routine GSWEP in
order to retrieve the submatrix of A that corresponds to the rows/columns that
have been successfully swept. In this case, the SWEPT vector output from GSWEP
can be used as the input for the argument SWEPT in RSUBM. Also, RSUBM can be
used after routine RSTEP in order to retrieve the submatrix of COVS that
corresponds to the independent variables in the final model. In this case, the HIST

vector output from RSTEP can be used as the input for the argument SWEPT in
RSUBM.
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Example 1

The 2 × 2 symmetric submatrix ASUB is retrieved from rows and columns 1 and 4
of the 4 × 4 symmetric matrix A.

      INTEGER    LDA, LDASUB, NA
      PARAMETER  (LDASUB=2, NA=4, LDA=NA)
C
      INTEGER    NASUB
      REAL       A(LDA,NA), ASUB(LDASUB,LDASUB), SWEPT(NA)
      EXTERNAL   RSUBM, WRRRN
C
      DATA SWEPT/1.0, -1.0, -1.0, 1.0/
      DATA A/10.0, 20.0, 40.0, 70.0, 20.0, 30.0, 50.0, 80.0, 40.0,
     &     50.0, 60.0, 90.0, 70.0, 80.0, 90.0, 100.0/
C
      CALL RSUBM (NA, A, LDA, SWEPT, NASUB, ASUB, LDASUB)
      CALL WRRRN (’ASUB’, NASUB, NASUB, ASUB, LDASUB, 0)
      END

Output
      ASUB
        1       2
1    10.0    70.0
2    70.0   100.0

Example 2

This example invokes RSUBM after routine RSTEP (page 221) in order to retrieve
the submatrix of COVS that corresponds to the independent variables in the final
stepwise model. With this submatrix, routine BLINF  (IMSL MATH/LIBRARY)
is used to compute the estimated standard deviation for the intercept in the final
model.

A data set from Draper and Smith (1981, pages 629−630) is used. The means and
the corrected sum of squares and crossproducts matrix for this data are given in
the DATA statements. They can be computed using routine CORVC (page 314). The
first four entries in XMEAN and the first four columns of COV correspond to the
independent variables, the last entry in XMEAN and the last column of COV

correspond to the dependent variable.

After RSTEP is invoked to obtain a model, the intercept is computed using the
formula

$ $β β0
1

= −
=
∑y xi i
i

k

where k is the number of independent variables in the final model. The estimated
standard deviation of the intercept is computed using the formula

Est. St. Dev 0
$ ( / )β4 9 = +s n x AxT2 1
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where s2 is the error mean square from the fit (stored in AOV(8)), n is the number
of observations, x  is the subvector of means for the independent variables in the
final model (in this case the first mean and the fourth mean), and A is the
submatrix (in this case with rows and columns 1 and 4) of the matrix COVS that is
output by RSTEP.

      INTEGER    LDCOEF, LDCOV, LDCOVS, NVAR
      PARAMETER  (NVAR=5, LDCOEF=NVAR, LDCOV=NVAR, LDCOVS=NVAR)
C
      INTEGER    I, IEND, INVOKE, IPRINT, ISTEP, J, LEVEL(NVAR),
     &           NFORCE, NIND, NOBS, NOUT, NSTEP
      REAL       AMACH, AOV(13), B0, BLINF, COEF(LDCOEF,5),
     &           COV(LDCOV,NVAR), COVS(LDCOVS,NVAR), HIST(NVAR), PIN,
     &           POUT, SCALE(NVAR), SEB0, SQRT, TOL, XMEAN(NVAR)
      INTRINSIC  SQRT
      EXTERNAL   AMACH, BLINF, RSTEP, RSUBM, UMACH
C
      DATA COV/415.231, 251.077, -372.615, -290.000, 775.962, 251.077,
     &     2905.69, -166.538, -3041.00, 2292.95, -372.615, -166.538,
     &     492.308, 38.0000, -618.231, -290.000, -3041.00, 38.0000,
     &     3362.00, -2481.70, 775.962, 2292.95, -618.231, -2481.70,
     &     2715.76/
      DATA XMEAN/7.46154, 48.1538, 11.7692, 30.0000, 95.4231/
      DATA LEVEL/4*1, -1/
C
      INVOKE = 0
      NFORCE = 0
      NSTEP  = -1
      ISTEP  = 1
      NOBS   = 13
      PIN    = 0.05
      POUT   = 0.10
      TOL    = 100.0*AMACH(4)
      IPRINT = 1
      CALL RSTEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE, NSTEP,
     &            ISTEP, NOBS, PIN, POUT, TOL, IPRINT, SCALE, HIST,
     &            IEND, AOV, COEF, LDCOEF, COVS, LDCOVS)
C                                 Compute intercept
      B0 = XMEAN(NVAR)
      DO 10  I=1, NVAR - 1
         IF (HIST(I) .GT. 0.0) THEN
            B0       = B0 - XMEAN(I)*COEF(I,1)
            J        = J + 1
            XMEAN(J) = XMEAN(I)
         END IF
   10 CONTINUE
C                                 Compute standard error of intercept
      CALL RSUBM (NVAR, COVS, LDCOVS, HIST, NIND, COVS, LDCOVS)
      SEB0 = 1.0/NOBS + BLINF(NIND,NIND,COVS,LDCOVS,XMEAN,XMEAN)
      SEB0 = SQRT(AOV(8)*SEB0)
C                                 Print intercept and standard error
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) ’ ’
      WRITE (NOUT,99999) ’Intercept ’, B0
      WRITE (NOUT,99999) ’Std. Error’, SEB0
99999 FORMAT (1X, A, F10.3)
C
      END
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Output
FORWARD SELECTION

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      97.247     96.697           2.734

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        2      2641.0      1320.5    176.636    0.0000
Error            10        74.8         7.5
Total            12      2715.8

                * * * Inference on Coefficients * * *
                (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.440      0.1384       10.403     0.0000        1.06
       4      -0.614      0.0486      -12.622     0.0000        1.06

        * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       2       0.416      0.1856        2.242     0.0517        18.7
       3      -0.410      0.1992       -2.058     0.0697        3.46

* * * Forward Selection Summary * * *
        Variable    Step Entered
               1             2
               4             1

Intercept    103.097
Std. Error     2.124

RCURV/DRCURV (Single/Double precision)
Fit a polynomial curve using least squares.

Usage
CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)

Arguments

NOBS — Number of observations.   (Input)

XDATA — Vector of length NOBS containing the x values.   (Input)

YDATA — Vector of length NOBS containing the y values.   (Input)

NDEG — Degree of polynomial.   (Input)

B — Vector of length NDEG + 1 containing the coefficients

$β
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(Output)
The fitted polynomial is

$ $ $ $ $y x x xk
k= + + + +β β β β0 1 2

2 K

SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares.
(Output)
SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, …, NDEG,

SSPOLY(i + 1) contains the sum of squares due to xL adjusted for the mean, x, x2,

…, and xL-1.

STAT — Vector of length 10 containing statistics described below.   (Output)

i Statistics
1 Mean of x
2 Mean of y
3 Sample variance of x
4 Sample variance of y
5 R-squared (in percent)
6 Degrees of freedom for regression
7 Regression sum of squares
8 Degrees of freedom for error
9 Error sum of squares
10 Number of data points (x, y) containing NaN (not a number) as a x or y

value

Comments

1. Automatic workspace usage is

RCURV 12 * NOBS+ 11 * NDEG + (NDEG + 1) * (NDEG + 3) + 5 units, or

DRCURV 23 * NOBS + 22 * NDEG + 2 * (NDEG + 1) * (NDEG + 3) + 10
units.

Workspace may be explicitly provided, if desired, by use of
R2URV/DR2URV. The reference is

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY,
            STAT, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG + 1)
* (NDEG + 3).

IWK — Work vector of length NOBS.

2. Informational errors
Type Code
   4    3 Each (x, y) point contains NaN (not a number). There

are no valid data.
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   4    7 The x values are constant. At least NDEG + 1 distinct x
values are needed to fit a NDEG polynomial.

   3    4 The y values are constant. A zero order polynomial is
fit. High order coefficients are set to zero.

   3    5 There are too few observations to fit the desired
degree polynomial. High order coefficients are set to
zero.

   3    6 A perfect fit was obtained with a polynomial of degree
less than NDEG. High order coefficients are set to zero.

3. If NDEG is greater than 10, the accuracy of the results may be
questionable.

Algorithm

Routine RCURV computes estimates of the regression coefficients in a polynomial
(curvilinear) regression model. In addition to the computation of the fit, RCURV
computes some summary statistics. Sequential sums of squares attributable to
each power of the independent variable (stored in SSPOLY) are computed. These
are useful in assessing the importance of the higher order powers in the fit. Draper
and Smith (1981, pages 101−102) and Neter and Wasserman (1974, pages 278−
287) discuss the interpretation of the sequential sums of squares. The statistic R2
(stored in STAT(5)) is the percentage of the sum of squares of y about its mean
explained by the polynomial curve. Specifically,
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 $yi

is the fitted y value at xL and

y

(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the

overall fit of the curve to the data. R2 must be between 0% and 100%, inclusive.

R2 = 100% indicates a perfect fit to the data.

Routine RCURV computes estimates of the regression coefficients in a polynomial
model using orthogonal polynomials as the regressor variables. This
reparameterization of the polynomial model in terms of orthogonal polynomials
has the advantage that the loss of accuracy resulting from forming powers of the
x-values is avoided. All results are returned to the user for the original model.

The routine RCURV is based on the algorithm of Forsythe (1957). A modification
to Forsythe’s algorithm suggested by Shampine (1975) is used for computing the



240 • Chapter 2: Regression IMSL STAT/LIBRARY

polynomial coefficients. A discussion of Forsythe’s algorithm and Shampine’s
modification appears in Kennedy and Gentle (1980, pages 342−347).

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pages 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set.

      INTEGER    NDEG, NOBS
      PARAMETER  (NDEG=2, NOBS=14)
C
      REAL       B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS),
     &           YDATA(NOBS)
      CHARACTER  CLABEL(11)*15, RLABEL(1)*4
      EXTERNAL   RCURV, WRRRL, WRRRN
C
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,
     &           ’Variance X’, ’Variance Y’, ’R-squared’,
     &           ’DF Reg.’, ’SS Reg.’, ’DF Error’, ’SS Error’,
     &           ’Pts. with NaN’/
      DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7.,
     &     7./
      DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
     &     758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/
C
      CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)
C
      CALL WRRRN (’B’, 1, NDEG+1, B, 1, 0)
      CALL WRRRN (’SSPOLY’, 1, NDEG+1, SSPOLY, 1, 0)
      CALL WRRRL (’%/STAT’, 1, 10, STAT, 1, 0, ’(2W10.4)’, RLABEL,
     &            CLABEL)
      END

Output
          B
    1       2       3
503.3    78.9    -4.0

             SSPOLY
        1           2           3
7077152.0    220644.2      4387.7

                             STAT
Mean of X   Mean of Y  Variance X  Variance Y   R-squared     DF Reg.
    3.571       711.0       6.418     17364.8       99.69           2

 SS Reg.    DF Error    SS Error  Pts. with NaN
225031.9           11       710.5              0
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Figure 2-7   Plot of Data and Second Degree Polynomial Fit

RPOLY/DRPOLY (Single/Double precision)
Analyze a polynomial regression model.

Usage
CALL RPOLY (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT,
            IPRED, CONPCM, CONPCP, MAXDEG, ICRIT, CRIT,
            LOF, IPRINT, NDEG, AOV, SQSS, LDSQSS, COEF,
            LDCOEF, TLOF, LDTLOF, CASE, LDCASE, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)
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IND — Column number IND of X contains the data for the independent
(explanatory) variable.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies. If X(i, IFRQ) = 0.0, none of the remaining
elements of row i of X are referenced, and updating of statistics is skipped for row
i.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights, and the computed prediction interval uses
AOV (8) = X(i, IWT) for the estimated variance of a future response.

IPRED — Prediction interval option.   (Input)
IPRED = 0 means that prediction intervals are desired for a single future response.
For positive IPRED, column number IPRED of X contains the number of future
responses for which a prediction interval is desired on the average of the future
responses.

CONPCM — Confidence level for two-sided interval estimates on the mean in
percent.   (Input)

CONPCP — Confidence level for two-sided prediction intervals in percent.
(Input)

MAXDEG — Maximum degree of polynomial to be fit.   (Input)

ICRIT — Criterion option.   (Input)

ICRIT Meaning
0 Fit a MAXDEG-th degree polynomial.

1 Fit the lowest degree polynomial with an R2 (in percent) of at least CRIT.
2 Fit the lowest degree polynomial with a lack-of-fit F test not significant

at level CRIT percent.

CRIT — Criterion in percent.   (Input, if ICRIT = 1 or ICRIT = 2, not referenced
if ICRIT = 0)

ICRIT Meaning of CRIT

1 R2 (in percent) that the fitted polynomial must achieve. A common
choice is 95.0.

2 Significance level (in percent) for the lack-of-fit test that the fitted
polynomial must not exceed. A common choice is 5.0.

LOF — Lack of fit option.   (Input)
If ICRIT = 2, LOF must equal 1.

LOF Action
0 TLOF is not computed.
1 TLOF is computed.
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IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 AOV, SQSS, COEF, TLOF are printed.
2 AOV, SQSS, COEF, TLOF, unusual cases in CASE and plots of the data,and

the fitted polynomial are printed.
3 AOV, SQSS, COEF, TLOF, CASE, plots of the data, the fitted polynomial,

and the residuals are printed.

NDEG — Degree of final polynomial regression.   (Output)

AOV — Vector of length 15 that contains statistics relating to the analysis of
variance.   (Output)

i AOV(i)
1 Degrees of freedom for the model
2 Degrees of freedom for error
3 Total (corrected) degrees of freedom
4 Sum of squares for the model
5 Sum of squares for error
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 Overall F-statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimate of the standard deviation
14 Overall response mean
15 Coefficient of variation (in percent)

SQSS — NDEG by 4 matrix containing sequential statistics for the polynomial
model.   (Output)

Row i corresponds to xL(i = 1, 2, …, NDEG). The columns are described as
follows:

Col. Description
1 Degrees of freedom
2 Sum of squares
3 F-statistic
4 p-value

LDSQSS — Leading dimension of SQSS exactly as specified in the dimension
statement in the calling program.   (Input)

COEF — NDEG + 1 by 4 matrix containing statistics relating to the coefficients of
the polynomial model.   (Output)
Row 1 corresponds to the intercept. Row 1 + i corresponds to the coefficient of

xL. The columns are described as follows:
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Col. Description
1 Estimated coefficient

$β
2 Estimated standard error of the estimated coefficient
3 t-statistic for the test the coefficient is zero
4 p-value for the two-sided t test

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

TLOF — NDEG by 4 matrix containing tests of lack of fit for each degree of the
polynomial.   (Output, if LOF = 1)

Row i corresponds to xL(i = 1, 2, …, NDEG). The columns are described as
follows:

Col. Description
1 Degrees of freedom
2 Lack-of-fit sum of squares
3 F test for lack of fit of the polynomial model of degree i
4 p-value for the F test

If LOF = 0, TLOF is not referenced and can be a vector of length 1.

LDTLOF — Leading dimension of TLOF exactly as specified in the dimension
statement in the calling program.   (Input)

CASE — NOBS by 12 matrix containing the case statistics.   (Output)
Columns 1 through 12 contain the following:

Col. Description
1 Observed response
2 Predicted response
3 Residual
4 Leverage
5 Standardized residual
6 Jackknife residual
7 Cook’s distance
8 DFFITS
9, 10 Confidence interval on the mean
11, 12 Prediction interval

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of CASE containing NaN (not a number).   (Output)

Comments

1. Automatic workspace usage is
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RPOLY MAXDEG2 + 8 * MAXDEG + 9 * NOBS + 5 units, or

DRPOLY 2 * MAXDEG2 + 16 * MAXDEG + 17 * NOBS + 10 units.

Workspace may be explicitly provided, if desired, by use of
R2OLY/DR2OLY. The reference is

CALL R2OLY (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ,
            IWT, IPRED,CONPCM, CONPCP, MAXDEG,
            ICRIT, CRIT, LOF, IPRINT, NDEG, AOV,
            SQSS, LDSQSS, COEF, LDCOEF, TLOF,
            LDTLOF, CASE, LDCASE, NRMISS, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length MAXDEG2 + 8 * MAXDEG + 8 * NOBS + 5

IWK — Work vector of length NOBS.

2. Informational errors
Type Code
   4    1 An invalid weight is encountered. Weights must be

nonnegative.
   4    2 An invalid frequency is encountered. Frequencies must

be nonnegative.
   4    7 The independent variable is constant. At least two

distinct settings of the independent variable are
needed.

   4    8 The number of future observations for a prediction
interval must be positive.

   3    4 The response is constant. A zero degree polynomial is
fit.

   3    5 There are too few observations to fit the desired
degree polynomial. NDEG is set to one less than the
number of valid observations.

   3    6 A perfect fit to the data was obtained with a
polynomial of lower degree than MAXDEG.

Algorithm

Routine RPOLY computes estimates of the regression coefficients in a polynomial
(curvilinear) regression model. The degree of the polynomial can be specified, or
the degree of the polynomial can be determined by RPOLY under one of two
criteria:

1. If some of the x settings are repeated, the lowest degree polynomial can
be fit whose lack of fit is not significant at a specified level.

2. The lowest degree polynomial can be fitted with an R2 that meets a
specified lower bound.

In addition to the computation of the fit, RPOLY computes and prints summary
statistics (analysis of variance, sequential sums of squares, t tests for the
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coefficients, tests for lack of fit), case statistics (diagnostics for individual cases,
confidence and prediction intervals), and plots (data, fitted data, and residuals).

Routine RPOLY computes estimates of the regression coefficients in a polynomial
regression model using orthogonal polynomials. The reparameterization of the
polynomial model in terms of orthogonal polynomials has the advantage that the
loss of accuracy resulting from forming powers of the x settings is avoided. All
results are returned to the user for the original model.

Often a predicted value and a confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This is
accomplished by including an extra row in the data matrix with the desired setting
of the independent variable and with the response set equal to NaN (not a
number). NaN can be retrieved by AMACH(6) (or DMACH(6) when using double
precision regression routines), which is documented in the Reference Material.
The row of the data matrix containing NaN will be omitted from the computations
for determining the regression fit, and a prediction and a confidence interval for
the missing response will be computed from the given setting of the independent
variable.

Routine RPOLY is based on the algorithm of Forsythe (1957). A modification to
Forsythe’s algorithm suggested by Shampine (1975) is used for computing the
polynomial coefficients. A discussion of Forsythe’s algorithm and Shampine’s
modification appears in Kennedy and Gentle (1980, pages 342−347). A
modification to Forsythe’s algorithm is made for the inclusion of weights (Kelly
1967, page 68).

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pages 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set. Some of the
cafeterias have the same number of dispensers so that lack of fit of the model can
be assessed.

      INTEGER    LDCASE, LDCOEF, LDSQSS, LDTLOF, LDX, MAXDEG, NCOL,
     &           NOBS
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDCASE=NOBS,
     &           LDCOEF=MAXDEG+1, LDSQSS=MAXDEG, LDTLOF=MAXDEG,
     &           LDX=NOBS)
C
      INTEGER    ICRIT, IFRQ, IND, IPRED, IPRINT, IRSP, IWT, LOF,
     &           NDEG, NRMISS
      REAL       AOV(15), CASE(LDCASE,12), COEF(LDCOEF,4), CONPCM,
     &           CONPCP, CRIT, SQSS(LDSQSS,4), TLOF(LDTLOF,4),
     &           X(LDX,NCOL)
      EXTERNAL   RPOLY
C
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
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      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
C
      IRSP   = 2
      IND    = 1
      IFRQ   = 0
      IWT    = 0
      IPRED  = 0
      CONPCM = 95.0
      CONPCP = 95.0
      ICRIT  = 0
      LOF    = 1
      IPRINT = 1
      CALL RPOLY (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, IPRED,
     &            CONPCM, CONPCP, MAXDEG, ICRIT, CRIT, LOF, IPRINT,
     &            NDEG, AOV, SQSS, LDSQSS, COEF, LDCOEF, TLOF, LDTLOF,
     &            CASE, LDCASE, NRMISS)
C
      END

Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   99.685     99.628           8.037       711.0            1.13

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             2    225031.9    112515.9   1741.748    0.0000
Residual              11       710.6        64.6
Corrected Total       13    225742.5

          * * * Inference on Coefficients * * *
                      Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
   1       503.3       4.791      105.054      0.0000
   2        78.9       3.453       22.865      0.0000
   3        -4.0       0.482       -8.242      0.0000

             * * * Sequential Statistics * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           1    220644.1     3415.574    0.0000
         2           1      4387.7       67.922    0.0000

             * * * Tests of Lack of Fit * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           5      4793.7       22.031    0.0004
         2           4       406.0        2.332    0.1547
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RCOMP/DRCOMP (Single/Double precision)
Generate an orthogonal central composite design.

Usage
CALL RCOMP (NVAR, XMIN, XMAX, NCENTR, IFREP, NPTS, X, LDX)

Arguments

NVAR — Number of explanatory variables.   (Input)
NVAR must be greater than or equal to 2 and less than or equal to 12.

XMIN — Vector of length NVAR with the minimum values.   (Input)
XMIN(i) is the minimum for the i-th variable.

XMAX — Vector of length NVAR with the maximum values.   (Input)
XMAX(i) is the maximum for the i-th variable.

NCENTR — Number of center points.   (Input)
NCENTR must be greater than 0.

IFREP — Option for the fractional replicate of the 2NVAR design selected.
(Input)
IFREP is referenced only if NVAR is greater than or equal to 5. In the following
table, the design points in the fractional replicate part of the design are defined
using modulo 2 arithmetic. Each variable is coded 0 or 1 to represent the low and
high values of the variable.
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NPTS — Number of design points.   (Output)

NVAR NPTS

2 thru 4 2NVAR + 2 * NVAR + NCENTR

5 thru 7 2NVAR-1 + 2 * NVAR + NCENTR

8 or 9 2NVAR-2 + 2 * NVAR + NCENTR

10 2NVAR-3 + 2 * NVAR + NCENTR

11 or 12 2NVAR-4 + 2 * NVAR + NCENTR

X — NPTS by NVAR matrix containing the orthogonal central composite design.
(Output)
Design settings for variable I are contained in column I of X. (I = 1, 2, …, NVAR)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

Algorithm

Routine RCOMP generates an orthogonal central composite design from the
minimum and maximum value for each of n (input in NVAR) variables, where

2 ≤ n ≤ 12. An orthogonal central composite design is a 2-N replicate of a 2Q
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factorial design, i.e., a 2Q-N fractional factorial, augmented by 2n axial points and
m (input in NCENTR) center points. The values of n and k used by RCOMP are
given by the following table:

n k

2, 3, 4 0

5, 6, 7 1

8, 9 2

10 3

11, 12 4

The fractional factorial part of all designs generated by RCOMP are of resolution V
or greater. This means the fractions allow the overall mean, all the main effects,
and all the two-factor interactions to be estimated. For a further discussion, see
John (1971, pages 148−157).

Experimental designs for fitting a second-order response surface must contain at
least three levels of each variable in order for the regression coefficients to be
estimated. Orthogonal central composite designs provide a useful alternative to

the 3Q factorial design, which can require an excessive number of design points.
On a per observation basis, the orthogonal central composite design is no worse

than the 3Q factorial design with regard to efficiency for estimating the regression
coefficients of the square and crossproduct variables (see Meyers 1971, pages
134−136). The design assumes three factor and higher-way interactions are
negligible.

Meyers (1971, chapter 7) and John (1971, pages 204−206) discuss the generation
of the design. The number of design points (stored in NPTS) is

2Q-N + 2n + m. Each variable in the design appears at five different levels. For a
second-order response surface model with the x variables coded
{−α, −1, 0, 1, α} and with pure quadratic terms corrected for the mean

c
n m

n k

n k= +
+ +

−

−
2 2

2 2

2α

the design produces a diagonal X7X matrix. Let

α =
+ + −�

�
���

�

�
���

− − −2 2 2 2

4

2 1 4
n k n k n kn m4 9

/

and let the minimum and maximum value of the j-th variable be denoted by x1M
and x2M, respectively. The following table gives the formulas for the coded and
decoded variable settings:
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Coded Setting for Variable j Decoded Setting for Variable j

−α x1M

−1 x x x xj j j j1 2 1 2

2 2

−
+

+
α

0 x xj j1 2

2

+

1 x x x xj j j j2 1 1 2

2 2

−
+

+
α

α x2M

Example

This example uses two variables and their respective minimum and maximum
values to generate an orthogonal central composite design with four center points.

      PARAMETER  (NVAR=2, NCENTR=4, LDX=2**NVAR+2*NVAR+NCENTR)
      REAL       X(LDX,NVAR), XMAX(NVAR), XMIN(NVAR)
      DATA       XMIN /251.0,73.0/ XMAX/295.0, 87.0/
C
      CALL RCOMP (NVAR, XMIN, XMAX, NCENTR, IFREP, NPTS, X, LDX)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NPTS = ’, NPTS
      CALL WRRRN (’X’, NPTS, NVAR, X, LDX, 0)
      END

Output
NPTS =   12

         X
         1       2
 1   291.2    85.8
 2   291.2    74.2
 3   254.8    85.8
 4   254.8    74.2
 5   273.0    80.0
 6   273.0    80.0
 7   273.0    80.0
 8   273.0    80.0
 9   251.0    80.0
10   295.0    80.0
11   273.0    73.0
12   273.0    87.0
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Figure 2-8   Othogonal Central Composite Design With Four
Center Points

RFORP/DRFORP (Single/Double precision)
Fit an orthogonal polynomial regression model.

Usage
CALL RFORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT,
            MAXDEG, ICRIT, CRIT, LOF, NDEG, SMULTC, SADDC,
            A, B, SCOEF, D, DFE, SSE, DFPE, SSPE, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

IND — Column number IND of X contains the data for the independent
(explanatory) variable.   (Input)
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IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies. If X(i, IFRQ) = 0.0, none of the remaining
elements of row i of X are referenced, and updating of statistics is skipped for row
i.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

MAXDEG — Maximum degree of polynomial to be fit.   (Input)

ICRIT — Criterion option.   (Input)

ICRIT Meaning
0 Fit a MAXDEG-th degree polynomial.

1 Fit the lowest degree polynomial with an R2 (in percent) of at least CRIT.
2 Fit the lowest degree polynomial with a lack-of-fit F test not significant

at level CRIT percent.

CRIT — Criterion in percent.   (Input, if ICRIT = 1 or ICRIT = 2)

ICRIT Meaning of CRIT

1 R2 (in percent) that the fitted polynomial must achieve. A common
choice is 95.0.

2 Significance level (in percent) for the lack-of-fit test that the fitted
polynomial must not exceed. A common choice is 5.0.

LOF — Lack-of-fit option.   (Input)
If ICRIT = 2, LOF must equal 1.

LOF Action
0 DFPE and SSPE are not computed.
1 DFPE and SSPE are computed.

NDEG — Degree of final polynomial regression.   (Output)

SMULTC — Multiplicative constant used to compute a scaled version of x, say z,
on the interval −2 to 2, inclusive.   (Output)

SADDC — Additive constant used to compute a scaled version of x(z) on the
interval −2 to 2, inclusive.   (Output)

A — Vector of length MAXDEG containing constants used to generate orthogonal
polynomials.   (Output)
Only the first NDEG elements of A are referenced.

B — Vector of length MAXDEG containing constants used to generate orthogonal
polynomials.   (Output)
Only the first NDEG elements of B are referenced.
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SCOEF — Vector of length 1 + MAXDEG containing the regression coefficients α
of the fitted model using the scaled version of x(z).   (Output)
Only the first 1 + NDEG elements of SCOEF are referenced.

$α0 1= SCOEF0 5
is the estimated intercept and equals the response mean.

$α i i= +SCOEF 10 5
contains the estimated coefficient for the i-th order orthogonal polynomial using
the scaled version of x(z).

D — Vector of length MAXDEG + 1 containing the diagonal elements of the
(diagonal) sums of squares and crossproducts matrix.   (Output)
The sum of squares due to the i-th degree orthogonal polynomial is given by

D i i( ) * $+ 1 2α

Only the first NDEG + 1 elements of D are referenced.

DFE — Degrees of freedom for error.   (Output)

SSE — Sum of squares for error.   (Output)

DFPE — Degrees of freedom for pure error.   (Output, if LOF = 1)

SSPE — Sum of squares for pure error.   (Output, if LOF = 1)

NRMISS — Number of rows of data encountered that contain any missing values
for the independent, response, weight, or frequency variables.   (Output)
NaN (not a number) is used as the missing value code. Any row of X containing
NaN as a value of the independent, response, weight, or frequency variables is
omitted from the fit.

Comments

1. Automatic workspace usage is

RFORP 9 * NOBS units, or
DRFORP 17 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
R2ORP/DR2ORP. The reference is

CALL R2ORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ,
            IWT, MAXDEG, ICRIT, CRIT, LOF, NDEG,
            SMULTC, SADDC, A, B, SCOEF, D,DFE, SSE,
            DFPE, SSPE, NRMISS, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 8 * NOBS.

IWK — Work vector of length NOBS.
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2. Informational errors
Type Code
   3    4 The response variable is constant. A zero order

polynomial is fit. High order coefficients are set to
zero.

   3    5 There are too few observations to fit the desired
degree polynomial. High order coefficients are set to
zero.

   3    6 A perfect fit is obtained with a polynomial of lower
degree than MAXDEG.

   4    1 An invalid weight is encountered.
   4    2 An invalid frequency is encountered.
   4    3 Each row of X contains a missing value.
   4    7 The independent variable is constant. At least two

distinct settings of the independent variable are
needed.

3. The orthogonal polynomials evaluated at each scaled x value (z) are
computed from A and B as follows:
POLY(I, 1) = Z(I) − A(1)
POLY(I, 2) = (Z(I) − A(2)) * POLY(I, 1) − B(2)
POLY (I, J) = (Z(I) − A(J)) * POLY(I, J − 1) − B(J) * POLY(I, J − 2)
for J = 3 through NDEG.

Algorithm

Routine RFORP computes estimates of the regression coefficients in a polynomial
regression model using orthogonal polynomials. The reparameterization of the
polynomial model in terms of orthogonal polynomials has the advantage that the
loss of accuracy resulting from forming powers of the x values is avoided. The
design of RFORP assumes that further computations such as summary statistics or
case statistics are needed. For this reason, the results returned by RFORP are for
the reparameterized model in terms of orthogonal polynomials. This enables
computational accuracy to be maintained for the subsequent computations.
Routine RSTAP (page 258) can be used to compute summary statistics for the
original polynomial model given the results from RFORP. Routine RCASP
(page 263) can be used to compute case statistics for the original polynomial
model given the results from RFORP.

The degree of the polynomial can be specified, or the degree of the polynomial
can be determined by RFORP under one of two criteria:

1. If some of the x values are repeated, the lowest degree polynomial can
be fitted whose lack of fit is not significant at a specified level.

2. The lowest degree polynomial can be fitted with an R2 that meets a
specified lower bound.

Routine RFORP is based on the algorithm of Forsythe (1957). A modification to
Forsythe’s algorithm is made for the inclusion of weights (Kelly 1967, page 68).
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Let xL be a value of the independent variable. The xL’s are scaled to the interval

[−2, 2] for computational accuracy. The scaled version of the independent
variable is computed by the formula zL= mxL+ c. The multiplicative scaling
constant m (stored in SMULTC) is

m
x xi i i i

=
−
4

max min( ) ( )

The additive constant c (stored in SADDC) is

c
x x

x x
i i i i

i i i i
=

+
−

2( ( ) ( ))

( ) ( )

min max

min max

Orthogonal polynomials are evaluated using the three-term recurrence
relationship

p z z a p z b p zj j j j j( ) ( ) ( ) ( )= − −− −1 2

beginning with the initial polynomials

p z p z z a0 1 11( ) ( )= = −and

The aM’s and bM’s (stored in A and B) are computed to make the pM(z)’s orthogonal
with respect to the the set of weights wL, and over the set zL.

The fitted model is

$ $ $ ( ) $ ( )y p z p zi i k k i= + + +α α α0 1 1 L

The

$α j ’s

(stored in SCOEF) are computed (Shampine 1975) by

$
( )

α j
i
n

i i j i

j

e w p z

d
= =∑ 1

where eL = yL − pM-1(zL) and

d w p zj i
n

i j i= =∑ 1
2[ ( )]

The dM’s (stored in D) can be used to compute the sum of squares due to the j-th
orthogonal polynomial by

Q dj j j= $α2

A more complete description of Forsythe’s algorithm and the modification of
Shampine appears in Kennedy and Gentle (1980, pages 342−347).
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Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pages 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set, some of the cafeterias
have the same number of dispensers so that lack of fit of the model can be
assessed.

      INTEGER    LDX, MAXDEG, NCOL, NOBS
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDX=NOBS)
C
      INTEGER    ICRIT, IFRQ, IND, IRSP, IWT, LOF, NDEG, NOUT, NRMISS
      REAL       A(MAXDEG), B(MAXDEG), CRIT, D(MAXDEG+1), DFE, DFPE,
     &           SADDC, SCOEF(MAXDEG+1), SMULTC, SSE, SSPE, X(LDX,NCOL)
      EXTERNAL   RFORP, UMACH, WRRRN
C
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
C
      IRSP  = 2
      IND   = 1
      IFRQ  = 0
      IWT   = 0
      ICRIT = 0
      LOF   = 1
      CALL RFORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, MAXDEG,
     &            ICRIT, CRIT, LOF, NDEG, SMULTC, SADDC, A, B, SCOEF,
     &            D, DFE, SSE, DFPE, SSPE, NRMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NDEG =   ’, NDEG
      CALL WRRRN (’A’, 1, NDEG, A, 1, 0)
      CALL WRRRN (’B’, 1, NDEG, B, 1, 0)
      WRITE (NOUT,*) ’SMULTC = ’, SMULTC
      WRITE (NOUT,*) ’SADDC  = ’, SADDC
      CALL WRRRN (’SCOEF’, 1, NDEG+1, SCOEF, 1, 0)
      CALL WRRRN (’D’, 1, NDEG+1, D, 1, 0)
      WRITE (NOUT,*) ’DFE =    ’, DFE
      WRITE (NOUT,*) ’SSE =    ’, SSE
      WRITE (NOUT,*) ’DFPE =   ’, DFPE
      WRITE (NOUT,*) ’SSPE =   ’, SSPE
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END
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Output
NDEG = 2

        A
      1         2
0.04082  -0.07996

      B
    1       2
0.000   1.946
SMULTC =    0.571429
SADDC  =    -2.00000

        SCOEF
    1       2       3
711.0    90.0   -12.2

          D
    1       2       3
14.00   27.24   29.69
DFE =        11.0000
SSE =        710.594
DFPE =       7.00000
SSPE =       304.626
NRMISS =   0

RSTAP/DRSTAP (Single/Double precision)
Compute summary statistics for a polynomial regression model given the fit based
on orthogonal polynomials.

Usage
CALL RSTAP (NDEG, A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE,
            LOF, DFPE, SSPE, IPRINT, AOV, SQSS, LDSQSS,
            COEF, LDCOEF, TLOF, LDTLOF)

Arguments

NDEG — Degree of the polynomial regression.   (Input)

A — Vector of length NDEG containing constants used to generate orthogonal
polynomials.   (Input)

B — Vector of length NDEG containing constants used to generate orthogonal
polynomials.   (Input)

SMULTC — Multiplicative constant used to compute the scaled version of x, say
z, on the interval −2 to 2, inclusive.   (Input)

SADDC — Additive constant used to compute the scaled version of x(z) on the
interval −2 to 2, inclusive.   (Input)

SCOEF — Vector of length NDEG + 1 containing the regression coefficients of
the fitted model using the scaled version of the original data.   (Input)



IMSL STAT/LIBRARY Chapter 2: Regression • 259

SCOEF(1) is the estimated intercept. SCOEF(1 + i) contains the estimated
coefficient for the i-th order orthogonal polynomial using z.

D — Vector of length NDEG + 1 containing the diagonal elements of the
(diagonal) sums of squares and crossproducts matrix.   (Input)

DFE — Degrees of freedom for error.   (Input)

SSE — Sum of squares for error.   (Input)

LOF — Lack of fit test option.   (Input)

LOF Action
0 No lack of fit test is performed.
1 Lack of fit test is performed.

DFPE — Degrees of freedom for pure error.   (Input, if LOF = 1)
If LOF = 0, DFPE is not referenced.

SSPE — Sum of squares for pure error.   (Input, if LOF = 1)
If LOF = 0, SSPE is not referenced.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 AOV, SQSS, COEF are printed.

AOV — Vector of length 15 that contains statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model
2 Degrees of freedom for error
3 Total (corrected) degrees of freedom
4 Sum of squares for the model
5 Sum of squares for error
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 Overall F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimate of the standard deviation
14 Overall mean of y
15 Coefficient of variation (in percent)

SQSS — NDEG by 4 matrix containing sequential statistics for the polynomial
model.   (Output)

Row i corresponds to xL(i = 1, 2, …, NDEG). The columns are described as
follows:
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Col. Description
1 Degrees of freedom
2 Sum of squares
3 F -statistic
4 p-value

LDSQSS — Leading dimension of SQSS exactly as specified in the dimension
statement of the calling program.   (Input)

COEF — NDEG + 1 by 4 matrix containing statistics relating to the coefficients of
the polynomial model.   (Output)
Row 1 corresponds to the intercept. Row 1 + i corresponds to the coefficient of

xL. The columns are described as follows:

Col. Description
1 Estimated coefficient
2 Estimated standard error of estimated coefficient
3 t-statistic for the test that the coefficient is zero
4 p-value for the two-sided t test

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement of the calling program.   (Input)

TLOF — NDEG by 4 matrix containing tests of lack of fit for each degree of the
polynomial.   (Output, if LOF = 1)
If LOF = 0, TLOF is not referenced and can be a vector of length one. Row i

corresponds to xL(i = 1, 2, …, NDEG). The columns are described as follows:

Col. Description
1 Degrees of freedom
2 Lack of fit sum of squares
3 F test for lack of fit of the polynomial model of degree i
4 p-value for the F test

LDTLOF — Leading dimension of TLOF exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

Automatic workspace usage is

RSTAP NDEG2+ 8 * DEG + 7 units, or

DRSTAP 2 * NDEG2 + 16 * NDEG + 14 units.

Workspace may be explicitly provided, if desired, by use of R2TAP/DR2TAP. The
reference is
CALL R2TAP (NDEG, A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE,
            LOF, DFPE, SSPE, IPRINT, AOV, SQSS, LDSQSS,
            COEF, LDCOEF,TLOF, LDTLOF, WK)

The additional argument is
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WK — Work vector of length (NDEG + 1) * (NDEG + 7).

Algorithm

Routine RSTAP transforms a polynomial regression model, fitted using orthogonal
polynomials, into a polynomial function of the original independent variable. In
addition, summary statistics (analysis of variance, t tests, tests for lack of fit) are
computed. Results from routine RFORP (see 252), which produces the fit using
orthogonal polynomials, are used for input.

The fitted model from RFORP is

$ $ ( ) $ ( ) $ ( )y p z p z p zi i i k k i= + + +α α α0 0 1 1 L

where the zL’s are the settings of the independent variable x scaled to the interval

[−2, 2] and where the pM(z)’s are the orthogonal polynomials. The “X7 X” matrix
for this model is a diagonal matrix with elements dM (stored in D). The orthogonal
polynomials can be expressed as

p z zj jm
m

m

j

( ) =
=

∑ δ
0

First, RSTAP computes

$ $γ α δj m mj
m j

k

=
=

∑

to produce the fit for the polynomial function in terms of the scaled independent
variable as given by

$ $ $ $y z zi i k i
k= + + +γ γ γ0 1 L

The variances and covariances for the estimated coefficients in this model are
given by
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in order to produce the fit for the polynomial function in terms of the original
independent variable as given by

$ $ $ $y x xi k i
k= + + +β β β0 1 1 L

The variance of

$β j

computed from the variances and covariances of the

$γ j ’s

using the usual formula for computing variances of linear combinations of

correlated random variables. The sequential sum of squares due to xM(stored in
SQSS) is computed by

Q dj j j= $α2

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pages 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set and some of the
cafeterias have the same number of dispensers so that lack of fit of the model can
be assessed.

      INTEGER    LDCOEF, LDSQSS, LDTLOF, LDX, MAXDEG, NCOL, NOBS
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDCOEF=MAXDEG+1,
     &           LDSQSS=MAXDEG, LDTLOF=MAXDEG, LDX=NOBS)
C
      INTEGER    ICRIT, IFRQ, IND, IPRINT, IRSP, IWT, LOF, NDEG, NRMISS
      REAL       A(MAXDEG), AOV(15), B(MAXDEG), COEF(MAXDEG+1,4),
     &           CRIT, D(MAXDEG+1), DFE, DFPE, SADDC, SCOEF(MAXDEG+1),
     &           SMULTC, SQSS(LDSQSS,4), SSE, SSPE, TLOF(MAXDEG,4),
     &           X(LDX,NCOL)
      EXTERNAL   RFORP, RSTAP
C
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
C
      IRSP  = 2
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      IND   = 1
      IFRQ  = 0
      IWT   = 0
      ICRIT = 0
      LOF   = 1
      CALL RFORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, MAXDEG,
     &            ICRIT, CRIT, LOF, NDEG, SMULTC, SADDC, A, B, SCOEF,
     &            D, DFE, SSE, DFPE, SSPE, NRMISS)
C
      IPRINT = 1
      CALL RSTAP (NDEG, A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE, LOF,
     &            DFPE, SSPE, IPRINT, AOV, SQSS, LDSQSS, COEF, LDCOEF,
     &            TLOF, LDTLOF)
      END

Output
R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   99.685     99.628           8.037       711.0            1.13

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             2    225031.9    112515.9   1741.748    0.0000
Residual              11       710.6        64.6
Corrected Total       13    225742.5

          * * * Inference on Coefficients * * *
                      Standard                Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       503.3       4.791      105.054      0.0000
    2        78.9       3.453       22.865      0.0000
    3        -4.0       0.482       -8.242      0.0000

             * * * Sequential Statistics * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           1    220644.1     3415.574    0.0000
         2           1      4387.7       67.922    0.0000

            * * * Tests of Lack of Fit * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           5      4793.7       22.031    0.0004
         2           4       406.0        2.332    0.1547

RCASP/DRCASP (Single/Double precision)
Compute case statistics for a polynomial regression model given the fit based on
orthogonal polynomials.
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Usage
CALL RCASP (NOBS, NCOL, X, LDX, IRSP, IND, IWT, IPRED,
            CONPCM, CONPCP, NDEG, SMULTC, SADDC, A, B,
            SCOEF, D, SSE, DFE, PRINT, CASE, LDCASE,
            NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

IND — Column number IND of X contains the data for the independent
(explanatory) variable.   (Input)

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights, and the computed prediction interval uses
SSE/(DFE * X(i, IWT)) for the estimated variance of a future response.

IPRED — Prediction interval option.   (Input)
IPRED = 0 means that prediction intervals are desired for a single future response.
For positive IPRED, column number IPRED of X contains the number of future
responses for which a prediction interval is desired on the average of the future
responses.

CONPCM — Confidence level for two-sided interval estimates on the mean, in
percent.   (Input)

CONPCP — Confidence level for two-sided prediction intervals, in percent.
(Input)

NDEG — Degree of the polynomial regression.   (Input)

SMULTC — Multiplicative constant used to compute a scaled version of x on the
interval −2 to 2, inclusive.   (Input)

SADDC — Additive constant used to compute a scaled version of x on the
interval −2 to 2, inclusive.   (Input)

A — Vector of length NDEG containing constants used to generate orthogonal
polynomials.   (Input)

B — Vector of length NDEG containing constants used to generate orthogonal
polynomials.   (Input)

SCOEF — Vector of length NDEG + 1 containing the regression coefficients
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$α
of the fitted model using the scaled version of x(z).   (Input)

$α0 1= SCOEF0 5
is the estimated intercept and equals the response mean.

$α i i= +SCOEF 10 5
contains the estimated coefficient for the i-th order orthogonal polynomial using
the scaled version of x(z).

D — Vector of length NDEG + 1 containing the diagonal elements of the
(diagonal) sums of squares and crossproducts matrix.   (Input)

SSE — Sum of squares for error.   (Input)

DFE — Degrees of freedom for error.   (Input)

PRINT — Printing option.   (Input)
PRINT is a character string indicating what is to be printed. The PRINT string is
composed of one-character print codes to control printing. These print codes are
given as follows:

PRINT(I:I) Printing that Occurs
‘A’ All
‘N’ None
‘1’ Observed response
‘2’ Predicted response
‘3’ Residual
‘4’ Leverage
‘5’ Standardized residual
‘6’ Jackknife residual
‘7’ Cook’s distance
‘8’ DFFITS
‘M’ Confidence interval on the mean
‘P’ Prediction interval
‘X’ Influential cases (unusual “x-value”)
‘Y’ Outlier cases (unusual “y-value”)

The concatenated print codes ‘A’, ‘N’, ‘1’, …, ‘P’ that comprise the PRINT string
give the combination of statistics to be printed. Concatenation of these codes with
print codes ‘X’ or ‘Y’ restricts printing to cases determined to be influential or
outliers. Here are a few examples:

PRINT Printing Action
‘A’ All.
‘N’ None.
‘46’ Leverage and jackknife residual for all cases.
‘AXY’ All statistics are printed for cases that are highly influential or are

outliers.
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‘46XY’ Leverage and jackknife residual are printed for cases that are highly
influential or are outliers.

CASE — NOBS by 12 matrix containing the case statistics.   (Output)
Columns 1 through 12 contain the following:

Col. Description
1 Observed response
2 Predicted response
3 Residual
4 Leverage
5 Standardized residual
6 Jackknife residual
7 Cook’s distance
8 DFFITS
9, 10 Confidence interval on the mean
11, 12 Prediction interval

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of CASE containing NaN (not a number).   (Output)

Comments

1. Automatic workspace usage is

RCASP NDEG + 1 units, or
DRCASP 2 * (NDEG + 1) units.

Workspace may be explicitly provided, if desired, by use of
R2ASP/DR2ASP. The reference is

CALL R2ASP (NOBS, NCOL, X, LDX, IRSP, IND, IWT,
             IPRED, CONPCM, CONPCP, NDEG, SMULTC,
             SADDC, A, B, SCOEF, D, SSE, DFE,
             PRINT, CASE, LDCASE, NRMISS, WK)

The additional argument is

WK — Work vector of length NDEG + 1.

2. Informational errors
Type Code
   4    1 A weight is negative. Weights must be nonnegative
   4    8 The number of future observations for a prediction

interval must be positive.
   3    9 A leverage much greater than one is computed. It is set

to one.
   3   10 A deleted residual mean square much less than zero is

computed. It is set to 0.0.
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Algorithm

Routine RCASP assumes a polynomial model

y x x i ni i k i
k

i= + + + + =β β β ε0 1 1 2L K, , ,

where the observed values of the yL’s constitute the response, the xL’s are the

settings of the independent variable, the βM’s are the regression coefficients and

the εL’s are the errors that are independently distributed normal with mean 0 and

variance σ2/wL. Given the results of a polynomial regression, fitted using
orthogonal polynomials and weights wL, routine RCASP produces predicted values,
residuals, confidence intervals, prediction intervals, and diagnostics for outliers
and influential cases.

Often a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This can be
accomplished by including the independent variable setting as part of the data
matrix and by setting the response equal to NaN (not a number). NaN can be
retrieved by AMACH(6) (or DMACH(6) when using double precision regression
routines).

Results from routine RFORP (page 252), which produces the fit using orthogonal
polynomials, are used for input. The fitted model from RFORP is

$ $ ( ) $ ( ) $ ( )y p z p z p zi o o i i k k i= + + +α α α1 1 L

where the zL’s are settings of the independent variable x scaled to the interval

[−2, 2] and where the pM(z)’s are the orthogonal polynomials. The “X7 X” matrix
for this model is a diagonal matrix with elements dM (stored in D). The case
statistics are easily computed from this model and are equal to those from the
original polynomial model with the βM’s as the regression coefficients.

The leverage is computed as

h w d p zi i j
k

j j i= =
−∑ 0

1 2 ( )

The estimated variance of

$yi

is given by hLs2/wL. The computation of the remainder of the case statistics follows
easily from their definitions. See the chapter introduction (page 75) for definitions
of the case diagnostics.

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pages 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set.
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NTEGER    LDCASE, LDCOEF, LDSQSS, LDTLOF, LDX, MAXDEG, NCOL,
     &           NOBS
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDCASE=NOBS,
     &           LDCOEF=MAXDEG+1, LDSQSS=MAXDEG, LDTLOF=MAXDEG,
     &           LDX=NOBS)
C
      INTEGER    ICRIT, IFRQ, IND, IPRED, IRSP, IWT, LOF, NDEG, NRMISS
      REAL       A(MAXDEG), B(MAXDEG), CASE(LDCASE,12), CONPCM,
     &           CONPCP, CRIT, D(MAXDEG+1), DFE, DFPE, SADDC,
     &           SCOEF(MAXDEG+1), SMULTC, SSE, SSPE, X(LDX,NCOL)
      CHARACTER  PRINT*1
      EXTERNAL   RCASP, RFORP
C
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
C
      IRSP  = 2
      IND   = 1
      IFRQ  = 0
      IWT   = 0
      ICRIT = 0
      LOF   = 1
      CALL RFORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, MAXDEG,
     &            ICRIT, CRIT, LOF, NDEG, SMULTC, SADDC, A, B, SCOEF,
     &            D, DFE, SSE, DFPE, SSPE, NRMISS)
C
      IPRED  = 0
      CONPCM = 95.0
      CONPCP = 95.0
      PRINT  = ’A’
      CALL RCASP (NOBS, NCOL, X, LDX, IRSP, IND, IWT, IPRED, CONPCM,
     &            CONPCP, NDEG, SMULTC, SADDC, A, B, SCOEF, D, SSE,
     &            DFE, PRINT, CASE, LDCASE, NRMISS)
C

Output
                       * * * Case Analysis * * *
Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack. Res
        Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
   1   508.1000   503.3459     4.7541     0.3554     0.7367     0.7204
          0.0997     0.5349   492.8003   513.8916   482.7510   523.9409
   2   787.6000   798.8150   -11.2150     0.1429    -1.5072    -1.6132
          0.1262    -0.6586   792.1288   805.5012   779.9034   817.7266
   3   498.4000   503.3459    -4.9460     0.3554    -0.7664    -0.7511
          0.1079    -0.5577   492.8003   513.8916   482.7510   523.9409
   4   568.2000   578.3177   -10.1177     0.1507    -1.3660    -1.4293
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          0.1104    -0.6021   571.4498   585.1857   559.3412   597.2943
   5   651.7000   645.3505     6.3495     0.1535     0.8586     0.8476
          0.0446     0.3609   638.4200   652.2810   626.3513   664.3498
   6   854.7000   861.4297    -6.7297     0.3650    -1.0508    -1.0563
          0.2116    -0.8008   850.7420   872.1175   840.7617   882.0978
   7   657.0000   645.3505    11.6495     0.1535     1.5753     1.7069
          0.1500     0.7268   638.4200   652.2810   626.3513   664.3498
   8   755.3000   755.5992    -0.2992     0.1897    -0.0414    -0.0394
          0.0001    -0.0191   747.8945   763.3038   736.3040   774.8943
   9   831.8000   834.0919    -2.2919     0.1429    -0.3080    -0.2949
          0.0053    -0.1204   827.4056   840.7782   815.1804   853.0035
  10   758.9000   755.5992     3.3008     0.1897     0.4562     0.4392
         0.0162     0.2125   747.8945   763.3038   736.3040   774.8943
  11   792.1000   798.8150    -6.7150     0.1429    -0.9024    -0.8942
          0.0452    -0.3650   792.1288   805.5012   779.9034   817.7266
  12   841.4000   834.0919     7.3081     0.1429     0.9821     0.9804
          0.0536     0.4002   827.4056   840.7782   815.1804   853.0035
  13   871.4000   861.4297     9.9703     0.3650     1.5567     1.6809
          0.4643     1.2745   850.7420   872.1175   840.7617   882.0978
  14   577.3000   578.3177    -1.0178     0.1507    -0.1374    -0.1311
          0.0011    -0.0552   571.4498   585.1857   559.3412   597.2943

Figure 2-9   Second Degree Polynomial Fit With 95% One-at-a-
Time Prediction Intervals

OPOLY/DOPOLY (Single/Double precision)
Generate orthogonal polynomials with respect to x-values and specified weights.
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Usage
CALL OPOLY (N, X, IWT, WT, NDEG, SMULTC, SADDC, SX, A, B,
            POLY, LDPOLY)

Arguments

N — Number of x-values.   (Input)

X — Vector of length N containing the x-values.   (Input)

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For IWT = 1, WT contains the weights.

WT — Vector of length N containing the weights.   (Input, if IWT = 1)
If IWT = 0, WT is not referenced and can be a vector of length one.

NDEG — Degree of highest degree orthogonal polynomial to be generated.
(Input)

SMULTC — Multiplicative constant used to compute a scaled version of x on the
interval −2 to 2, inclusive.   (Output)

SADDC — Additive constant used to compute a scaled version of x on the
interval −2 to 2, inclusive.   (Output)

SX — Vector of length N containing the scaled version of x on the interval −2 to
2, inclusive, computed as follows: SX(i) = SMULTC * X(i) + SADDC where i = 1, 2, 
…, N.   (Output)
If X is not needed, SX and X can occupy the same storage locations.

A — Vector of length NDEG containing constants used to generate orthogonal
polynomials.   (Output)

B — Vector of length NDEG containing constants used to generate orthogonal
polynomials.   (Output)

POLY — Matrix, N by NDEG, containing the orthogonal polynomials evaluated at
SX(i) for i = 1, 2, …, N.   (Output)

LDPOLY — Leading dimension of POLY exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Informational error
Type  Code
   3    8 N must be greater than NDEG in order for higher order

polynomials to be nonzero. Columns N + 1 through
NDEG of POLY are set to zero.

2. The orthogonal polynomials evaluated at each scaled X value are
computed from A and B as follows:
POLY(I, 1) = SX(I) − A(1)
POLY(I, 2) = (SX(I) − A(2)) * POLY(I, 1) − B(2)
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POLY(I, J) = (SX(I) − A(J)) * POLY(I, J − 1) − B(J) * POLY(I, J −2)
for J = 3 through NDEG.

3. If NDEG is greater than 10, the accuracy of the results may be
questionable.

Algorithm

Routine OPOLY generates orthogonal polynomials over a set of xL’s and with
respect to weights wL. The routine OPOLY is based on the algorithm of Forsythe
(1957). (See also Kennedy and Gentle 1980.) A modification to Forsythe’s
algorithm is made for the inclusion of weights (Kelly 1967, page 68).

Let xL�be a value of the independent variable. The xL’s are scaled to the interval

[−2, 2] for computational accuracy. The scaled version of the independent
variable is computed by the formula zL= mxL+ c. The multiplicative scaling
constant m (stored in SMULTC) is

m
x xi i i i

=
−
4

max min( ) ( )

The additive constant c (stored in SADDC) is

c
x x

x x
i i i i

i i i
=

+
−

2( ( ) ( ))

( ) ( )

min max

min maxi

Orthogonal polynomials are generated using the three-term recurrence
relationship

p z z a p z b p zj j j j j( ) ( ) ( ) ( )= − −− −1 2

beginning with the initial polynomials

p z p z z a0 1 11( ) ( )= = −and

The aM’s and bM’s (stored in A and B) are computed to make the pM(z)’s orthogonal,
with respect to the the set of weights wL, and over the set zL.

Example

First-degree and second-degree orthogonal polynomials are generated using
equally spaced x values 1, 2, …, 12. (Equally spaced x values are not required by
OPOLY.)

      INTEGER    LDPOLY, N, NDEG
      PARAMETER  (N=12, NDEG=2, LDPOLY=N)
C
      INTEGER    IWT, NOUT
      REAL       A(NDEG), B(NDEG), POLY(LDPOLY,NDEG), SADDC, SMULTC,
     &           SX(N), WT(1), X(N)
      EXTERNAL   OPOLY, UMACH, WRRRN
C
      DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0,
     &     12.0/
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C
      IWT = 0
      CALL OPOLY (N, X, IWT, WT, NDEG, SMULTC, SADDC, SX, A, B, POLY,
     &            LDPOLY)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) SMULTC, SADDC
99999 FORMAT (’ SMULTC = ’, F7.3, ’  SADDC = ’, F7.3)
      CALL WRRRN (’A’, 1, NDEG, A, 1, 0)
      CALL WRRRN (’B’, 1, NDEG, B, 1, 0)
      CALL WRRRN (’POLY’, N, NDEG, POLY, LDPOLY, 0)
      END

Output
SMULTC =   0.364  SADDC =  -2.364

           A
         1           2
-5.960E-08  -1.009E-07

      B
    1       2
0.000   1.576

       POLY
         1       2
 1  -2.000   2.424
 2  -1.636   1.102
 3  -1.273   0.044
 4  -0.909  -0.749
 5  -0.545  -1.278
 6  -0.182  -1.543
 7   0.182  -1.543
 8   0.545  -1.278
 9   0.909  -0.749
10   1.273   0.044
11   1.636   1.102
12   2.000   2.424

GCSCP/DGCSCP (Single/Double precision)
Generate centered variables, squares, and crossproducts.

Usage
CALL GCSCP (IDO, NRX, NVAR, X, LDX, ISUB, XMEAN, SCPM,
            CSCP, LDCSCP, NRMISS, NVOBS)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of GCSCP for this data set, and all the data are

input at once.
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1 This is the first invocation, and additional calls to GCSCP will be made.
Initialization and updating for the data in X are performed.

2 This is an intermediate or final invocation of GCSCP and updating for the
data in X is performed.

NRX — Number of rows of data in X.   (Input)

NVAR — Number of variables.   (Input)

X — NRX by NVAR matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

ISUB — Centering option.   (Input)
If IDO = 1 or IDO = 2, ISUB must equal 0.

ISUB Action
0 CSCP contains the centered variables in columns 1 through NVAR. Square

and crossproduct variables are generated from these centered variables
in the remaining columns of CSCP.

1 First, the action taken when ISUB = 0 is performed. Next, the means of
the square and crossproduct variables are subtracted from the square and
crossproduct variables.

XMEAN — Vector of length NVAR containing the means of the variables.
(Input)

SCPM — Vector of length NVAR * (NVAR + 1)/2 containing the means of the
generated square and crossproduct variables.   (Output, if IDO = 0 or 1;
input/output, if IDO = 2)

Elements               Description
1 to NVAR               Squared variable means
NVAR+ 1 to NVAR * (NVAR + 1)/2 Crossproduct variable means

CSCP — NRX by NVAR * (NVAR + 3)/2 matrix containing the centered variables,
squares, and crossproducts.   (Output)

Columns                     Description
1 to NVAR                    Centered variables
NVAR+ 1 to 2 * NVAR            Squared variables
2 * NVAR + 1 to NVAR * (NVAR + 3)/2 Crossproducts

If X is not needed, X and the first NVAR columns of CSCP may occupy the same
storage locations.

LDCSCP — Leading dimension of CSCP exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of data encountered in calls to GCSCP that contain
any missing values for the variables.   (Output, if IDO = 0 or 1; input/output, if
IDO = 2)
NaN (not a number) is used as the missing value code.



274 • Chapter 2: Regression IMSL STAT/LIBRARY

NVOBS — Number of valid observations.   (Output, if IDO = 0 or 1;
input/output, if IDO = 2)
Number of rows of data encountered in calls to GCSCP that do not contain any
missing values for the variables.

Comments

Crossproduct variables are ordered as follows: (1, 2), (1, 3), …, (1, NVAR), (2, 3),
(2, 4), …, (2, NVAR), …, (NVAR − 1, NVAR).

Programming Notes

Routine GCSCP centers a data set consisting of independent variable settings and
generates (using the centered variables) the settings for all possible squared and
crossproduct variables in standard order. The routine GCSCP is designed so that
you can partition a large data set into submatrices (requiring less space) and make
multiple calls to GCSCP (with IDO = 1, 2, 2, …, 2). Alternatively, one invocation
of GCSCP (with IDO = 0) can be made with the entire data set contained in X.

Let n be the number of rows in the entire data set, and let m (stored in NVAR) be
the number of variables. Let xLM be the i-th setting of the j-th variable (i = 1, 2, …,

n; j = 1, 2, …, m). Denote the means (stored in XMEAN) by

x j mj = 1 2, , ,K0 5
The settings of the j-th centered variable (stored in the j-th column of CSCP) are
given by

z x xij ij j= −

The settings of the j-th squared variable (stored in the (m + j)-th column of CSCP)
are given by

z

z z

ij

ij j

2

2 2

0

1

if

if

ISUB

ISUB

=

− =
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where
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z
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2
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(stored in the (m + j)-th column of SCPM) is the mean of the j-th squared variable.
The settings of the jk crossproduct variable (stored in the

k j mj
j j

− + −
−1

2

0 5

column of CSCP) are given by



IMSL STAT/LIBRARY Chapter 2: Regression • 275

z z
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0 5

location of SCPM) is the mean of the jk-th (j < k) crossproduct variable.

Example 1

With data containing 4 rows and 3 variables, GCSCP is used to center the
variables and to generate (using the centered variables) the square and
crossproduct variables. The data is input in one invocation (IDO = 0), and the
generated squared and crossproduct variables are centered (ISUB = 1). On output,
SCPM contains the means in standard order, i.e.,

z z z z z z z z z1
2

2
2

3
2

1 2 1 3 2 3, , , , ,

Also, CSCP contains the variables in standard order, i.e.,

z z z z z z z z z z z z z z z z z z z z z1 2 3 1
2

1
2

2
2

2
2

3
2

3
2

1 2 1 2 1 3 1 3 2 3 2 3, , , , , , , ,− − − − − −

      INTEGER    LDCSCP, LDX, NRX, NVAR
      PARAMETER  (NRX=4, NVAR=3, LDCSCP=NRX, LDX=NRX)
C
      INTEGER    IDO, ISUB, NOUT, NRMISS, NVOBS
      REAL       CSCP(LDCSCP,NVAR*(NVAR+3)/2), SCPM(NVAR*(NVAR+1)/2),
     &           X(LDX,NVAR), XMEAN(NVAR)
      EXTERNAL   GCSCP, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NVAR)/10.0,  8.0, 11.0/
      DATA (X(2,J),J=1,NVAR)/ 5.0, 15.0,  1.0/
      DATA (X(3,J),J=1,NVAR)/ 3.0,  2.0,  4.0/
      DATA (X(4,J),J=1,NVAR)/ 6.0,  3.0,  4.0/
      DATA XMEAN/6.0, 7.0, 5.0/
C
      IDO  = 0
      ISUB = 1
      CALL GCSCP (IDO, NRX, NVAR, X, LDX, ISUB, XMEAN, SCPM, CSCP,
     &            LDCSCP, NRMISS, NVOBS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ NRMISS = ’, NRMISS
      CALL WRRRN (’SCPM’, 1, NVAR*(NVAR+1)/2, SCPM, 1, 0)
      CALL WRRRN (’CSCP’, NRX, NVAR*(NVAR+3)/2, CSCP, LDCSCP, 0)
      END
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Output
NRMISS =   0

                  SCPM
   1       2       3       4       5
6.50   26.50   13.50    2.75    7.75   -4.25

                                   CSCP
        1       2       3       4       5       6       7       8       9
1    4.00    1.00    6.00    9.50  -25.50   22.50    1.25   16.25   10.25
2   -1.00    8.00   -4.00   -5.50   37.50    2.50  -10.75   -3.75  -27.75
3   -3.00   -5.00   -1.00    2.50   -1.50  -12.50   12.25   -4.75    9.25
4    0.00   -4.00   -1.00   -6.50  -10.50  -12.50   -2.75   -7.75    8.25

Example 2

With data containing 4 rows and 3 variables, GCSCP is used to center the
variables and to generate (using the centered variables) the square and
crossproduct variables. The data is input in multiple invocations
(IDO = 1, 2, 2, 2). Here, the square and crossproduct variables, generated using
the centered variables, cannot be centered (ISUB = 0).

      INTEGER    LDCSCP, LDX, NRX, NVAR
      PARAMETER  (LDX=4, NRX=1, NVAR=3, LDCSCP=NRX)
C
      INTEGER    I, IDO, ISUB, MISS, NOUT, NRMISS, NVOBS
      REAL       CSCP(LDCSCP,NVAR*(NVAR+3)/2), SCPM(NVAR*(NVAR+1)/2),
     &           X(LDX,NVAR), XMEAN(NVAR)
      EXTERNAL   GCSCP, UMACH, WRRRN
C
      DATA (X(1,J),J=1,NVAR)/10.0,  8.0, 11.0/
      DATA (X(2,J),J=1,NVAR)/ 5.0, 15.0,  1.0/
      DATA (X(3,J),J=1,NVAR)/ 3.0,  2.0,  4.0/
      DATA (X(4,J),J=1,NVAR)/ 6.0,  3.0,  4.0/
      DATA XMEAN/6.0, 7.0, 5.0/
C
      CALL UMACH (2, NOUT)
      ISUB = 0
      MISS = 0
      DO 10  I=1, 4
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE
            IDO = 2
         END IF
         CALL GCSCP (IDO, NRX, NVAR, X(I,1), LDX, ISUB, XMEAN, SCPM,
     &               CSCP, LDCSCP, NRMISS, NVOBS)
         MISS = MISS + NRMISS
         CALL WRRRN (’CSCP’, NRX, NVAR*(NVAR+3)/2, CSCP, LDCSCP, 0)
   10 CONTINUE
      CALL WRRRN (’SCPM’, 1, NVAR*(NVAR+1)/2, SCPM, 1, 0)
      WRITE (NOUT,*) ’ MISS = ’, MISS
      END

Output
                                   CSCP
    1       2       3       4       5       6       7       8       9
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 4.00    1.00    6.00   16.00    1.00   36.00    4.00   24.00    6.00

                                  CSCP
    1       2       3       4       5       6       7       8       9
-1.00    8.00   -4.00    1.00   64.00   16.00   -8.00    4.00  -32.00

                                  CSCP
    1       2       3       4       5       6       7       8       9
-3.00   -5.00   -1.00    9.00   25.00    1.00   15.00    3.00    5.00

                                  CSCP
    1       2       3       4       5       6       7       8       9
 0.00   -4.00   -1.00    0.00   16.00    1.00    0.00    0.00    4.00

                      SCPM
    1       2       3       4       5       6
 6.50   26.50   13.50    2.75    7.75   -4.25
MISS =   0

TCSCP/DTCSCP (Single/Double precision)
Transform coefficients from a second order response surface model generated
from squares and crossproducts of centered variables to a model using uncentered
variables.

Usage
CALL TCSCP (NVAR, XMEAN, SCPM, BC, B)

Arguments

NVAR — Number of variables.   (Input)

XMEAN — Vector of length NVAR containing the means of the variables.
(Input)

SCPM — Vector of length NVAR(NVAR + 1)/2 containing the means of the
generated square and crossproduct variables.   (Input)

Elements                Description
1 to NVAR                Squared variable means
NVAR+ 1 to NVAR * (NVAR + 1)/2 Crossproduct variable means

BC — Vector of length NVAR * (NVAR + 3)/2 + 1 containing the coefficients for
the centered variables.   (Input)
Here, the fitted model is

$ * *
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where zM = xM�−  XMEAN(j) and mMN = j * NVAR − j(j − 1)/2 + k − j. These regression
coefficients can come from a regression using variables generated by routine
GCSCP (page 272) with the option ISUB = 1.

B — Vector of length NVAR * (NVAR + 3)/2 + 1 containing the coefficients of the
uncentered variables.   (Output)
Here, the model uses the original x variables, i.e.,

$ * *
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m x x
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0 5

Comments

Crossproduct variables are ordered as follows: (1, 2), (1, 3), …, (1, NVAR), (2, 3),
(2, 4), …, (2, NVAR), …, (NVAR −1, NVAR).

Algorithm

Routine TCSCP transforms coefficients from a second-order response surface
model fitted using squares and crossproducts of centered variables into a model
using the original uncentered variables. Let xLM be the i-th setting of the j-th

variable (i = 1, 2, …, n; j = 1, 2, …, m). Denote the means (stored in XMEAN) by

x j mj = 1 2, , ,K0 5
The settings of the j-th centered variable are given by

z x xij ij j= −

The settings of the j-th squared variable are given by
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(stored in (m + j)-th column of SCPM) is the mean of the j-th squared variable. The
settings of the jk crossproduct variable are given by

z z z zij ik j k−

where
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location of SCPM) is the mean of the jk-th (j < k) crossproduct variable. The fitted
model is
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to regression coefficients for the original independent variables. The fitted
transformed model is
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Example

This example transforms coefficients from a second-order response surface model
with three independent variables fitted using squares and crossproducts of
centered variables into a model using the original uncentered variables.

      INTEGER    NVAR
      PARAMETER  (NVAR=3)
C
      REAL       B(NVAR*(NVAR+3)/2+1), BC(NVAR*(NVAR+3)/2+1),
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     &           SCPM(NVAR*(NVAR+1)/2), XMEAN(NVAR)
      EXTERNAL   TCSCP, WRRRN
C
      DATA XMEAN/10.0, 11.0, 6.0/
      DATA SCPM/12.0, 5.0, 2.0, 3.0, 7.0, 1.0/
      DATA BC/1.0, 2.0, 3.0, 0.0, 5.0, 0.0, 7.0, 0.0, 9.0, 10.0/
C
      CALL TCSCP (NVAR, XMEAN, SCPM, BC, B)
C
      CALL WRRRN (’B’, 1, NVAR*(NVAR+3)/2+1, B, 1, 0)
C
      END

Output
                                  B
     1        2        3        4        5        6        7        8
1753.0   -152.0    -57.0   -284.0      5.0      0.0      7.0      0.0

  9       10
9.0     10.0

RNLIN/DRNLIN (Single/Double precision)
Fit a nonlinear regression model.

Usage
CALL RNLIN (FUNC, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE,
            SSE)

Arguments

FUNC — User-supplied SUBROUTINE to return the weight, frequency, residual,
and optionally the derivative of the residual at the given parameter vector THETA

for a single observation. The usage is
CALL FUNC (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, IEND),
where

NPARM – Number of unknown parameters in the regression function.
(Input)
THETA – Vector of length NPARM containing parameter values.   (Input)
IOPT – Function/derivative evaluation option.   (Input)

IOPT Meaning
0 Evaluate the function.
1 Evaluate the derivative.

If IDERIV = 0, only IOPT = 0 is used.

IOBS – Observation number.   (Input)
The function is evaluated at the IOBS-th observation.
FRQ – Frequency for the observation.   (Output)
WT – Weight for the observation.   (Output)
Use WT= 1.0 for equal weighting (unweighted least squares).
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E – Error (residual) for the IOBS-th observation.   (Output, if IOPT = 0)
DE – Vector of length NPARM containing the partial derivatives of the
residual for the IOBS-th observation.   (Output, if IOPT = 1)
If IDERIV = 0, DE is not referenced and can be a vector of length one.
IEND – Completion indicator.   (Output)

IEND Meaning
0 IOBS is less than or equal to the number of observations.
1 IOBS is greater than the number of observations. WT, FRQ, E,

and DE are not output.

FUNC must be declared EXTERNAL in the calling program.

NPARM — Number of unknown parameters in the regression function.   (Input)

IDERIV — Derivative option.   (Input)

IDERIV Meaning
0 Derivatives are obtained by finite differences.
1 Derivatives are supplied by FUNC.

THETA — Vector of length NPARM containing parameter values.   (Input/Output)
On input, THETA must contain the initial estimate. On output, THETA contains the
final estimate.

R — NPARM by NPARM upper triangular matrix containing the R matrix from a QR
decomposition of the Jacobian.   (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

IRANK — Rank of R.   (Output)
IRANK less than NPARM may indicate the model is overparameterized.

DFE — Degrees of freedom for error.   (Output)

SSE — Sums of squares for error.   (Output)

Comments

1. Automatic workspace usage is

RNLIN 13 * NPARM + 17 units, or
DRNLIN 25 * NPARM + 28 units.

Workspace may be explicitly provided, if desired, by use of
R2LIN/DR2LIN. The reference is

CALL R2LIN (FUNC, NPARM, IDERIV, THETA, R, LDR,
            IRANK, DFE, SSE, IPARAM, RPARAM, SCALE,
            IWK, WK)

The additional arguments are as follows:
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IPARAM — Vector of length 6 containing convergence parameters.
(Input/Output)
On input, set IPARAM(1) = 0 for default convergence parameter settings.
If IPARAM(1) = 0, the remaining elements of IPARAM, and the arguments
RPARAM and SCALE need not be initialized.

I Name IPARAM(I)

1 INIT Initialization flag.   (Input)

INIT = 0 means use default settings for IPARAM,
RPARAM, and SCALE.

INIT = 1 means use the input IPARAM and RPARAM
settings.

2 NDIGIT Number of good digits in the residuals.   (Input, if
IPARAM(1) = 1)

3 ITER Number of iterations.   (Input/Output, if IPARAM(1) =
1; output, otherwise)

On input, this is the maximum number of iterations
allowed. The default is 100. On output, it is the actual
number of iterations.

4 NFCN Number of SSE evaluations.   (Input/Output, if
IPARAM(1) = 1; output, if IPARAM(1) = 0)

On input, this is the maximum number of evaluations
allowed. The default is 400. On output, it is the actual
number of evaluations.

5 NJAC Number of Jacobian evaluations.   (Input, if
IPARAM(1) = 1 and IDERIV = 1; output, if IDERIV =
1)

On input, this is the maximum number of Jacobian
evaluations allowed. The default is 100. On output, it
is the number of Jacobian evaluations.

6 MODE Scaling option.   (Input, if IPARAM(1) = 1)

If IPARAM(6) = 1, the values for SCALE are set
internally. The default is 1. Otherwise, SCALE must be
input.

RPARAM — Vector of length 7 containing convergence parameters.
(Input, if IPARAM(1) = 1)
In the following table, the default settings are given in parentheses. For
single precision, EPS = AMACH(4); and for double precision,
EPS = DMACH(4). (See the documentation for IMSL routines AMACH and
DMACH.)
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I Name RPARAM(I)

1 FJACTL Scaled gradient tolerance (SQRT(EPS) for single
precision; EPS1/3 for double precision)

Convergence is declared if |WK(I)| * max{|THETA(I)|,
1.0/SCALE(I)}/SSE is less than FJACTL for I= 1, 2, 
…, NPARM, where WK(I) is the I-th component of the
gradient vector.

2 STEPTL Scaled step tolerance (EPS2/3)

Convergence is declared if |WK(NPARM + I)|/
max{|THETA(I)|, 1.0/SCALE(I)} is less than STEPTL
for I = 1, 2, …, NPARM, where WK(NPARM + I) is the I-
th component of the last step.

3 RFTOL Relative function tolerance (max{10-10, EPS2/3} for

single precision, max{10-20, EPS2/3} for double
precision)

Convergence is declared if the change in SSE is less
than or equal to RFTOL * SSE in absolute value.

4 AFTOL Absolute function tolerance (max{10-20, EPS2} for

single precision; max{10-40, EPS2} for double
precision)

Convergence is declared if SSE is less than AFTOL.

5 FALSTL False convergence tolerance (100.0 * EPS)

6 STEPMX Maximum allowable step size (1000 * MAX(TOL1,
TOL2) where TOL1 = SNRM2(NPARM, SCXTH, 1); TOL2
= SNRM2(NPARM, SCALE, 1) and SCXTH is the
elementwise product of SCALE and THETA, i.e.,
SCXTH(I) = SCALE(I) * THETA(I).)

7 DELTA Size of initial trust region radius (based on the initial
scaled Cauchy step)

SCALE — Vector of length NPARM.   (Input/Output, if IPARAM(1) = 1
and IPARAM(6) = 0; output, if IPARAM(6) = 1)
A common choice is to set all elements of SCALE to 1.0. If good starting
values for THETA are known and nonzero, a good choice is SCALE(I) =
1.0/|THETA(I)|. Otherwise, for example, if THETA(I) is known to be in

the interval (−105, 105), set SCALE(I) = 10-5. Or, for example, if

THETA(I) is known to be in the interval (103, 105), set SCALE(I) = 10-4.

IWK — Work vector of length NPARM.
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WK — Work vector of length 11 * NPARM + 4.   (Output)
The first NPARM components of WK are the gradient at the solution. The
second NRARM components of WK give the last step.

2. Informational errors
Type Code
   3    1 Both the scaled actual and predicted reductions in the

function are less than or equal to the relative function
convergence tolerance.

   3    2 The iterates appear to be converging to a noncritical
point. Incorrect gradient information, a discontinuous
function, or stopping tolerances being too tight may be
the cause.

   4    3 Maximum number of iterations is exceeded.
   4    4 Maximum number of function evaluations is exceeded.
   4    5 Maximum number of Jacobian evaluations is exceeded

for IDERIV = 1.
   3    6 Five consecutive steps of the same size have been

taken. Either the function is unbounded below, or it
has a finite asymptote in some direction, or the
stepsize is too small.

   2    7 Scaled step tolerance is satisfied, the current point may
be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

3. The first stopping criterion for RNLIN occurs when SSE is less than the
absolute function tolerance. The second stopping criterion occurs when
the norm of the scaled gradient is less than the given gradient tolerance.
The third stopping criterion occurs when the scaled distance between the
last two steps is less than the step tolerance. The third stopping criterion
also generates error code 7. The fourth stopping criterion occurs when
the relative change in SSE is less than RFTOL. The fourth stopping
criterion also generates error code 1. See Dennis and Schnabel (1983,
pages 159−161, 278−280, and 347−348) for a discussion of stopping
criteria and choice of tolerances.

4. To use some nondefault convergence parameters, first call R8LIN, then
reset the corresponding convergence parameters to the desired value and
call R2LIN. For example, the following code could be used if nondefault
convergence parameters are to be used:

C
      CALL R8LIN (IPARAM, RPARAM)
C  R8LIN outputs IPARAM(1) = 1 to indicate some
C  nondefault convergence parameters are to be set.
C  R8LIN outputs the remaining elements of IPARAM
C  and RPARAM as their default values.
C
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C  Set some nondefault convergence parameters.
       IPARAM(3) = 20
       IPARAM(6) = 0
       SCALE(1) = 0.1
       SCALE(2) = 10.0
C
       CALL R2LIN (FUNC, NPARM, IDERIV, THETA, R,
      &            LDR,IRANK, DFE, SSE, IPARAM,
      &            RPARAM, SCALE, IWK, WK)

If double precision is being used, then DR8LIN and DR2LIN are called
and RPARAM is declared double precision.

Algorithm

Routine RNLIN fits a nonlinear regression model using least squares. The
nonlinear regression model is

y f x i ni i i= + =( ; ) , , ,θ ε 1 2 K

where the observed values of the yL’s constitute the responses or values of the
dependent variable, the known xL’s are the vectors of the values of the

independent (explanatory) variables, θ is the vector of p regression parameters,
and the εL’s are independently distributed normal errors with mean zero and

variance σ2. For this model, a least squares estimate of θ is also a maximum
likelihood estimate of θ.

The residuals for the model are

e y f x i ni i i( ) ( ; ) , , ,θ θ= − = 1 2 K

A value of θ that minimizes

i
n

ie=∑ 1
2[ ( )]θ

is a least squares estimate of θ. Routine RNLIN is designed so that these residuals
are input one at a time from a user-supplied subroutine. This permits RNLIN to
handle the case when n is large and the data cannot reside in an array but must
reside on some secondary storage device.

Routine RNLIN is based on MINPACK routines LMDIF and LMDER by Moré et al.
(1980). The routine RNLIN uses a modified Levenberg-Marquardt method to
generate a sequence of approximations to a minimum point. Let

$θc

be the current estimate of θ. A new estimate is given by

$θc cs+

where sF is a solution to

( ($ ) ( $ ) ) ( $ ) ( $ )J J I s J ec
T

c c c c
T

cθ θ µ θ θ+ =
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Here,

J c
$θ4 9

is the Jacobian evaluated at

$θc

The algorithm uses a “trust region” approach with a step bound of δF. A solution

of the equations is first obtained for µF = 0. If | |sF| |2 < δF, this update is accepted.

Otherwise, µF is set to a positive value and another solution is obtained. The
method is discussed by Levenberg (1944), Marquardt (1963), and Dennis and
Schnabel (1983, pages 129−147, 218−338).

If IDERIV = 0, forward finite differences are used to estimate the Jacobian
numerically. If IDERIV = 1, the Jacobian is computed analytically via the user-
supplied subroutine. With IDERIV = 0 and single precision arithmetic, the
estimate of the Jacobian may be so poor that the algorithm terminates at a
noncritical point. In such instances, IDERIV = 1 or double precision arithmetic is
recommended.

Routine RNLIN does not actually store the Jacobian but uses fast Givens
transformations to construct an orthogonal reduction of the Jacobian to upper
triangular form (stored in R). The reduction is based on fast Givens
transformations (see routines SROTMG and SROTM, Golub and Van Loan 1983,
pages 156−162, Gentleman 1974). This method has two main advantages: (1) the
loss of accuracy resulting from forming the crossproduct matrix used in the
equations for sF is avoided, and (2) the n × p Jacobian need not be stored saving
space when n > p.

A weighted least squares fit can also be performed. This is appropriate when the
variance of εL in the nonlinear regression model is not constant but instead is

σ2/wL. Here, the wL’s are weights input via the user-supplied subroutine. For the
weighted case, RNLIN computes a minimum weighted sum of squares for error
(stored in SSE).

Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because
the user can specify the functional form of the model. This added flexibility can
cause unexpected convergence problems for users that are unaware of the
limitations of the software. Also, in many cases, there are possible remedies that
may not be immediatedly obvious. The following is a list of possible convergence
problems and some remedies that the user can try. There is not a one-to-one
correspondence between the problems and the remedies. Remedies for some
problems may also be relevant for the other problems.
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1. A local minimum is found. Try a different starting value. Good starting
values often can be obtained by fitting simpler models. For example, for
a nonlinear function

f x e x( ; )θ θ θ= 1
2

good starting values can be obtained from the estimated linear regression
coefficients

$ $β β0 1 and 

from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

θ θ ββ
1 2 1

0= =e
$ $and

If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example,
some nonlinear parameters for which good starting values are known
could be set to these values in order to simplify the model for computing
starting values for the remaining parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the
initial estimate

• The scale of the problem may be orders of magnitude smaller than
the assumed default of 1 causing premature stopping. For example,
in single precision if SSE is less than AMACH(4)**2, the routine
stops. See Example 3, which shows how to shut down some of the
stopping criteria that may not be relevant for your particular
problem and which also shows how to improve the speed of
convergence by the input of the scale of the model parameters.

• The scale of the problem may be orders of magnitude larger than the
assumed default causing premature stopping. The information with
regard to the input of the scale of the model parameters in Example
3 is also relevant here. In addition, the maximum allowable step
size, RPARAM(6) in Example 3, may need to be increased.

• The residuals are input with accuracy much less than machine
accuracy causing premature stopping because a local minimum is
found. Again see Example 3 to see generally how to change some
default tolerances. If you cannot improve the precision of the
computations of the residual, you need to set IPARAM(2) to indicate
the actual number of good digits in the residuals.

3. The model is discontinuous as a function of θ. You may have a mistake
in the subroutine you supplied. Note that the function f(x; θ) can be a
discontinuous function of x.
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4. The R matrix returned by RNLIN is inaccurate. Use the double precision
version DRNLIN. If IDERIV = 1, check your derivatives or try using
IDERIV = 0. If IDERIV = 0, try using IDERIV = 1.

5. Overflow occurs during the computations. Print out θ and the residual in
the subroutine you supplied. Make sure the code you supply does not
overflow at some value of θ.

6. The estimate of θ is going to infinity. You may need to reparameterize or
change your function. For example, a parameterization in terms of the
reciprocals may be appropriate.

7. Some components of θ are outside known bounds. Routine RNLIN does
not handle bounds on the parameters, but you can artificially impose
some by setting the residuals unusually large outside the bounds.
Although this introduces a discontinuity in the model function, this often
works and allows you to use RNLIN without having to resort to a more
general nonlinear optimization routine.

Example 1

This example uses data discussed by Neter, Wasserman, and Kutner (1983, pages
475−478). A nonlinear model

y e ii
x

i
i= + =θ εθ

1
2 1 2 15, , ,K

is fitted. The option IDERIV = 0 is used.

The user must supply a SUBROUTINE to return the residual, weight, and frequency
for a single observation at the given value of the regression parameter vector θ.
This subroutine, called EXAMPL here, must be declared EXTERNAL in the calling
program and must have the specified calling sequence.

      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
C
      INTEGER    IDERIV, IRANK, NOUT
      REAL       DFE, R(LDR,NPARM), SSE, THETA(NPARM)
      EXTERNAL   EXAMPL, RNLIN, UMACH, WRRRN
C
      DATA THETA/60.0, -0.03/
C
      CALL UMACH (2, NOUT)
C
      IDERIV = 0
      CALL RNLIN (EXAMPL, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE,
     &            SSE)
      WRITE (NOUT,*) ’THETA = ’, THETA
      WRITE (NOUT,*) ’IRANK = ’, IRANK, ’  DFE = ’, DFE, ’  SSE = ’,
     &              SSE
      CALL WRRRN (’R’, NPARM, NPARM, R, LDR, 0)
      END
C
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE,
     &                   IEND)
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      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(1)
C
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
C
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
C
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0,
     &     13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
     &     38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
C
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         E    = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output
THETA =     58.6045   -3.95835E-02
IRANK =   2  DFE =     13.0000  SSE =     49.4593

         R
         1        2
1      1.9   1139.8
2      0.0   1139.7
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Figure 2-10   Plot of the Nonlinear Fit

Example 2

This example fits the model in Example 1 with the option IDERIV = 1.
      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
C
      INTEGER    IDERIV, IRANK, NOUT
      REAL       DFE, R(LDR,NPARM), SSE, THETA(NPARM)
      EXTERNAL   EXAMPL, RNLIN, UMACH, WRRRN
C
      DATA THETA/60.0, -0.03/
C
      CALL UMACH (2, NOUT)
C
      IDERIV = 1
      CALL RNLIN (EXAMPL, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE,
     &            SSE)
      WRITE (NOUT,*) ’THETA = ’, THETA
      WRITE (NOUT,*) ’IRANK = ’, IRANK, ’  DFE = ’, DFE, ’  SSE = ’,
     &              SSE
      CALL WRRRN (’R’, NPARM, NPARM, R, LDR, 0)
      END
C
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE,
     &                   IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(NPARM)
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C
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
C
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
C
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0,
     &     13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
     &     38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
C
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         IF (IOPT .EQ. 0) THEN
            E = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
         ELSE
            DE(1) = -EXP(THETA(2)*XDATA(IOBS))
            DE(2) = -THETA(1)*XDATA(IOBS)*EXP(THETA(2)*XDATA(IOBS))
         END IF
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output
THETA =     58.6034   -3.95812E-02
IRANK =   2  DFE =     13.0000  SSE =     49.4593

         R
         1        2
1      1.9   1140.1
2      0.0   1139.9

Example 3

This example fits the model in Example 1, but the data for y is 10-10 times the
values in Example 1. In order to solve this problem without rescaling y, we use
some nondefault convergence tolerances and scales. This is accomplished by
invoking routine R8LIN, setting some elements of IPARAM, RPARAM, and SCALE,
and then invoking R2LIN. Here, we set the absolute function tolerance to 0.0. The
default value would cause the program to terminate after one iteration because the

residual sum of squares is roughly 10-19. Also, we set the relative function
tolerance to 0.0. The gradient stopping condition is properly scaled for this
problem so we leave it at its default value. Finally, we set SCALE(I) equal to the
absolute value of the reciprocal of the starting value.

Note in the output that the estimate of θ1 is 10-10 times the estimate in Example 1.
Note also that the invocation of R2LIN in place of RNLIN allows the printing of
additional information that is output in IPARAM (number iterations and number of
SSE evaluations) and output in WK (gradient at solution and last step).
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      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
C
      INTEGER    IDERIV, IPARAM(6), IRANK, IWK(NPARM), NOUT
      REAL       ABS, DFE, R(LDR,NPARM), RPARAM(7), SCALE(NPARM), SSE,
     &           THETA(NPARM), WK(11*NPARM+4)
      INTRINSIC  ABS
      EXTERNAL   EXAMPL, R2LIN, R8LIN, UMACH, WROPT, WRRRN
C
      DATA THETA/6.0E-9, -0.03/
C
      CALL UMACH (2, NOUT)
C
      IDERIV = 0
      CALL R8LIN (IPARAM, RPARAM)
      RPARAM(3) = 0.0
      RPARAM(4) = 0.0
      IPARAM(6) = 0
      SCALE(1)  = 1.0/ABS(THETA(1))
      SCALE(2)  = 1.0/ABS(THETA(2))
      CALL R2LIN (EXAMPL, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE,
     &            SSE, IPARAM, RPARAM, SCALE, IWK, WK)
      WRITE (NOUT,*) ’THETA = ’, THETA
      WRITE (NOUT,*) ’IRANK = ’, IRANK, ’  DFE = ’, DFE, ’  SSE = ’,
     &              SSE
      WRITE (NOUT,*) ’Number of iterations = ’, IPARAM(3)
      WRITE (NOUT,*) ’Number of SSE evaluations = ’, IPARAM(4)
      CALL WROPT (-6, 2, 1)
      CALL WRRRN (’Gradient at solution’, 1, NPARM, WK, 1, 0)
      CALL WRRRN (’Last step taken’, 1, NPARM, WK(NPARM+1), 1, 0)
      CALL WRRRN (’R’, NPARM, NPARM, R, LDR, 0)
      END
C
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE,
     &                   IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(1)
C
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
C
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
C

      DATA YDATA/54 .0E-10, 50 .0E-10, 45 .0E-10, 37 .0E-10, 35 .0E-10,

     &     25 .0E-10, 20 .0E-10, 16 .0E-10, 18 .0E-10, 13 .0E-10, 8 .0E-10,

     &     11 .0E-10, 8 .0E-10, 4 .0E-10, 6 .0E-10/

      DATA XDATA/2 .0, 5 .0, 7 .0, 10 .0, 14 .0, 19 .0, 26 .0, 31 .0, 34 .0,

     &     38 .0, 45 .0, 52 .0, 53 .0, 60 .0, 65 .0/
C

      IF (IOBS .LE. NOBS) THEN

         WT   = 1 .0E0

         FRQ  = 1 .0E0
         IEND = 0
         E    = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
      ELSE
         IEND = 1
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      END IF
      RETURN
      END

Output
THETA =     5.86076E-09   -3.95879E-02
RANK =   2  DFE =     13.0000  SSE =     4.94593E-19
Number of iterations =   5
Number of SSE evaluations =   13

    Gradient at solution
          1             2
6.86656E-14  -1.73762E-20

       Last step taken
           1             2
-3.24588E-14   3.65805E-07

             R
              1             2
1   1.87392E+00   1.13981E-07
2   0.00000E+00   1.13934E-07

Example 4

For an extended version of Example 2 that in addition computes the estimated
asymptotic variance-covariance matrix of the estimated nonlinear regression
parameters, see Example 2 for routine RCOVB (page 152). The example also
computes confidence intervals for the parameters.

Example 5

For an extended version of Example 2 that in addition computes standardized
residuals, leverages, and confidence intervals on the mean response, see Example
2 for routine ROTIN (page 201).

RLAV/DRLAV (Single/Double precision)
Fit a multiple linear regression model using the least absolute values criterion.

Usage
CALL RLAV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
           B, IRANK, SAE, ITER, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)
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LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IIND — Independent variable option.   (Input)
The absolute value of IIND is the number of independent (explanatory) variables.
The sign of IIND specifies the following options:

IIND Meaning
< 0 The data for the −IIND independent variables are given in the first

−IIND columns of X.
> 0 The data for the IIND independent variables are in the columns of X

whose column numbers are given by the elements of INDIND.
= 0 There are no independent variables.

The regressors are the constant regressor (if INTCEP = 1) and the independent
variables.

INDIND — Index vector of length IIND containing the column numbers of X

that are the independent (explanatory) variables.   (Input, if IIND is positive)
If IIND is negative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

B — Vector of length INTCEP + |IIND| containing a LAV solution for the
regression coefficients.   (Output)
If INTCEP = 1, B(1) contains the intercept estimate. B(INTCEP + I) contains the
coefficient estimate for the I-th independent variable.

IRANK — Rank of the matrix of regressors.   (Output)
If IRANK is less than INTCEP + |IIND|, linear dependence of the regressors was
declared.

SAE — Sum of the absolute values of the errors.   (Output)

ITER — Number of iterations performed.   (Output)

NRMISS — Number of rows of data containing NaN (not a number) for the
dependent or independent variables.   (Output)
If a row of data contains NaN for any of these variables, that row is excluded
from the computations.

Comments

1. Automatic workspace usage is

RLAV NOBS * (|IIND| + 5) + 2 * |IIND| + NOBS + 4, or
DRLAV 2 * NOBS * (|IIND| + 5) + 4 * |IIND| + NOBS + 8
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Workspace may be explicitly provided, if desired, by use of
R2AV/DR2AV. The reference is
CALL R2AV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND,
           IRSP, B, IRANK, SAE, ITER, NRMISS, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NOBS

WK — Work vector of length NOBS * (|IIND| + 5) + 2 * |IIND| + 4

2. Informational error
Type  Code
   3     1 The solution may not be unique.

Algorithm

Routine RLAV computes estimates of the regression coefficients in a multiple
linear regression model. The criterion satisfied is the minimization of the sum of
the absolute values of the deviations of the observed response yL from the fitted
response

$yi

for a set on n observations. Under this criterion, known as the L1 or LAV (least
absolute value) criterion, the regression coefficient estimates minimize

i
n

i iy y= −∑ 1 $

The estimation problem can be posed as a linear programming problem. The
special nature of the problem, however, allows for considerable gains in
efficiency by the modification of the usual simplex algorithm for linear
programming. These modifications are described in detail by Barrodale and
Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares
solution prior to the invocation of RLAV. This is particularly useful when a least-
squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from
this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model
using RLAV.

3 Add the two estimated regression coefficient vectors from Steps 1 and 2.
The result is an L1 solution.

When multiple solutions exist for a given problem, routine RLAV may yield
different estimates of the regression coefficients on different computers, however,
the sum of the absolute values of the residuals should be the same (within
rounding differences). The informational error indicating nonunique
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solutions may result from rounding accumulation. Conversely, because of
rounding the error may fail to result even when the problem does have multiple
solutions.

Example

A straight line fit to a data set is computed under the LAV criterion.
C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    LDX, NCOEF, NCOL, NOBS
      PARAMETER  (NCOEF=2, NCOL=2, NOBS=8, LDX=NOBS)
C
      INTEGER    IIND, INDIND(1), INTCEP, IRANK, IRSP, ITER, NOUT,
     &           NRMISS
      REAL       B(NCOEF), SAE, X(LDX,NCOL)
      CHARACTER  CLABEL(1)*4, RLABEL(1)*4
      EXTERNAL   RLAV, UMACH, WRRRL
C
      DATA (X(1,J),J=1,NCOL) /1.0, 1.0/
      DATA (X(2,J),J=1,NCOL) /4.0, 5.0/
      DATA (X(3,J),J=1,NCOL) /2.0, 0.0/
      DATA (X(4,J),J=1,NCOL) /2.0, 2.0/
      DATA (X(5,J),J=1,NCOL) /3.0, 1.5/
      DATA (X(6,J),J=1,NCOL) /3.0, 2.5/
      DATA (X(7,J),J=1,NCOL) /4.0, 2.0/
      DATA (X(8,J),J=1,NCOL) /5.0, 3.0/
C
      INTCEP = 1
      IIND   = -1
      IRSP   = 2
C
      CALL RLAV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, B,
     &           IRANK, SAE, ITER, NRMISS)
C
      CALL UMACH (2, NOUT)
      RLABEL(1) = ’B =’
      CLABEL(1) = ’NONE’
      CALL WRRRL (’ ’, 1, NCOEF, B, 1, 0, ’(F6.2)’, RLABEL, CLABEL)
      WRITE (NOUT,*) ’IRANK = ’, IRANK
      WRITE (NOUT,*) ’SAE = ’, SAE
      WRITE (NOUT,*) ’ITER = ’, ITER
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
B =    0 .50    0 .50
IRANK =   2

SAE =     6 .00000
ITER =   2
NRMISS =   0
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Figure 2-11   Least Squares and Least Absolute Value Fitted Lines

RLLP/DRLLP (Single/Double precision)
Fit a multiple linear regression model using the LS norm criterion.

Usage
CALL RLLP (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
           IFRQ, IWT, P, TOL, MAXIT, EPS, B, R, LDR, IRANK,
           DFE, E, SCALE2, ELP, ITER, NRMISS)

Arguments

NOBS — Number of rows in X.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IIND — Independent variable option.   (Input)
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IIND Meaning
< 0 The first −IIND columns of X contain the independent (explanatory)

variables.
> 0 The IIND independent variables are specified by the column numbers in

INDIND.
= 0 There are no independent variables.

There are NCOEF = INTCEP + |IIND| regressors—the constant regressor (if
INTCEP = 1) and the independent variables.

INDIND — Index vector of length IIND containing the column numbers of X

that are the independent (explanatory) variables.   (Input, if IIND is positive)
If IIND is negative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of
X contains the weights.

P — The p in the LS norm.   (Input)
p must be greater than or equal to 1.0. A common choice for p is between 1.0 and
2.0, inclusively.

TOL — Tolerance used in determining linear dependence.   (Input)
For RLLP, TOL = 100 * AMACH(4) is a common choice. For DRLLP, TOL = 100 *
DMACH(4) is a common choice. See documentation for IMSL routines AMACH and
DMACH (Reference Material).

MAXIT — Maximum number of iterations permitted.   (Input)
A common choice is MAXIT = 100.

EPS — Convergence criterion.   (Input)
If the maximum relative difference in residuals from the k-th to (k + 1)-st
iterations is less than EPS, convergence is declared. For RLLP, EPS = 100 *
AMACH(4) is a common choice. For DRLLP, EPS = 100 * DMACH(4) is a common
choice.

B — Vector of length NCOEF containing an LS solution for the regression
coefficients.   (Output)
If INTCEP = 1, B(1) contains the intercept estimate. B(INTCEP + I) contains the
coefficient estimate for the I-th independent variable.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix from a QR
decomposition of the matrix of regressors.   (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)
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IRANK — Rank of the matrix of regressors.   (Output)
If IRANK is less than NCOEF, linear dependence of the regressors is declared.

DFE — Sum of the frequencies minus IRANK.   (Output) In a least squares fit
(p = 2), DFE is called the degrees of freedom for error.

E — ector of length NOBS containing the residuals.   (Output)

SCALE2 — Square of the scale constant used in an LS analysis.   (Output)
An estimated asymptotic variance-covariance matrix of the regression coefficients

is SCALE2 * (R7R)-1.

ELP — LS norm of the residuals.   (Output)

ITER — Number of iterations performed.   (Output)

NRMISS — Number of rows of data that contain any missing values for the
independent, dependent, weight, or frequency variables.   (Output)
NaN (not a number) is used as the missing value code. Any row of X containing
NaN as a value of the independent, dependent, weight, or frequency variables is
omitted from the analysis.

Comments

1. Automatic workspace usage is

RLLP 3 * NOBS + 8 * NCOEF + |IIND| + 7 units, or

DRLLP 5 * NOBS + 16 * NCOEF + |IIND| + 11 units, where
NCOEF = INTCEP + |IIND|.

Workspace may be explicitly provided, if desired, by use of
R2LP/DR2LP. The reference is

CALL R2LP (NROW, NCOL, X, LDX, INTCEP, IIND, INDIND,
           IRSP, IFRQ, IWT, P, TOL, MAXIT, EPS, B,
           R, LDR, IRANK, DFE, E, SCALE2, ELP, ITER,
           NRMISS, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length NOBS + |IIND| + 3.

WK — Work array of length 2 * NOBS + 8 * NCOEF + 4.

2. Informational errors
Type Code
   4    1 A negative weight was encountered.
   4    2 A negative frequency was encountered.
   4    3 The p-th power of the absolute value of one or more of

the current residuals will result in overflow or
underflow in subsequent computations. A solution
cannot be computed because of a serious loss of
accuracy. For large p, consider the use of IMSL
routine RLMV, which uses the L� (minimax) criterion.
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   3    4 Convergence has not been achieved after MAXIT
iterations. MAXIT or EPS may be too small. Try
increasing MAXIT or EPS.

   3    5 Convergence is not declared. The line-search
procedure failed to find an acceptable solution after 10
successive attempts. EPS may be too small. Try
increasing its value.

Algorithm

Routine RLLP computes estimates of the regression coefficients in a multiple
linear regression model y = Xβ + ε under the criterion of minimizing the LS norm

of the deviations for i = 1, …, n of the observed response yL from the fitted
response

$yi

for a set on n observations and for p ≥ 1. For the case IWT = 0 and IFRQ = 0 the
estimated regression coefficient vector,

$β
(output in B) minimizes the LS norm

 y yi i
p

i

n p
−=∑ $

/

1

1

4 9
The choice p = 1 yields the maximum likelihood estimate for β when the errors
have a Laplace distribution. The choice p = 2 is best for errors that are normally
distributed. Sposito (1989, pages 36−40) discusses other reasonable alternatives
for p based on the sample kurtosis of the errors.

Weights are useful if the errors in the model have known unequal variances

σ i
2

In this case, the weights should be taken as

wi i= 1 2/ σ

Frequencies are useful if there are repetitions of some observations in the data set.
If a single row of data corresponds to nL observations, set the frequency fL = nL. In
general, RLLP minimizes the LS norm

 f w y yi i i i
p

i

n p
−�� ��=∑ $

/

1 6
1

1

The asymptotic variance-covariance matrix of the estimated regression
coefficients is given by

asy.var( $ ) ( )β λ= −2 1R RT
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where R is from the QR decomposition of the matrix of regressors (output in R)

and where an estimate of λ2 is output in SCALE2. An estimated asymptotic
variance-covariance matrix of the estimated regression coefficients can be
computed following the call to RLLP by invoking routine RCOVB (page 152) with
R and SCALE2.

In the discussion that follows, we will first present the algorithm with frequencies
and weights all taken to be one. Later, we will present the modifications to handle
frequencies and weights different from one.

Routine RLLP uses Newton’s method with a line search for p > 1.25 and, for
p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of
perturbed problems are solved in order to guarantee convergence and increase the
convergence rate. The cutoff value of 1.25 as well as some of the other
implementation details given in the remaining discussion were investigated by
Sallas (1990) for their effect on CPU times.

In each case, for the first iteration a least-squares solution for the regression
coefficients is computed using routine RGIVN (page 107). If p = 2, the
computations are finished. Otherwise, the residuals from the k-th iteration,

e y yi
k

i i
k( ) ( )$= −

are used to compute the gradient and Hessian for the Newton step for the (k + 1)-
st iteration for minimizing the p-th power of the LS norm. (The exponent 1/p in
the LS norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the
gradient and Hessian at the (k + 1)-st iteration depend upon

z e ei
k

i
k p

i
k( ) ( ) ( )+ −

=1 1
sign3 8

and

v ei
k

i
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In the case 1.25 < p < 2 and

e vi
k

i
k0 5 0 5= +0 1,

and the Hessian are undefined; and we follow the recommendation of Merle and
Spath (1974). Specifically, we modify the definition of

vi
k( )+1

to the following:
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where τ equals 100 * AMACH(4) (or 100.0 * DMACH(4) for the double precision
version) times the square root of the residual mean square from the least-squares
fit. (See routines AMACH and DMACH which are documented in the section
“Machine-Dependent Constants” in Reference Material.)

Let V(N+1) be a diagonal matrix with diagonal entries

vi
k( )+1

and let z(N+1) be a vector with elements

zi
k( )+1

In order to compute the step on the (k + 1)-st iteration, the R from the QR

decomposition of [V(N+1)]1/2X is computed using fast Givens transformations. Let

R(N+1) denote the upper triangular matrix from the QR decomposition. Routine

GIRTS (page ???) is used to solve the linear system [R(N+1)]7R(N+1)d(N+1)= X7

z(N+1) is solved for d(N+1) where R(N+1) is from the QR decomposition of

[V(N+1)]���X. The step taken on the (k + 1)-st iteration is

$ $( ) ( ) ( ) ( )β β αk k k k
p

d+ + += + −
1 1 11

1

The first attempted step on the (k + 1)-st iteration is with α(N+1) = 1. If all of the

ei
k0 5

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980,
pages 528−529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease in the p-th power of the LS norm of the residuals, a
backtracking linesearch procedure is used. The backtracking procedure uses a
one-dimensional quadratic model to estimate the backtrack constant p. The value
of ρ is constrained to be no less that 0.1. An approximate upper bound for p is

0.5. If after 10 successive backtrack attempts, α(N) = ρ�ρ�…ρ�� does not produce
a step with a sufficient decrease, then RLLP issues a message with error code 5.
For further details on the backtrack line-search procedure, see Dennis and
Schnabel (1983, pages 126−127).

Convergence is declared when the maximum relative change in the residuals from
one iteration to the next is less than or equal to EPS. The relative change

δ i
k( )+1

in the i-th residual from iteration k to iteration k + 1 is computed as follows:
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where s is the square root of the residual mean square from the least-squares fit on
the first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous
procedure that incorporate Ekblom’s (1973) results. A sequence of perturbed
problems are solved with a successively smaller perturbation constant c. On the
first iteration, the least-squares problem is solved. This corresponds to an infinite
c. For the second problem, c is taken equal to s, the square root of the residual
mean square from the least-squares fit. Then, for the (j + 1)-st problem, the value
of c is computed from the previous value of c according to

c cj j
p

+
−=1

5 410/

Each problem is stated as
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For each problem, the gradient and Hessian on the (k + 1)-st iteration depend
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The linear system [R(N+1)]7R(N+1)d(N+1)= X7z(N+1) is solved for d(N+1) where R(N+1)

is from the QR decomposition of [V (N+1)]1/2X. The step taken on the (k + 1)-st
iteration is

$ $( ) ( ) ( ) ( )β β αk k k kd+ + += +1 1 1

where the first attempted step is with α(N+1) = 1. If necessary, the backtracking
line-search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence

epsilon equal to max(EPS, 10-M) where j = 1, 2, 3, … indexes the problems (j = 0
corresponds to the least-squares problem).
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After the convergence of a problem for a particular c, Ekblom’s (1987)
extrapolation technique is used to compute the initial estimate of β for the new

problem. Let R(N),

v ei
k

i
k( ) , 0 5

and c be from the last iteration of the last problem. Let

t
p v

e c
i

i
k

i
k=
−

+
( )

( )

( )

( )

2
2 2

and let t be the vector with elements tL. The initial estimate of β for the new
problem with perturbation constant 0.01c is

$ $( ) ( )β β0 = +k cd∆

where ∆c = (0.01c − c) = −0.99c, and where d is the solution of the linear system

[R(N)]TR(N)d = X7t.

Convergence of the sequence of problems is declared when the maximum relative
difference in residuals from the solution of successive problems is less than EPS.

The preceding discussion was limited to the case for which IWT= 0 and IFRQ = 0,
i.e., the weights and frequencies are all taken equal to one. The necessary
modifications to the preceding algorithm to handle weights and frequencies not
all equal to one are as follows:

1. Replace

e w ei
k

i i
k0 5 0 5 by 

in the definitions of

z vi
k

i
k

i
k( ) ( ) ( ), ,+ + +1 1 1δ

and tL.

2. Replace

z f w z v f w v t f w ti
k

i i i
k

i
k

i i i
k

i
k

i i i
k+ + + + + +1 1 1 1 1 10 5 0 5 0 5 0 5 by by  and  by , ,( ) ( )

These replacements have the same effect as multiplying the i-th row of X and y by

wi

and repeating the row fL times except for the fact that the residuals returned by
RLLP are in terms of the original y and X.
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Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because
on output it corresponds to the R from the initial QR decomposition for least

squares. The formula for the estimate of λ2 depends on p.

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)
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where z0.975 is the 97.5 percentile of the standard normal distribution, and where

~ ( , , , )( )ε m m = 1 2 K DFE

are the ordered residuals where IRANK zero residuals are excluded. (Note that

DFE
=

= −∑ fii

n
IRANK

1

For p = 2, the estimator of λ2 is the customary least-squares estimator given by
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For 1 < p < 2 and for p > 2, the estimator for λ� is given by (Gonin and Money
1989)
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Example

Different straight line fits to a data set are computed under the criterion of
minimizing the LS norm by using p equal to 1, 1.5, 2.0 and 2.5.

      INTEGER    INTCEP, LDR, LDX, NCOEF, NCOL, NIND, NOBS
      PARAMETER  (INTCEP=1, NCOL=2, NIND=1, NOBS=8, LDX=NOBS,
     &           NCOEF=INTCEP+NIND, LDR=NCOEF)
C
      INTEGER    IFRQ, IIND, INDIND(NIND), IRANK, IRSP, ITER, IWT,
     &           MAXIT, NOUT, NRMISS
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      REAL       AMACH, B(NCOEF), DFE, E(NOBS), ELP, EPS, P,
     &           R(LDR,NCOEF), SCALE2, TOL, X(LDX,NCOL)
      CHARACTER  CLABEL(1)*4, RLABEL(1)*12
      EXTERNAL   AMACH, RLLP, UMACH, WRRRL, WRRRN
C
      DATA (X(1,J),J=1,NCOL)/1.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/4.0, 5.0/
      DATA (X(3,J),J=1,NCOL)/2.0, 0.0/
      DATA (X(4,J),J=1,NCOL)/2.0, 2.0/
      DATA (X(5,J),J=1,NCOL)/3.0, 1.5/
      DATA (X(6,J),J=1,NCOL)/3.0, 2.5/
      DATA (X(7,J),J=1,NCOL)/4.0, 2.0/
      DATA (X(8,J),J=1,NCOL)/5.0, 3.0/
C
      CALL UMACH (2, NOUT)
      IIND      = NIND
      INDIND(1) = 1
      IRSP      = 2
      IFRQ      = 0
      IWT       = 0
      TOL       = 100.0*AMACH(4)
      MAXIT     = 100
      EPS       = 0.001
C
      DO 10  P=1.0, 2.5, 0.5
         CALL RLLP (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
     &              IFRQ, IWT, P, TOL, MAXIT, EPS, B, R, LDR, IRANK,
     &              DFE, E, SCALE2, ELP, ITER, NRMISS)
C
         WRITE (NOUT,99997)
         RLABEL(1) = ’Coefficients’
         CLABEL(1) = ’NONE’
         CALL WRRRL (’%/’, 1, NCOEF, B, 1, 0, ’(F6.2)’, RLABEL, CLABEL)
         RLABEL(1) = ’Residuals’
         CLABEL(1) = ’NONE’
         CALL WRRRL (’%/’, 1, NOBS, E, 1, 0, ’(F6.2)’, RLABEL, CLABEL)
         WRITE (NOUT,*)
         WRITE (NOUT,99998) ’p’, P
         WRITE (NOUT,99998) ’Lp norm of the residuals’, ELP
         WRITE (NOUT,99999) ’Rank of the matrix of regressors’, IRANK
         WRITE (NOUT,99998) ’Degrees of freedom error’, DFE
         WRITE (NOUT,99999) ’Number of iterations’, ITER
         WRITE (NOUT,99999) ’Number of missing values’, NRMISS
         WRITE (NOUT,99998) ’Square of the scale constant’, SCALE2
         CALL WRRRN (’R matrix’, NCOEF, NCOEF, R, LDR, 0)
   10 CONTINUE
99997 FORMAT (/1X, 72(’-’))
99998 FORMAT (1X, A, T34F5.2)
99999 FORMAT (1X, A, T34I5)
      END

Output
------------------------------------------------------------------------
Coefficients    0.50    0.50
Residuals    0.00    2.50   -1.50    0.50   -0.50    0.50   -0.50    0.00

p                                1.00
Lp norm of the residuals         6.00
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Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                8
Number of missing values            0
Square of the scale constant     6.25

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

------------------------------------------------------------------------

Coefficients    0.39    0.55

Residuals    0.06    2.39   -1.50    0.50   -0.55    0.45   -0.61   -0.16

p                                1.50
Lp norm of the residuals         3.71
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                6
Number of missing values            0
Square of the scale constant     1.06

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

------------------------------------------------------------------------

Coefficients   -0.12    0.75
Residuals    0.38    2.12   -1.38    0.62   -0.62    0.38   -0.88   -0.62

p                                2.00
Lp norm of the residuals         2.94
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                1
Number of missing values            0
Square of the scale constant     1.44

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

------------------------------------------------------------------------

Coefficients   -0.44    0.87
Residuals    0.57    1.96   -1.30    0.70   -0.67    0.33   -1.04   -0.91
p                                2.50
Lp norm of the residuals         2.54
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                4
Number of missing values            0
Square of the scale constant     0.79
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   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

Figure 2-12   Various LS Fitted Lines

RLMV/DRLMV (Single/Double precision)
Fit a multiple linear regression model using the minimax criterion.

Usage
CALL RLMV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP,
           B, IRANK, AEMAX, ITER, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

INTCEP — Intercept option.   (Input)
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INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IIND — Independent variable option.   (Input)
The absolute value of IIND is the number of independent (explanatory) variables.
The sign of IIND specifies the following options:

IIND Meaning
< 0 The data for the −IIND independent variables are given in the first

−IIND columns of X.
> 0 The data for the IIND independent variables are in the columns of X

whose column numbers are given by the elements of INDIND.
= 0 There are no independent variables.

The regressors are the constant regressor (if INTCEP = 1) and the independent
variables.

INDIND — Index vector of length IIND containing the column numbers of X

that are the independent (explanatory) variables.   (Input, if IIND is positive)
If IIND is negative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains the data for the response
(dependent) variable.   (Input)

B — Vector of length INTCEP + |IIND| containing a minimax solution for the
regression coefficients.   (Output)
If INTCEP = 1, B(1) contains the intercept estimate. B(INTCEP + I) contains the
coefficient estimate for the I-th independent variable.

IRANK — Rank of the matrix of regressors.   (Output)
If IRANK is less than INTCEP + |IIND|, linear dependence of the regressors was
declared.

AEMAX — Magnitude of the largest residual.   (Output)

ITER — Number of iterations performed.   (Output)

NRMISS — Number of rows of data containing NaN (not a number) for the
dependent or independent variables.   (Output)
If a row of data contains NaN for any of these variables, that row is excluded
from the computations.

Comments

1. Automatic workspace usage is

RLMV NOBS * (|IIND| + 5) + 2 * |IIND| + 3 units, or
DRLMV 2 * (NOBS * (|IIND| + 5) + 2 * |IIND| + 3) units.

Workspace may be explicitly provided, if desired, by use of
R2MV/DR2MV. The reference is
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CALL R2MV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND,
           IRSP, B, IRANK, AEMAX, ITER, WK)

The additional argument is

WK — Workspace of length NOBS * (|IIND| + 5) + 2 * |IIND| + 3.

2. Informational errors
Type Code
   3    1 The solution may not be unique.
   4    1 Calculations terminated prematurely due to rounding.

3. If X is not needed, LDX= NOBS, and IIND < 0, then X and the first
NOBS * (−IIND + 1) elements of WK may occupy the same storage
locations. The reference would be

CALL R2MV (NOBS, NCOL, WK, NOBS, INTCEP, IIND,
           INDIND, IRSP, B, IRANK, AEMAX, ITER, WK)

Algorithm

Routine RLMV computes estimates of the regression coefficients in a multiple
linear regression model. The criterion satisfied is the minimization of the
maximum deviation of the observed response yL from the fitted response $yi  for a

set on n observations. Under this criterion, known as the minimax or LMV (least
maximum value) criterion, the regression coefficient estimates minimize

max $
1≤ ≤

−
i n

i iy y  The estimation problem can be posed as a linear programming

problem. A dual simplex algorithm is appropriate, however, the special nature of
the problem allows for considerable gains in efficiency by modification of the
dual simplex iterations so as to move more rapidly toward the optimal solution.
The modifications are described in detail by Barrodale and Phillips (1975).

When multiple solutions exist for a given problem, RLMV may yield different
estimates of the regression coefficients on different computers, however, the
largest residual in absolute value should have the same absolute value (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding, the
error may fail to result even when the problem does have multiple solutions.

Example

A straight line fit to a data set is computed under the LMV criterion.
C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    LDX, NCOEF, NCOL, NOBS
      PARAMETER  (NCOEF=2, NCOL=2, NOBS=7, LDX=NOBS)
C
      INTEGER    IIND, INDIND(1), INTCEP, IRANK, IRSP, ITER, NOUT,
     &           NRMISS
      REAL       B(NCOEF), AEMAX, X(LDX,NCOL)
      CHARACTER  CLABEL(1)*4, RLABEL(1)*4
      EXTERNAL   RLMV, UMACH, WRRRL
C
      DATA (X(1,J),J=1,NCOL)/0.0, 0.0/
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      DATA (X(2,J),J=1,NCOL)/1.0, 2.5/
      DATA (X(3,J),J=1,NCOL)/2.0, 2.5/
      DATA (X(4,J),J=1,NCOL)/3.0, 4.5/
      DATA (X(5,J),J=1,NCOL)/4.0, 4.5/
      DATA (X(6,J),J=1,NCOL)/4.0, 6.0/
      DATA (X(7,J),J=1,NCOL)/5.0, 5.0/
C
      INTCEP = 1
      IIND   = -1
      IRSP   = 2
C
      CALL RLMV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, B,
     &           IRANK, AEMAX, ITER, NRMISS)
C
      CALL UMACH (2, NOUT)
      RLABEL(1) = ’B =’
      CLABEL(1) = ’NONE’
      CALL WRRRL (’ ’, 1, NCOEF, B, 1, 0, ’(F6.2)’, RLABEL, CLABEL)
      WRITE (NOUT,*) ’IRANK = ’, IRANK
      WRITE (NOUT,*) ’AEMAX = ’, AEMAX
      WRITE (NOUT,*) ’ITER = ’, ITER
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
B =    1.00    1.00
IRANK =   2
AEMAX =     1.00000
ITER =   3
NRMISS =   0

Figure 2-13   Least Squares and Least Maximum Value Fitted Lines
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Chapter 3: Correlation

Routines
3.1. The Correlation Matrix

Correlation...........................................................................CORVC 314
Pooled covariance matrix.....................................................COVPL 322
Partial correlations ..............................................................PCORR 327
Robust estimate of correlation matrix ................................. RBCOV 331

3.2. Correlation Measures for a Contingency Table
The r × c contingency table.................................................CTRHO 339
Tetrachoric correlation (2 × 2 tables) ...................................TETCC 342

3.3. A Dichotomous Variable with a Classification Variable
Specified values for the classification variable.....................BSPBS 346
Computed values for the classification variable...................BSCAT 348

3.4. Measures Based Upon Ranks
Kendall coefficient of concordance .....................................CNCRD 350
Kendall’s τ ............................................................................KENDL 353
Exact frequencies for Kendall’s τ .........................................KENDP 357

Usage Notes
This chapter is concerned with measures of correlation for bivariate data. The
usual multivariate measures of correlation and covariance for continuous random
variables are produced by routine CORVC (page 314). For data grouped by some
auxiliary variable, routine COVPL (page 322) can be used to compute the pooled
covariance matrix along with the means for each group. Partial correlations or
covariances, given the correlation or covariance matrix computed from CORVC or
COVPL, are computed by PCORR (page 327). Routine RBCOV (page 331) computes
robust estimates of the covariance matrix and mean vector. If data are grouped by
some auxiliary variable, routine RBCOV can also be used to estimate the pooled
covariance matrix and means for each group. The remaining routines are
concerned with rank and/or discrete data. General references for these routines
are Conover (1980) or Gibbons (1971).
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CTRHO (page 339) and TETCC (page 342) produce measures of correlation for
contingency tables. In CTRHO, the inverse normal scores obtained from the row
and column marginal distributions are assumed known, and the correlation
coefficient is estimated by assuming bivariate normality. In TETCC, a 2 × 2 table
is produced from continuous input data using estimates for the sample medians.
The correlation coefficient is estimated from the resulting 2 × 2 table.

If one of the variables is dichotomous while the second variable can be ranked,
the routines BSPBS (page 346) or BSCAT (page 348) can be used. The difference
between these routines is in whether the class values for the ranked variable are
given by the user (BSPBS) or are estimated as inverse normal scores from the
marginal cumulative distribution (BSCAT). Routine CNCRD (page 350) computes
Kendall’s coefficient of concordance, and routine KENDL (page 353) computes
Kendall’s rank correlation coefficient τ. Probabilities for τ are computed by
routine KENDP (page 357).

Other Routines

Other IMSL routines compute measures of correlation or association and may be
of interest. Routine CTTWO (page 436) described in Chapter 5, “Categorical and
Discrete Data Analysis,” computes measures of association for the 2 × 2
contingency table. Routine CTCHI (page 446), in the same chapter, computes
measures of association for the general r × c contingency table. Routine CDIST

(page 889) in Chapter 11, “Cluster Analysis,” computes measures of similarity
and dissimilarity, including the correlation coefficient. Measures of multivariate
association or correlation are computed in Chapter 2, “Regression,” and in
“Independence of Sets of Variables and Canonical Correlation Analysis.”

CORVC/DCORVC (Single/Double precision)
Compute the variance-covariance or correlation matrix.

Usage
CALL CORVC (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT,
            ICOPT, XMEAN, COV, LDCOV, INCD, LDINCD, NOBS,
            NMISS, SUMWT)

Arguments

IDO — Processing option.   (Input)

IDO Action

0 This is the only invocation of CORVC for this data set, and all the data are
input at once.

1 This is the first invocation, and additional calls to CORVC will be made.
Initialization and updating for the NROW observations are performed.
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The means (in XMEAN) are output correctly, but the quantities output in
COV are intermediate results.

2 This is an intermediate invocation of CORVC, and updating for the NROW
observations is performed.

3 This is the final invocation of this routine. If NROW is not zero, updating
is performed. The wrap-up computations for COV are performed.

It is possible to call CORVC twice in succession with IDO = 3 in order to first
compute covariances (ICOPT = 1) and then compute correlations (ICOPT = 2 or
3). This ability is most important when pairwise deletion of missing values is used
(MOPT = 3). The workspace arrays (or the workspace) must not be altered in
between calls.

NROW — The absolute value of NROW is the number of rows of data currently
input in X.   (Input)
NROW may be positive, zero, or negative. Negative NROW means that the −NROW
rows of data are to be deleted from (most aspects of) the analysis. This should be
done only if IDO is 2 or 3 and the wrap-up computations for COV have not been
performed. When a negative value is input for NROW, it is assumed that each of the 
−NROW rows of X has been input (with positive NROW ) in previous invocations of
CORVC. Use of negative values of NROW should be made with care since it is
possible that a constant variable in the remaining data will not be recognized as
such.

NVAR — Number of variables.   (Input)
The weight or frequency variables, if used, are not counted in NVAR.

X — |NROW| by NVAR + m matrix containing the data, where m is 0, 1, or 2
depending on whether any column(s) of X correspond to weights and/or
frequencies.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column IFRQ of
X contains the frequencies.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X
contains the weights. Observations with zero weight are counted as observations
in the frequencies, but do not contribute to the means, variances, covariances, or
correlations. Observations with negative weights are missing.

MOPT — Missing value option.   (Input)
NaN (not a number) is interpreted as the missing value code, and any value in X

equal to NaN is excluded from the computations. If MOPT is positive, various
pairwise exclusion methods are used. See routine AMACH/DMACH (Reference
Material).
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MOPT Action
0 The exclusion is listwise. (The entire row of X is excluded if any of the

values of the row is equal to the missing value code.)
1 Raw crossproducts are computed from all valid pairs and means, and

variances are computed from all valid data on the individual variables.
Corrected crossproducts, covariances and correlations are computed
using these quantities.

2 Raw crossproducts, means and variances are computed as in the case of
MOPT = 1. However, corrected crossproducts and covariances are
computed only from the valid pairs of data. Correlations are computed
using these covariances and the variances from all valid data.

3 Raw crossproducts, means, variances, and covariances are computed as
in the case of MOPT = 2. Correlations are computed using these
covariances, but the variances used are computed only from the valid
pairs of data.

ICOPT — COV option.   (Input)

ICOPT Action
0 COV contains the variance-covariance matrix.
1 COV contains the corrected sums of squares and crossproducts matrix.
2 COV contains the correlation matrix.
3 COV contains the correlation matrix, except for the diagonal elements,

which are the standard deviations.

XMEAN — Vector of length NVAR containing the variable means.   (Output, if
IDO = 0 or 1; input/output, if IDO = 2 or 3)
The elements of XMEAN correspond to the columns of X, except that if weights
and/or frequencies are used, the elements of XMEAN beyond the IWT or IFRQ
element are shifted relative to the columns of X.

COV — NVAR by NVAR matrix containing either the correlation matrix (possibly
with the standard deviations on the diagonal), the variance-covariance matrix, or
the corrected sums of squares and crossproducts matrix, as controlled by the COV

option, ICOPT.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
The elements of COV correspond to the columns of X, except for the columns of X

containing weights or frequencies (see XMEAN).

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

INCD — Incidence matrix.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or
3)
If MOPT is zero, INCD is 1 by 1, and contains the number of valid observations. If
MOPT is positive, INCD is NVAR by NVAR and contains the numbers of pairs of
valid observations that are used in calculating the crossproducts for COV.

LDINCD — Leading dimension of INCD exactly as specified in the dimension
statement in the calling program.   (Input)
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NOBS — Total number of observations (that is, the total of the frequencies).
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
If MOPT = 0, observations with missing values are not included in NOBS. For other
values of MOPT, all observations are included except for observations with
missing values for the weight or the frequency.

NMISS — Total number of observations that contain any missing values.
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

SUMWT — Sum of the weights of all observations that are processed.   (Output,
if IDO = 0 or 1; input/output, if IDO = 2 or 3)
If MOPT = 0, observations with missing values are not included in SUMWT. For
other values of MOPT, all observations are included except for observations with
missing values for the weight or the frequency.

Comments

1. Automatic workspace usage is

MOPT IWT         Workspace

0 0          3 * NVAR units
0 Positive     4 * NVAR units
1, 2 0          NVAR * (NVAR + 2) units
1, 2 Positive     (NVAR * (3 * NVAR + 5))/2 units
3 0          2 * NVAR * (NVAR + 1) units
3 Positive     (5 * NVAR * (NVAR + 1))/2 units.

For DCORVC, the requirements are exactly twice the amount required for
CORVC.

Workspace may be explicitly provided, if desired, by use of
C2RVC/DC2RVC.The reference is

CALL C2RVC (IDO, NROW, NVAR, X, LDX, IFRQ, IWT,
            MOPT, ICOPT, XMEAN, COV, LDCOV, INCD,
            LDINCD, NOBS,NMISS, SUMWT, WK)

The additional argument is

WK — Workspace of the length specified above. WK should not be
changed between calls to C2RVC.

The workspace may contain statistics of interest. Let

m = NVAR

k = m(m + 1)/2

Statistics that are stored in the workspace that are part of symmetric
matrices are stored in symmetric storage mode, i.e., only the lower
triangular elements are stored. The workspace utilization is
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MOPT IWT Start Length Contents

All All 1 m Indicators of constant
data

All All  m + 1 m First nonmissing data

0 All  2m+1 m Deviation from
temporary mean

0 Positive 3m + 1 1 Sum of weights

1, 2 All 2m + 1 m2 Pairwise means

1, 2 Positive 2m + m2 + 1 k Pairwise sums of
weights

3 All 2m + 1 m2 Pairwise means

3 0 2m + m2 + 1 m2 Pairwise sums of
products

3 Positive 2m + m2 + 1 k Pairwise sums of
weights

3 Positive 2m + k + m2 + 1 m2 Pairwise sums of
products

2. Informational errors
Type Code
   3   12 The sum of the weights is zero. The means, variance

and covariances are set to NaN.
   3   13 The sum of the weights is zero. The means and

correlations are set to NaN.
   3   14 Correlations are requested but the observations on a

variable are constant. The pertinent correlations are set
to NaN.

   3   15 Variances and covariances are requested but fewer
than two valid observations are present for some
variables. The corresponding variances or covariances
are set to NaN.

   3   16 Pairwise correlations are requested but the
observations on a variable are constant. The pertinent
correlations are set to NaN.

   3   17 Correlations are requested but fewer than two valid
observations are present for some variables. The
corresponding variances or covariances are set to
NaN.

   4   10 More observations have been deleted than were
originally entered.

   4   11 More observations have been deleted from COV(i, j)
than were originally entered. INCD(i, j) is less than
zero.
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   4   18 Different observations have been deleted from
COV(i, j) than were originally entered. COV(i, j) is less
than zero.

Algorithm

Routine CORVC computes estimates of correlations, covariances, or sums of
squares and crossproducts for a data matrix X. Weights and frequencies are
allowed but not required. Also allowed are listwise or pairwise deletion of
missing values. Routine CORVC is an “IDO routine,” so it may be called with all of
the data in one invocation, or it may be called in several invocations with some
(or none) of the data input during each call. By setting NROW to a negative integer,
observations that have previously been added to the covariance/correlation
statistics may be deleted from the statistics. Exercise care with this option,
however, since the program may not be able to detect constant variables when
negative NROW is used.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts
are computed using the method of provisional means. Let

xki

denote the mean based upon i observations for the k-th variable, fL denote the
frequency of the i-th observation, wL denote the weight of the i-th observation, and
let cMNL denote the sum of crossproducts (or sum of squares if j = k) based upon i
observations. Then, the method of provisional means finds new means and sums
of crossproducts as follows:

The means and crossproducts are initialized as:

x k p

c j k p
k

jk

0

0

0 0 1

0 0 1

= =
= =

. , ,

. , , ,

K

K

where p denotes the number of variables. Letting xN�L���denote the k-th variable
on observation i + 1, each new observation leads to the following updates for

xki

and cMNL using update constant rL�1:

r
f w

f w

x x x x r

c c w f x x x x r

i
i i

i ij

i

k i ki k i ki i

jk i jki i i j i ji k i ki i

+
+ +

=
+

+ + +

+ + + + + +

=

= + −

= + − − −

∑
1

1 1

1

1

1 1 1

1 1 1 1 1 11

( ) ( )

( ) ( ) ( )

( )

( )( )( )

If there is no weight variable, weights of 1.0 are used. If there is no frequency
column, frequencies of 1.0 are used. Means and variances are computed based
upon all of the valid data for each variable or, if required, based upon all of the
valid data for each pair of variables.
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Usage Notes

In CORVC, each observation xNL�with weight wL is assumed to have mean µN and
variance

σk iw2 /

With these assumptions, CORVC uses the following definition of a sample mean:
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where nU is the number of cases. The following formula defines the sample
covariance, sMN, between variables j and k:
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The sample correlation between variables j and k, rMN, is defined as:
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Example 1

The first example illustrates the use of CORVC when inputing all of the data at
once. The first 50 observations in the Fisher iris data (see routine GDATA,
page 1302) are used. Note in this example that the first variable is constant over
the first 50 observations.

      INTEGER    LDCOV, LDINCD, LDX, NVAR
      PARAMETER  (LDCOV=5, LDINCD=1, LDX=150, NVAR=5)
C
      INTEGER    ICOPT, IDO, IFRQ, INCD(LDINCD,1), IWT, MOPT, NMISS,
     &           NOBS, NOUT, NROW, NV
      REAL       COV(LDCOV,NVAR), SUMWT, X(LDX,NVAR), XMEAN(NVAR)
      EXTERNAL   CORVC, GDATA, UMACH, WRIRN, WRRRN
C
      CALL GDATA (3, 0, NOBS, NV, X, LDX, NVAR)
C
      CALL UMACH (2, NOUT)
      IDO   = 0
      NROW  = 50
      IFRQ  = 0
      IWT   = 0
      MOPT  = 0
      ICOPT = 0
C
      CALL CORVC (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, ICOPT,
     &            XMEAN, COV, LDCOV, INCD, LDINCD, NOBS, NMISS, SUMWT)
C
      CALL WRRRN (’XMEAN’, 1, NVAR, XMEAN, 1, 0)
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      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 0)
      CALL WRIRN (’INCD’, 1, 1, INCD, LDINCD, 0)
      WRITE (NOUT,*) ’ NOBS = ’, NOBS, ’ NMISS = ’, NMISS, ’ SUMWT = ’,
     &              SUMWT
      END

Output
                XMEAN
    1        2        3        4        5
1.000    5.006    3.428    1.462    0.246

                          COV
             1        2        3        4        5
    1   0.0000   0.0000   0.0000   0.0000   0.0000
    2   0.0000   0.1242   0.0992   0.0164   0.0103
    3   0.0000   0.0992   0.1437   0.0117   0.0093
    4   0.0000   0.0164   0.0117   0.0302   0.0061
    5   0.0000   0.0103   0.0093   0.0061   0.0111

INCD
  50
NOBS =   50 NMISS =   0 SUMWT =     50.0000

Example 2

In the second example, the IDO option is used. After the initialization step in
which IDO = 1, the first 53 observations in the Fisher iris data are input, one
observation at a time. The last three observations input are then deleted from the
covariances by setting NROW = −1. Finally, the wrap-up step is accomplished by
calling CORVC with IDO = 3. The output is identical to the output above.

      INTEGER    LDCOV, LDINCD, LDX, LDY, NVAR
      PARAMETER  (LDCOV=5, LDINCD=1, LDX=150, LDY=1, NVAR=5)
C
      INTEGER    I, ICOPT, IDO, IFRQ, INCD(LDINCD,1), IWT, MOPT,
     &           NMISS, NOBS, NOUT, NROW, NV
      REAL       COV(LDCOV,NVAR), SUMWT, X(LDX,NVAR), XMEAN(NVAR),
     &           Y(LDY,NVAR)
      EXTERNAL   CORVC, GDATA, SCOPY, UMACH, WRIRN, WRRRN
C
      CALL GDATA (3, 0, NOBS, NV, X, LDX, NVAR)
C
      CALL UMACH (2, NOUT)
C
      IFRQ  = 0
      IWT   = 0
      MOPT  = 0
      ICOPT = 0
C
      IDO  = 1
      NROW = 0
C                                 Initialization
      CALL CORVC (IDO, NROW, NVAR, Y, LDY, IFRQ, IWT, MOPT, ICOPT,
     &            XMEAN, COV, LDCOV, INCD, LDINCD, NOBS, NMISS, SUMWT)
C
      IDO  = 2
      NROW = 1
C                                 Add the observations
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      DO 10  I=1, 53
         CALL SCOPY (NVAR, X(I,1), LDX, Y, 1)
         CALL CORVC (IDO, NROW, NVAR, Y, LDY, IFRQ, IWT, MOPT, ICOPT,
     &               XMEAN, COV, LDCOV, INCD, LDINCD, NOBS, NMISS,
     &               SUMWT)
   10 CONTINUE
C                                 Delete the last 3 added
      NROW = -1
      DO 20  I=51, 53
         CALL SCOPY (NVAR, X(I,1), LDX, Y, 1)
         CALL CORVC (IDO, NROW, NVAR, Y, LDY, IFRQ, IWT, MOPT, ICOPT,
     &               XMEAN, COV, LDCOV, INCD, LDINCD, NOBS, NMISS,
     &               SUMWT)
   20 CONTINUE
C                                 Wrap-up
      IDO  = 3
      NROW = 0
      CALL CORVC (IDO, NROW, NVAR, Y, LDY, IFRQ, IWT, MOPT, ICOPT,
     &            XMEAN, COV, LDCOV, INCD, LDINCD, NOBS, NMISS, SUMWT)
      CALL WRRRN (’XMEAN’, 1, NVAR, XMEAN, 1, 0)
      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 0)
      CALL WRIRN (’INCD’, 1, 1, INCD, LDINCD, 0)
      WRITE (NOUT,*) ’ NOBS = ’, NOBS, ’ NMISS = ’, NMISS, ’ SUMWT = ’,
     &              SUMWT
      END

Output
                 XMEAN
    1       2       3       4       5
1.000   5.006   3.428   1.462   0.246

                      COV
         1        2        3        4        5
1   0.0000   0.0000   0.0000   0.0000   0.0000
2   0.0000   0.1242   0.0992   0.0164   0.0103
3   0.0000   0.0992   0.1437   0.0117   0.0093
4   0.0000   0.0164   0.0117   0.0302   0.0061
5   0.0000   0.0103   0.0093   0.0061   0.0111

INCD
  50
NOBS =   50 NMISS =   0 SUMWT =     50.0000

COVPL/DCOVPL (Single/Double precision)
Compute a pooled variance-covariance matrix from the observations.

Usage
CALL COVPL (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
            NGROUP, IGRP, NI, SWT, XMEAN, LDXMEA, COV,
            LDCOV, NRMISS)

Arguments

IDO — Processing option.   (Input)
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IDO Action
0 This is the only invocation of COVPL and all the data are input at once.
1 This is the first invocation of COVPL with this data, and additional calls

will be made. Initialization of program variables and updating for the
NROW observations are performed.

2 This is an intermediate invocation of COVPL, and updating for the NROW
observations is performed.

3 All statistics are updated for the NROW observations. The covariance
matrix is computed.

NROW — The absolute value of NROW is the number of rows of X that contain an
observation.   (Input)
NROW may be positive, zero, or negative. Negative NROW means that the −NROW
rows of data are to be deleted from (most aspects of) the analysis. This should be
done only if IDO is 2 or 3 and the wrap-up computations for COV have not been
performed. When a negative value is input for NROW; it is assumed that each of
the −NROW rows of X has been input (with positive NROW ) in previous invocations
of CORVC. Use of negative values of NROW should be made with care since it is
possible that a constant variable in the remaining data will not be recognized as
such.

NVAR — Number of variables to be used in computing the covariance matrix.
(Input)
The weight, frequency or group variables, if used, are not counted in NVAR.

NCOL — Number of columns in matrix X.

X — |NROW| by NVAR + m matrix containing the data.   (Input)
The number of columns of X that are used is NVAR + m, where m is 0, 1, 2, or 3
depending upon whether any columns in X contain frequencies, weights or group
numbers.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IND — Vector of length NVAR containing the column numbers in X to be used in
computing the covariance matrices.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column
number IFRQ of X contains the frequencies. All frequencies should be integer
values. The NINT (nearest integer) function is used to obtain integer frequencies
if this is not the case.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X
contains the weights. Negative weights are not allowed.

NGROUP — Number of groups in the data.   (Input)

IGRP — Column of X giving the group numbers.   (Input)
If IGRP = 0, one group is assumed. If IGRP > 0, then column number IGRP of X
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contains the group number for the observation. Group numbers must be numbered
1, 2, …, NGROUP. The NINT function is used to get integer values for the group
numbers.

NI — Vector of length NGROUP containing the numbers of observations in the
groups.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
The i-th element of NI contains the number of observations in group i.

SWT — Vector of length NGROUP containing the sum of the weights times the
frequencies in the groups.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

XMEAN — NGROUP by NVAR matrix.   (Output, if IDO = 0 or 1; input/output, if
IDO = 2 or 3)
The i-th row of XMEAN contains the group i variable means.

LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NVAR by NVAR matrix of covariances.   (Output, if IDO = 0 or 1; input/
output, if IDO = 2 or 3)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement of the calling program.   (Input)

NRMISS — Number of rows of data encountered in calls to COVPL containing
missing values (NaN) for any of the variables used.   (Output, if IDO = 0 or 1;
input/ output, if IDO = 2 or 3)

Comments

1. Automatic workspace usage is

COVPL 3 * NVAR + NVAR * NGROUP units, or
DCOVPL 6 * NVAR + 2 * NVAR * NGROUP units.

Workspace may be explicitly provided, if desired, by use of
C2VPL/DC2VPL. The reference is

CALL C2VPL (IDO, NROW, NVAR, NCOL, X, LDX, IND,
            IFRQ, IWT, NGROUP, IGRP, NI, SWT, XMEAN,
            LDXMEA, COV, LDCOV, NRMISS, D, OB, XVAL,
            DIF)

The additional arguments are as follows:

D — Real work vector of length NVAR.

OB — Real work vector of length NVAR.

XVAL — Real work vector of length NVAR * NGROUP.

DIF — Real work vector of length NVAR.

2. Informational error
Type Code
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   3    1 The group number is not between 1 and NGROUP. The
observation is ignored.

Algorithm

Routine COVPL computes the pooled variance-covariance matrix from a matrix of
observations. The within-groups means are also computed. Listwise deletion of
missing values is assumed so that all observations used are “complete”; in any
row of X, if an element in the “list” IND, IGRP, IFRQ or IWT is missing, then the
row is not used. Routine COVPL should be used whenever one suspects that the
data has been sampled from populations with different means but identical
variance-covariance matrices. If these assumptions cannot be made, a different
variance-covariance matrix should be estimated within each group.

When IDO = 0, the same computations occur as if COVPL were consecutively
called with IDO equal to 1, 2, and 3. For brevity, the following discusses the
computations with IDO > 0.

When IDO = 1 variables are initialized, workspace is allocated, and input
variables are checked for errors.

If NROW ≠ 0 (for any value of IDO), the group observation totals, TL, for

i = 1,…, g, where g is the number of groups, are updated for the |NROW|
observations in X. The group totals are computed as: X

T f xi ij ij ij
j

= ∑ω

where ωLM is the observation weight, xLM is the j-th observation in the i-th group,
and fLM is the observation frequency.

Modified Givens rotations (see routines SROTM and SROTMG in the IMSL
MATH/LIBRARY) are used in computing the Cholesky decomposition of the
pooled sums of squares and crossproducts matrix. The interested reader is
referred to Golub and Van Loan (1983) for details.

The group means and the pooled sample covariance matrix S are computed from
the intermediate results when IDO = 3. These quantities are defined by
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Occasionally, the Cholesky factorization, such that S = U7U where U is lower
triangular of the pooled sample cross-products matrix, may be desired. U may be
computed from the output array COV, and the workspace array D returned in calls
to C2VPL. The Cholesky factor U can be computed prior to calling C2VPL with
IDO = 3 by multiplying the elements in the i-th row of COV by
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D f gi ij ij/ .∑ −

If subsequent calls to C2VPL are to be made, COV must not be modified in
computing U.

Example

The following example computes a pooled variance-covariance matrix for the
Fisher iris data (see routine GDATA, page 1302). The first column in this data set
is the group indicator. To illustrate the use of the IDO argument, multiple calls to
COVPL are made.

C                                 Specifications
      INTEGER    IFRQ, IGRP, IWT, LDCOV, LDX, LDXMEA, NCOL, NGROUP,
     &           NROW, NVAR
      PARAMETER  (IFRQ=0, IGRP=1, IWT=0, LDX=150, NCOL=5, NGROUP=3,
     &           NROW=1, NVAR=4, LDCOV=NVAR, LDXMEA=NGROUP)
C
      INTEGER    I, IDO, IND(4), NI(NGROUP), NOBS, NOUT, NRMISS, NV
      REAL       COV(LDCOV,LDCOV), SWT(NGROUP), X(LDX,5),
     &           XMEAN(LDXMEA,NVAR)
      EXTERNAL   COVPL, GDATA, UMACH, WRRRN
C
      DATA IND/2, 3, 4, 5/
C
      CALL GDATA (3, 0, NOBS, NV, X, LDX, 5)
C
      IDO = 1
      CALL COVPL (IDO, 0, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, NGROUP,
     &            IGRP, NI, SWT, XMEAN, LDXMEA, COV, LDCOV, NRMISS)
C                                 Add the observations
      IDO = 2
      DO 10  I=1, NOBS
         CALL COVPL (IDO, NROW, NVAR, NCOL, X(I,1), LDX, IND, IFRQ,
     &               IWT, NGROUP, IGRP, NI, SWT, XMEAN, LDXMEA, COV,
     &               LDCOV, NRMISS)
   10 CONTINUE
C                                 Summarize the statistics
      IDO = 3
      CALL COVPL (IDO, 0, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, NGROUP,
     &            IGRP, NI, SWT, XMEAN, LDXMEA, COV, LDCOV, NRMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ NRMISS = ’, NRMISS
      CALL WRRRN (’XMEAN’, NGROUP, NVAR, XMEAN, LDXMEA, 0)
      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 0)
      END

Output
NRMISS = 0
              XMEAN
        1       2       3       4
1   5.006   3.428   1.462   0.246
2   5.936   2.770   4.260   1.326
3   6.588   2.974   5.552   2.026
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                 COV
         1        2        3        4
1   0.2650   0.0927   0.1675   0.0384
2   0.0927   0.1154   0.0552   0.0327
3   0.1675   0.0552   0.1852   0.0427
4   0.0384   0.0327   0.0427   0.0419

PCORR/DPCORR (Single/Double precision)
Compute partial correlations or covariances from the covariance or correlation
matrix.

Usage
CALL PCORR (NVAR, COR, LDCOR, NDF, ICOR, NIND, IND, NDEP,
            INDDEP, PCOR, LDPCOR, NDFP, PVAL, LDPVAL)

Arguments

NVAR — Number of variables in COR.   (Input)

COR — NVAR by NVAR correlation or covariance matrix.   (Input)

LDCOR — Leading dimension of COR exactly as specified in the dimension
statement in the calling program.   (Input)

NDF — Number of degrees of freedom in COR.   (Input)
If the number of degrees of freedom in COR varies from element to element, then
a conservative choice for NDF is the minimum degrees of freedom for all elements
in COR. If NDF is not known, then NDF ≤ 0 defaults to NDF = 100.

ICOR — Partial correlations/covariances option.   (Input)

ICOR Action
1 Partial correlations are desired.
0 Partial covariances are desired.

Partial correlations can be computed when either a correlation or a covariance
matrix in input in COR. To compute partial covariances, COR must contain a
covariance matrix.

NIND — Number of “independent” variables to to be used in the partial
correlations.   (Input)
If NIND is −1, the independent variables are taken to be the NVAR − NDEP
variables not in INDDEP. If NIND is zero, no independent variables are used, and
p-values for the input dependent (see INDDEP) correlations (or covariances) are
computed. The partial correlations (covariances) are the correlations
(covariances) between the dependent variables after removing the linear effect of
the independent variables. NIND and NDEP cannot simultaneously be −1.

IND — Vector of length NIND containing the column (or row) numbers in COR of
the independent variables.   (Input, if NIND > 0; not referenced otherwise)
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If NIND is negative or zero, IND is not used and can be dimensioned of length 1 in
the calling program.

NDEP — Number of variables for which partial correlations (covariances) are
desired (the number of “dependent” variables).   (Input)
If NDEP is −1, the dependent variables are taken as the NVAR − NIND variables not
in IND. NIND and NDEP cannot simultaneously be −1.

INDDEP — Vector of length NDEP containing the indices of the dependent
variables.   (Input, if NDEP > 0; not referenced otherwise)
If NDEP is 1, INDDEP is not used and can be dimensioned of length 1 in the
calling program.

PCOR — Matrix of size m by m containing the partial correlations or partial
covariances.   (Output)
m = NDEP if NDEP > 0, and m = NVAR − NIND otherwise. If NIND = 0, then COR
and PCOR can share the same memory location.

LDPCOR — Leading dimension of PCOR exactly as specified in the dimension
statement of the calling program.   (Input)

NDFP — Number of degrees of freedom in the test that the partial correlation
(covariance) is zero.   (Output)
This will usually be NDF − NIND but will be greater than this value if the variables
in IND are computationally linearly related.

PVAL — Matrix of size m by m (see PCOR) containing the p-values for testing the
null hypothesis that the associated partial correlation (covariance) is zero.
(Output)
The p-values reported in PVAL assume that the observations from which COR was
computed follow a multivariate normal distribution and that each element in COR

has NDF degrees of freedom.

LDPVAL — Leading dimension of PVAL exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

PCORR n * (m + n) + 2 * NVAR units, or
DPCORR 2 * n * (m + n) + 2 * NVAR.

Here, m = NDEP if NDEP > 0 and m = NVAR − NIND otherwise; n = NIND
if NIND > 0 and n = NVAR − NDEP otherwise. Workspace may be
explicitly provided, if desired, by use of P2ORR/DP2ORR. The reference
is

CALL P2ORR (NVAR, COR, LDCOR, NDF, ICOR, NIND, IND,
            NDEP, INDDEP, PCOR, LDPCOR, NDFP, PVAL,
            LDPVAL, SXY, SXX, LDSXX, IY, IX)

The additional arguments are as follows:
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SXY — Work vector of length m * n.

SXX — Work vector of length n2.

LDSXX — The value of n.

IY — Work vector of length NVAR.

IX — Work vector of length NVAR.

2. Informational errors
Type Code
   4    1 COR is incorrectly specified for two independent

variables.
   4    2 COR is incorrectly specified for an independent

variable and a dependent variable.
   4    3 COR is incorrectly specified for two dependent

variables.
   4    4 A computed partial correlation is greater than one.

Algorithm

Routine PCORR computes partial correlations or partial covariances from an input
correlation or covariance matrix. If the “independent” variables (the linear
“effect” of the independent variables is removed in computing the partial
correlations/covariances) are linearly related to one another, PCORR detects the
linearity and eliminates one or more of the independent variables from the list of
independent variables. The number of variables eliminated, if any, can be
determined from argument NDFP.

Given a correlation or covariance matrix Σ partitioned as

11 12

21 22

∑ ∑
∑ ∑

�
��

�
��

Routine PCORR computes the partial covariances (of the standardized variables if 
Σ is a correlation matrix) as

22 1 22 21 11
1

12= − − ∑∑∑∑∑
If partial correlations are desired, these are computed as

P22 1

1

2
22 1

1

2= ∑ ∑ ∑
− −

diag diag22 1 22 14 9 4 9
where “diag” denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal. If Σ11is singular, then as many variables as
required are deleted from Σ11(and Σ12) in order to eliminate the linear
dependency(ies). The computations then proceed as above.
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The p-value for a partial correlation (covariance) tests the null hypothesis
H0 : ρLM_� = 0 (H0 : σLM_� = 0), where ρLM_�(σLM_�) is the (i, j) element in matrix

P22_1(Σ22|1). The p-values are returned in PVAL. If NDF is not known, the p-values
are computed as if each element in COR had 100 degrees of freedom. When NDF is
not known, the resulting p-values may may be useful for comparison, but they
should not be used as an approximation to the actual probabilities.

Example

The following example computes partial correlations from a 9 variable
correlation matrix originally given by Emmett (1949). The partial correlations
between the remaining variables, after adjusting for variables 1, 3, and 9, are
computed. Note in the output that the row and column labels are column numbers,
not variable numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7,
and 8, respectively.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    ICOR, LDCOR, LDP, LDPCOR, NDEP, NDF, NIND, NVAR
      PARAMETER  (ICOR=1, LDCOR=9, LDP=6, LDPCOR=6, NDEP=-1, NDF=30,
     &           NIND=3, NVAR=9)
C
      INTEGER    IND(NIND), INDDEP(1), NDFP, NOUT
      REAL       COR(LDCOR,NVAR), P(LDP,LDP), PCOR(LDPCOR,LDPCOR)
      EXTERNAL   PCORR, UMACH, WRRRN
C
      DATA IND/1, 3, 9/
C
      DATA COR/1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,
     &     0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547,
     &     0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254,
     &     0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691,
     &     0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691,
     &     1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254,
     &     0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547,
     &     0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434,
     &     0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
     &     0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470,
     &     1.000/
C
      CALL PCORR (NVAR, COR, LDCOR, NDF, ICOR, NIND, IND, NDEP,
     &            INDDEP, PCOR, LDPCOR, NDFP, P, LDP)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’The degrees of freedom are ’, NDFP
      CALL WRRRN (’PCOR’, NVAR-NIND, NVAR-NIND, PCOR, LDPCOR, 0)
      CALL WRRRN (’P’, NVAR-NIND, NVAR-NIND, P, LDP, 0)
C
      END

Output
The degrees of freedom are   27
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                      PCOR
        1       2       3       4       5       6
1   1.000   0.224   0.194   0.211   0.125  -0.061
3   0.194   0.605   1.000   0.598   0.123  -0.077
4   0.211   0.720   0.598   1.000   0.035   0.086
5   0.125   0.092   0.123   0.035   1.000   0.062
6  -0.061   0.025  -0.077   0.086   0.062   1.000

                           P
         1        2        3        4        5        6
1   0.0000   0.2525   0.3232   0.2801   0.5249   0.7576
2   0.2525   0.0000   0.0006   0.0000   0.6417   0.9000
3   0.3232   0.0006   0.0000   0.0007   0.5328   0.6982
4   0.2801   0.0000   0.0007   0.0000   0.8602   0.6650
5   0.5249   0.6417   0.5328   0.8602   0.0000   0.7532
6   0.7576   0.9000   0.6982   0.6650   0.7532   0.0000

RBCOV/DRBCOV (Single/Double precision)
Compute a robust estimate of a covariance matrix and mean vector.

Usage
CALL RBCOV (WGHTS, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ,
            IWT, NGROUP, IGRP, INIT, IMTH, PERCNT, MAXIT,
            EPS, NI, SWT, XMEAN, LDXMEA, COV, LDCOV, CONST,
            NRMISS)

Arguments

WGHTS — User-supplied SUBROUTINE to compute observation weights. The
form is CALL WGHTS (R, NVAR, PERCNT, UU, WW, UP), where

R – Distance of observation from the mean vector at which weights are
to be computed.   (Input)
UU, WW, and UP are to be computed at distance R.
NVAR – Number of variables.   (Input)
PERCNT – Percentage of outliers expected.   (Input)
UU – Value of covariance matrix weighting function at distance R.
(Output)
WW – Value of mean vector weighting function at distance R.   (Output)
UP – Value of first derivative of UU with respect to R.   (Output)

WGHTS must be declared EXTERNAL in the calling program. A standard weighting
subroutine is provided as routine R5COV/DR5COV. See the “Algorithm” section for
further description of the subroutine WGHTS.

NOBS — Number of observations.   (Input)

NVAR — Number of variables in the covariance matrix.   (Input)

NCOL — Number of columns in matrix X.   (Input)
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X — NOBS by NVAR + m matrix containing the data.   (Input)
m is 0, 1, 2, or 3 depending upon whether any columns in X contain frequencies,
weights or group numbers.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IND — Vector of length NVAR containing the column numbers in X for which
covariances are desired.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column
number IFRQ of X contains the frequencies. All frequencies should be positive
integer values. The NINT (nearest integer) function is used to obtain integer
frequencies from X.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X
contains the positive weights. Negative weights are not allowed. Note that
weights in column IWT are the proportionality constants used in computing a
covariance matrix from observations with proportional covariance matrices. The
weights used for robust estimation are computed in the estimation procedure.

NGROUP — Number of groups (populations) in the data.   (Input)
If the data comes from a single population, NGROUP = 1.

IGRP — Column of X giving the group numbers.   (Input)
If IGRP = 0, one group is assumed. If IGRP > 0, then column number IGRP of X
contains the group number for the observation. Group numbers must be
1, 2, …, NGROUP. The NINT intrinsic function is used to obtain integer group
numbers

INIT — Estimate initialization option.   (Input)

INIT Method
0 Initial estimates are obtained as the usual estimate of a mean vector and

of a covariance matrix.
1 Initial estimates based upon the median and interquartile range are used.
2 User input initial estimates are used.

IMTH — Option parameter giving the algorithm to be used in computing the
estimates.   (Input)

IMTH Method
0 Huber’s conjugate-gradient algorithm is used.
1 Stahel’s algorithm is used.

PERCNT — Percentage of gross errors expected in the data.   (Input)
PERCNT is in the range from zero to 100 and contains the percentage of outliers
expected in the data. PERCNT is usually only used if IMSL supplied weighting
subroutine R5COV/DR5COV is used as the subroutine WGHTS.
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MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is typical.

EPS — Convergence criterion.   (Input)
When the maximum absolute change in a location or covariance estimate is less
than EPS, convergence is assumed.

NI — Vector of length NGROUP containing the number of observations in each
group.   (Output)

SWT — Vector of length NGROUP containing the sum of the weights times the
frequencies for the observations in each group.   (Output)

XMEAN — NGROUP by NVAR matrix containing the estimates of the location
parameters in each group.   (Output, if INIT ≠ 2; input/output, otherwise)
Row i of XMEAN contains the location estimates for the variables in group i. The
columns of XMEAN are in the order specified by IND.

LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NVAR by NVAR matrix of estimated covariances.   (Output, if INIT ≠ 2;
input/output, otherwise)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement of the calling program.   (Input)

CONST — Vector of length 4 containing some constants computed by RBCOV.
(Output)
CONST(1) contains the constant beta (see the “Algorithm” section) used to ensure
that the estimated covariance matrix has unbiased expectation (for given mean
vector) for a multivariate normal density. CONST(2), CONST(3), and CONST(4) are
the parameters a, b, and c, respectively, in IMSL-supplied subroutine
R5COV/DR5COV. They are set to NaN (not a number) if R5COV is not used.

NRMISS — Number of rows of data in X containing any missing values (NaN,
not a number) in the columns IND, IWT, IFRQ, or IGRP.   (Output)
Rows of X contributing to NRMISS are ignored in all other computations.

Comments

1. Automatic workspace usage is

RBCOV (4 + NGROUP) * NVAR + max(m * NVAR, NGROUP) * NVAR+ 2 *
(NGROUP + NOBS) units, or

DRBCOV 2 * (4 + NGROUP ) * NVAR + 2 * max (m * NVAR, NGROUP) *
NVAR + 3 * (NGROUP + NOBS) units.

Here m = 2 if IMTH = 0, and m = 1 otherwise. Workspace may be
explicitly provided, if desired, by use of R2COV/DR2COV. The reference
is
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CALL R2COV (WGHTS, NOBS, NVAR, NCOL, X, LDX, IND,
            IFRQ, IWT, IMTH, MAXIT, EPS, XMEAN, COV,
            LDCOV, NRMISS, D, U, GXB, OB, OB1, OB2,
            SWW, WK, IRN, ISF)

The additional arguments are as follows:

D — Work vector of length NVAR.

U — Work vector of length max(m * NVAR, NGROUP) * NVAR; where
m = 2 if IMTH = 0, and m = 1 otherwise.

GXB — Work vector of length NVAR * NGROUP.

OB — Work vector of length NVAR.

OB1 — Work vector of length NVAR.

OB2 — Work vector of length NVAR.

SWW — Work vector of length NGROUP.

WK — Work vector of length NOBS.

IRN — Work vector of length NOBS.

ISF — Work vector of length NGROUP.

2. Informational errors
Type Code
   4    1 The derivative of UU with respect R is not correctly

specified.

Algorithm

Routine RBCOV computes robust M-estimates of the mean and covariance matrix
from a matrix of observations. A pooled estimate of the covariance matrix is
computed when multiple groups are present in the input data. M-estimate weights
are obtained from a user specified weighting subroutine. In addition, user
specified observation weights and frequencies may be given for each row in X.
Listwise deletion of missing values is assumed so that all observations used are
“complete.” In any row of X, if any column in the list determined by IND, IFRQ,
IWT, or IGRP is missing, the row is not used.

Let f(x; µL, Σ) denote the density of an observation p-vector x in population

(group) i with mean vector µL, for groups i = 1, …, τ. Let the covariance matrix Σ

be such that Σ = R7�R. If

y R xT
i= −− ( )µ

then

g y f R yT
i i0 5 = +Σ Σ1 2/ ( ; , )µ µ

It is assumed that g(y) is a spherically symmetric density in p-dimensions.
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In RBCOV, Σ and µL are estimated as the solutions

( $ , $ )∑ µ i

of the estimation equations
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where i indexes the τ groups, nL is the number of observations in group i, fLM is the

frequency for the j-th observation in group i, ωLM is the observation weight

specified in column IWT of X, IS is a p × p identity matrix,

r y yij ij
T

ij=

w(r) and u(r) are weighting functions specified by the user through subroutine
WGHTS, and where β is a constant computed by the program to make the expected

weighted Mahalanobis distance (y7 y) equal the expected Mahalanobis distance
from a multivariate normal distribution (see Marazzi 1985). The constant β is
described more fully below.

Routine RBCOV uses one of two algorithms for solving the estimation equations.
The first algorithm is discussed in detail in Huber (1981) and is a variant of the
conjugate gradient method. The second algorithm is due to Stahel (1981) and is
discussed in detail by Marazzi (1985). In both algorithms, correction vectors TNL
for the group i means and correction matrix WN = IS + UN for the Cholesky

factorization of Σ are found such that the updated mean vectors are given by

$ $, ,µ µi k i k kiT+ = +1

and the updated matrix R is given

$ $R W Rk K k+ =1

where k is the iteration number and

$∑ =k k
T

kR R

When all elements of UN and TNL are less that ε = EPS, convergence is assumed.

Three methods for obtaining initial estimates are allowed. In the first method, the
sample weighted estimate of Σ is computed (using routine COVPL, page 322). In
the second method, estimates based upon the median and the interquartile range
are used. Finally, in the last method, the user inputs initial estimates.
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Routine RBCOV computes estimates for any weighting functions u and w. The

constant β is chosen such that E(u(r)r2) = pβ where the expectation is with respect
to a standard p-variate multivariate normal distribution. This yields estimates with
the correct expectation for the multivariate normal distribution (for given mean
vector). The expectation is computed via integration of estimated spline
functions. 200 knots are used on an equally spaced grid from 0.0 to the 99.999
percentile of a

χ p
2

distribution. An error estimate is computed based upon 100 of these knots. If the
estimated relative error is greater than 0.001, a warning message is issued. If β is
not computed accurately (i.e., if the warning message is issued), the computed
estimates are still optimal, but the scale of the estimated covariance matrix may
need to be multiplied by a constant in order for

$∑
to have the correct multivariate normal covariance expectation.

The Weighting Subroutine

The name of the weighting subroutine (WGHTS) is input into RBCOV. User-
supplied weights may be used. Alternatively, the user may input the name of the
IMSL-supplied subroutine, R5COV in single precision, or DR5COV in double
precision. The weights computed by this subroutine are the “minimax” weights of
Huber (1981, pages 231−235), with PERCNT expected gross errors. Huber’s
(1981) weighting equations are given by:
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The constants a, b, and c depend upon the number of variables p and upon the
expected percentage of gross errors. They are computed by R5COV as the zeroes
of equations given by Huber and are returned in the array CONST from RBCOV.

Example

The following example computes estimates of the mean vectors and the pooled
covariance matrix for the Fisher iris data (routine GDATA, page 1302, provides
these data with the group indicator in the first column.). For comparison, these
estimates are first computed via routine COVPL (page 322). Routine RBCOV with
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PERCNT = 0.02 is then used to compute the robust estimates. As can be seen from
the output, the resulting estimates are quite similar.

To study the behavior of RBCOV, three observations are made into outliers, and,
again, both COVPL and RBCOV are used to compute estimates. When outliers are
present, COVPL gives estimates that have clearly been adversely affected, while
the estimates produced by RBCOV are close to the estimates produced when no
outliers are present.

In both calls to RBCOV, the usual pooled estimates were used for the initial
estimates, and IMSL supplied routine R5COV with argument PERCNT = 0.02 was
used. Because neither NOBS or PERCNT changed in the two calls, the values
returned in CONST are identical. If the percentage of gross errors expected in the
data, PERCNT, is not known, a reasonable strategy is to use a value of PERCNT
that is such that larger values do not result in significant changes in the estimates.

      INTEGER    IFRQ, IGRP, IMTH, INIT, IPRINT, IWT, LDCOV, LDX,
     &           LDXMEA, MAXIT, NCOL, NGROUP, NOBS, NV, NVAR
      REAL       EPS, PERCNT
      PARAMETER  (EPS=1.0E-4, IFRQ=0, IGRP=1, IMTH=0, INIT=0,
     &           IPRINT=0, IWT=0, MAXIT=30, NCOL=5, NGROUP=3,
     &           NOBS=150, NV=5, NVAR=4, PERCNT=2.0, LDCOV=NVAR,
     &           LDX=NOBS, LDXMEA=NGROUP)
C
      INTEGER    IND(NVAR), NI(NGROUP), NOB1, NOUT, NRMISS, NV1
      REAL       CONST(4), COV(LDCOV,NVAR), R5COV, SWT(NGROUP),
     &           X(LDX,NCOL), XMEAN(NGROUP,NVAR)
      EXTERNAL   GDATA, COVPL, R5COV, RBCOV, UMACH, WRIRN, WRRRN
C
      DATA IND/2, 3, 4, 5/
C
      CALL GDATA (3, IPRINT, NOB1, NV1, X, NOBS, NV)
C
      CALL COVPL (0, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
     &            NGROUP, IGRP, NI, SWT, XMEAN, LDXMEA, COV,
     &            LDCOV, NRMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’COVPL estimates with no outliers’
      CALL WRRRN (’XMEAN’, NGROUP, NVAR, XMEAN, LDXMEA, 0)
      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 1)
C
      CALL RBCOV (R5COV, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
     &            NGROUP, IGRP, INIT, IMTH, PERCNT, MAXIT, EPS, NI,
     &            SWT, XMEAN, LDXMEA, COV, LDCOV, CONST, NRMISS)
C
      WRITE (NOUT,*) ’RBCOV estimates with no outliers’
      CALL WRRRN (’XMEAN’, NGROUP, NVAR, XMEAN, LDXMEA, 0)
      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 1)
      CALL WRRRN (’SWT’, 1, NGROUP, SWT, 1, 0)
      CALL WRIRN (’NI’, 1, NGROUP, NI, 1, 0)
      CALL WRRRN (’CONST’, 1, 4, CONST, 1, 0)
C
      X(1,2)   = 100.0
      X(5,5)   = 100.0
      X(100,3) = -100.0
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C
      CALL COVPL (0, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
     &            NGROUP, IGRP, NI, SWT, XMEAN, LDXMEA, COV,
     &            LDCOV, NRMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’COVPL estimates with three outliers’
      CALL WRRRN (’XMEAN’, NGROUP, NVAR, XMEAN, LDXMEA, 0)
      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 1)
C
      CALL RBCOV (R5COV, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
     &            NGROUP, IGRP, INIT, IMTH, PERCNT, MAXIT, EPS, NI,
     &            SWT, XMEAN, LDXMEA, COV, LDCOV, CONST, NRMISS)
C
      WRITE (NOUT,*) ’RBCOV estimates with three outliers’
      CALL WRRRN (’XMEAN’, NGROUP, NVAR, XMEAN, LDXMEA, 0)
      CALL WRRRN (’COV’, NVAR, NVAR, COV, LDCOV, 1)
      CALL WRRRN (’SWT’, 1, NGROUP, SWT, 1, 0)
      CALL WRIRN (’NI’, 1, NGROUP, NI, 1, 0)
      CALL WRRRN (’CONST’, 1, 4, CONST, 1, 0)
C
      END

Output
COVPL estimates with no outliers

               XMEAN
         1       2       3       4
 1   5.006   3.428   1.462   0.246
 2   5.936   2.770   4.260   1.326
 3   6.588   2.974   5.552   2.026

                  COV
          1        2        3        4
 1   0.2650   0.0927   0.1675   0.0384
 2            0.1154   0.0552   0.0327
 3                     0.1852   0.0427
 4                              0.0419

RBCOV estimates with no outliers

            XMEAN
      1       2       3       4
 1   4.989   3.411   1.465   0.244
 2   5.951   2.784   4.265   1.324
 3   6.529   2.970   5.489   2.026

                  COV
          1        2        3        4
 1   0.2474   0.0872   0.1535   0.0360
 2            0.1073   0.0538   0.0322
 3                     0.1705   0.0412
 4                              0.0401

         SWT
    1       2       3
50.00   50.00   50.00
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      NI
  1    2    3
 50   50   50

              CONST
    1       2       3       4
0.972   0.000   3.093   1.717

COVPL estimates with three outliers

              XMEAN
        1       2       3       4
1   6.904   3.428   1.462   2.242
2   5.936   0.714   4.260   1.326
3   6.588   2.974   5.552   2.026

               COV
        1       2       3       4
1   60.43    0.30    0.13   -1.28
2           70.53    0.17    0.17
3                    0.19    0.00
4                           66.38

RBCOV estimates with three outliers

               XMEAN
        1       2       3       4
1   4.999   3.405   1.468   0.253
2   5.959   2.772   4.271   1.324
3   6.528   2.970   5.489   2.026

                 COV
         1        2        3        4
1   0.2567   0.0885   0.1553   0.0361
2            0.1133   0.0546   0.0324
3                     0.1723   0.0412
4                              0.0424

          SWT
    1       2       3
50.00   50.00   50.00

    NI
 1    2    3
50   50   50

            CONST
    1       2       3       4
0.972   0.000   3.093   1.717

CTRHO/DCTRHO (Single/Double precision)
Estimate the bivariate normal correlation coefficient using a contingency table.
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Usage
CALL CTRHO (NROW, NCOL, TABLE, LDTABL, EPS, RHO, VAR,
            PLTMY, PROB, LDPROB, DERIV, LDDERI)

Arguments

NROW — Number of rows in the table.   (Input)

NCOL — Number of columns in the table.   (Input)

TABLE — NROW by NCOL contingency table containing the observed counts.
(Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement of the calling program.   (Input)

EPS — Convergence criterion in the iterative estimation.   (Input)
RHO will be within EPS of the maximum likelihood estimate unless roundoff
errors prevent this precision. EPS must be less than 2. EPS less than or equal to
zero defaults to 0.00001.

RHO — Maximum likelihood estimate of the correlation coefficient.   (Output)

VAR — Estimated asymptotic variance of RHO.   (Output)

PLTMY — Vector of length NROW + NCOL − 2 containing the points of polytomy
of the marginal rows and columns of TABLE.   (Output)
The first NROW − 1 elements of PLTMY are the points of polytomy for the rows
while the last NCOL − 1 elements are the points of polytomy for the columns.

PROB — NROW by NCOL matrix containing the bivariate normal probabilities
corresponding to RHO and PLTMY.   (Output)

LDPROB — Leading dimension of PROB exactly as specified in the dimension
statement in the calling program.   (Input)

DERIV — NROW by NCOL matrix containing the partial derivatives of the
bivariate normal probability with respect to RHO.   (Output)

LDDERI — Leading dimension of DERIV exactly as specified in the dimension
statement in the calling program.   (Input)

Algorithm

Routine CTRHO computes the maximum likelihood estimate and the asymptotic
variance for the correlation coefficient of a bivariate normal population from a
two-way contingency table. The maximum likelihood estimates are conditional
upon the points of polytomy in the marginal distribution. The resulting estimate
for the correlation coefficient should be very close to the unconditional estimate
(see Martinson and Hamdan 1972).

The points of polytomy for the row and column marginal probabilities are first
computed. If the i-th cumulative column marginal is denoted by pFL, then the

point of polytomy xL is given as Φ-1(pFL), where Φ denotes the cumulative
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normal distribution. Let αL, i = 0, …, r denote these points for the row marginal

cumulative probabilities where r = NROW, α0 = −∞, and αU = ∞. Similarly, let βM, j
= 0, …, c denote the points of polytomy for the columns where c = NCOL. Then,
the probability of the (i, j) cell in the table, pLM, is defined as

p X Yij i i j j= < < < <− −Pr( , )α α β β1 1

where X and Y are the bivariate random variables. Maximum likelihood estimates
for the correlation coefficient are computed based upon the bivariate normal
density. The likelihood is specified by the multinomial distribution of the table
using probabilities pLM.

Routine CTRHO assumes that the row random variable decreases with increasing
row number while the column variable increases with the column number. If this
is not the case, the sign of the estimated correlation coefficient may need to be
changed.

Example

The data are taken from Martinson and Hamdan (1972), who attribute it to Karl
Pearson. The row variable is head breadth (in millimeters) for a human male
while the column variable is the head breadth of his sister. Head breadth increases
across the columns and decreases down the row. The row and column variables
have been categorized into one of three intervals. The original table is as follows:

1.0 36.5 77.5

52.5 340.5 143.5

40.5 58.0 9.0

Note that routine CTRHO can accept other than integer counts. It is not clear from
Martinson and Hamdan (1972) how the non-integral counts arise in the table here.
The correlation is estimated to be 0.5502.

      INTEGER    LDDERI, LDPROB, LDTABL, NCOL, NROW
      PARAMETER  (LDDERI=3, LDPROB=3, LDTABL=3, NCOL=3, NROW=3)
C
      INTEGER    NOUT
      REAL       DERIV(LDDERI,NCOL), PLTMY(NROW+NCOL-2),
     &           PROB(LDPROB,NCOL), RHO, TABLE(LDTABL,NCOL), TOL, VAR
      EXTERNAL   CTRHO, UMACH, WRRRN
C
      DATA TABLE/1.0, 52.5, 40.5, 36.5, 340.5, 58.0, 77.5, 143.5, 9.0/
C
      TOL = 0.00001
C
      CALL CTRHO (NROW, NCOL, TABLE, LDTABL, TOL, RHO, VAR, PLTMY,
     &            PROB, LDPROB, DERIV, LDDERI)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’RHO =’, RHO, ’    VAR =’, VAR
      CALL WRRRN (’PLTMY’, 1, NROW+NCOL-2, PLTMY, 1, 0)
      CALL WRRRN (’PROB’, NROW, NCOL, PROB, LDPROB, 0)
      CALL WRRRN (’DERIV’, NROW, NCOL, DERIV, LDDERI, 0)
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END

Output
RHO =   0.549125    VAR =    1.33199E-03

              PLTMY
     1       2       3       4
-1.073   1.030  -1.156   0.516

            PROB
         1        2        3
1   0.0015   0.0517   0.0983
2   0.0700   0.4398   0.1970
3   0.0523   0.0816   0.0077

            DERIV
         1        2        3
1  -0.0134  -0.0984   0.1118
2  -0.0717   0.1388  -0.0672
3   0.0851  -0.0404  -0.0447

TETCC/DTETCC (Single/Double precision)
Categorize bivariate data and compute the tetrachoric correlation coefficient.

Usage
CALL TETCC (IDO, NROW, X, Y, HX, HY, ICOUNT, LDICOU, NR, R,
            RS)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of TETCC, and all the data are input at once in

X and Y.
1 This is the first invocation of TETCC with this data, and additional calls

will be made. Initialization and updating for the data in X and Y are
performed.

2 This is an intermediate invocation of TETCC, and updating for the
observations in X and Y is performed.

3 Updating for the observations in X and Y is performed, and the
tetrachoric correlation coefficient is computed using the values in
ICOUNT.

NROW — The absolute value of NROW is the number of observations currently in
X and Y.   (Input)
NROW may be positive, zero, or negative. Negative NROW means delete the −NROW
observations in X and Y from the analysis. In the usual case, in which all of the
data have already been categorized into counts in ICOUNT, NROW should be set to
0 and IDO set to 3.
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X — Vector of length |NROW| containing the observations on one variable.
(Input)

Y — Vector of length |NROW| containing the observations on the second variable.
(Input)

HX — Constant used to categorize values of X.   (Input)
See description of ICOUNT.

HY — Constant used to categorize values of Y.   (Input)
See description of ICOUNT.

ICOUNT — 2 by 2 matrix containing counts.   (Output, if IDO = 0 or 1;
input/output, if IDO = 2 or 3.)
The elements of ICOUNT are the numbers of observations satisfying the following
relations:
ICOUNT(1, 1) : X(i) < HX and Y(i) < HY
ICOUNT(1, 2) : X(i) < HX and Y(i) ≥ HY
ICOUNT(2, 1) : X(i) ≥ HX and Y(i) < HY
ICOUNT(2, 2) : X(i) ≥ HX and Y(i) ≥ HY

LDICOU — Leading dimension of ICOUNT exactly as specified in the dimension
statement in the calling program.   (Input)

NR — Number of real roots in the interval (−1.0, 1.0) of the seventh-degree
polynomial used to estimate the correlation coefficient.   (Output)

R — Vector of length 7 containing in the first NR positions estimates of the
correlation coefficient.   (Output)

RS — Estimate of the standard error of the estimates of the correlation
coefficient(s).   (Output)

Comments

1. Informational errors
Type Code
   3    1 Fewer than 200 observations are used.
   3    2 The polynomial used to estimate the correlation

coefficient has more than one root in the interval
(−1.0, 1.0). It is probable that the numerical precision
is not good enough to obtain an estimate.

   4    4 The proportion of counts in a row or column is so
close to one that the inverse normal cdf cannot be
computed.

   4    6 The polynomial used to estimate the correlation
coefficient has no roots in the interval (−1.0, 1.0). It is
probable that the numerical precision is not good
enough to obtain an estimate.
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2. If data for X and Y are available, it is better to use the Pearson product
moment correlation coefficient (as computed by routine CORVC, page
314, for example) than to use the tetrachoric correlation coefficient.

3. The tetrachoric correlation coefficient should be considered somewhat
questionable if the sample size is less than 200, if the cutpoints HX and
HY are not close to the medians, or if there are multiple roots of the
estimating equation in the interval (−1.0, 1.0). Also, the tetrachoric
correlation coefficient is a better estimate of the true correlation
coefficient if the true coefficient is large in absolute value.

Algorithm

Routine TETCC computes the tetrachoric correlation coefficient for a bivariate
sample, using either the sample itself or a two by two table of counts of the data.
The tetrachoric correlation coefficient is taken as the solution to the seventh-
degree polynomial obtained from the first seven terms of the expansion given by
Kendall and Stuart (1979, page 326).

The standard error estimate results from an approximate, asymptotic expression
derived under the assumption of bivariate normality with zero correlation. The
zero correlation assumption is not overly restrictive since most uses of this
standard error would be in tests of zero correlation.

If all of the data is available, the Pearson product-moment correlation coefficient
(which can be computed using routine CORVC, page 314) is a much better
estimate for the population correlation coefficient than is the tetrachoric
correlation coefficient. If the counts in ICOUNT are all that is available, call
TETCC with IDO = 3 and NROW = 0.

Example 1

In the first example, the data are counts. The 374 in ICOUNT(1, 1) indicates that
in the raw data there were 374 pairs having both values less than some cutoff
point. The 186 in ICOUNT(1, 2) indicates that there were 186 pairs in the raw data
for which the first value was less than its cutoff value and the second value was
greater than or equal to its cutoff value.

      INTEGER    I, ICOUNT(2,2), IDO, LDICOU, NOUT, NR, NROW
      REAL       HX, HY, R(7), RS, X(1), Y(1)
      EXTERNAL   TETCC, UMACH
C
      CALL UMACH (2, NOUT)
      ICOUNT(1,1) = 374
      ICOUNT(1,2) = 186
      ICOUNT(2,1) = 167
      ICOUNT(2,2) = 203
      IDO         = 3
      NROW        = 0
      LDICOU      = 2
      CALL TETCC (IDO, NROW, X, Y, HX, HY, ICOUNT, LDICOU, NR, R, RS)
      WRITE (NOUT,99998) NR, (R(I),I=1,NR)
99998 FORMAT (’ Number of roots (estimates) is ’, I1, /, ’ ’,
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     &       ’Estimate(s) = ’7F10.5)
      WRITE (NOUT,99999) RS
99999 FORMAT (’ The estimated standard error is ’, F10.5)
      END

Output
Number of roots (estimates) is 1
Estimate(s) =    0.33511
The estimated standard error is    0.05255

Example 2

In this example, some artificial bivariate normal data are generated using IMSL
routine RNMVN (page 1223), and then, the tetrachoric correlation coefficient is
computed. Since the mean (and median) of each variable is 0.0, the cutpoints HX

and HY are set to 0.0.
      INTEGER    I, ICOUNT(2,2), IDO, IRANK, LDICOU, NOUT, NR, NROW
      REAL       COV(2,2), HX, HY, R(7), RS, RSIG(2,2), X(1000),
     &           XY(1000,2), Y(1000)
      EXTERNAL   CHFAC, RNMVN, RNSET, TETCC, UMACH
C
      EQUIVALENCE (X, XY), (Y, XY(1,2))
C
      CALL UMACH (2, NOUT)
C                                 Generate random sample from
C                                 bivariate normal with correlation
C                                 of 0.5.
      COV(1,1) = 1.0
      COV(1,2) = 0.5
      COV(2,1) = 0.5
      COV(2,2) = 1.0
C                                 Obtain the Cholesky factorization.
      CALL CHFAC (2, COV, 2, 0.00001, IRANK, RSIG, 2)
C                                 Initialize seed of random number
C                                 generator.
      CALL RNSET (123457)
      CALL RNMVN (1000, 2, RSIG, 2, XY, 1000)
C
      IDO    = 0
      NROW   = 1000
      LDICOU = 2
      HX     = 0.0
      HY     = 0.0
      CALL TETCC (IDO, NROW, X, Y, HX, HY, ICOUNT, LDICOU, NR, R, RS)
      WRITE (NOUT,99997) ICOUNT
99997 FORMAT (’ ICOUNT = ’, 4I4)
      WRITE (NOUT,99998) NR, (R(I),I=1,NR)
99998 FORMAT (’ Number of roots (estimates) is ’, I1, /, ’ ’,
     &       ’Estimate(s) = ’7F10.5)
      WRITE (NOUT,99999) RS
99999 FORMAT (’ The estimated standard error is ’, F10.5)
      END

Output
ICOUNT =  327 163 172 338
Number of roots (estimates) is 1
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Estimate(s) =    0.49561
The estimated standard error is    0.04968

BSPBS/DBSPBS (Single/Double precision)
Compute the biserial and point-biserial correlation coefficients for a dichotomous
variable and a numerically measurable classification variable.

Usage
CALL BSPBS (K, A, LDA, STAT)

Arguments

K — Number of classes for the measured classification variable.   (Input)

A — 3 by K matrix containing the frequencies and the class marks of the
measured classification variable.   (Input)
The first row of A contains frequencies for the classification variable when the
dichotomous variable takes on one of its values, and the second row of A contains
the frequencies when the dichotomous variable takes on its other value. The third
row of A contains the values (class marks) of the classification variable. The
elements of the first two rows of A must be nonnegative.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

STAT — Vector of length 11 containing various statistics.   (Output)

I STAT(I)
1 Total count of the first value of the dichotomous variable (the sum of the

first row of A)
2 Total count for the second value
3 Total count (sum of STAT(1) and STAT(2))
4 Mean of the measured variable
5 Mean of the measured variable in the first class of the dichotomy
6 Mean of the measured variable in the second class of the dichotomy
7 Standard deviation of the measured variable
8 Biserial correlation coefficient estimate
9 Standard deviation estimate for the biserial correlation coefficient

estimate
10 Asymptotic significance level of the biserial correlation coefficient, that

is, the probability of a more extreme value
11 Point-biserial correlation coefficient estimate

Algorithm

Routine BSPBS computes the biserial and point-biserial correlation coefficient
for a dichotomous variable and a numerically measurable (classification)
variable. Input to BSPBS is a 3 × K array, A. The first two rows of A contain the
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frequencies for the dichotomous variable as measured at each level of the
classification variable. The third row contains the values (class marks) to be used
for the classification variable.

The biserial correlation coefficient should be used in situations where the
dichotomous variable and the classification variable are assumed to come from a
bivariate normal distribution. If this is not the case (i.e., if the bivariate normal
assumption cannot be made), then the point-biserial correlation should be used
(see Kendall and Stuart 1979, page 331).

Let a�1 and a�2 denote the total count in rows one and two of A, respectively, and
let n = a�1+ a�2. Let Φ denote the cumulative normal distribution; let aLM, i = 1, 2,

j = 1, …, K, denote the counts in rows 1 and 2 of A, and let xM denote the values in
row 3 of A. The biserial correlation coefficient rE is computed as follows:
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If the underlying distributions are normal with zero correlation, then z is
asymptotically a standard normal deviate that may be used to test that the
correlation is zero. The p-value for z is reported in STAT(10).

The point-biserial correlation coefficient is computed as
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Example

The example is taken from Kendall and Stuart (1979, page 327). The data involve
the classification of criminals as alcoholic (first row) or nonalcoholic for each
level of a crimetype classification. The severity of the crime decreases with
increasing column number. In the example, the column number is used for the
column score. The biserial correlation of −0.17 indicates that more criminals
responsible for the most serious crimes tend to be alcoholic.

      INTEGER    K, LDA
      PARAMETER  (K=6, LDA=3)
C
      REAL       A(LDA,K), ANORIN, STAT(11)
      CHARACTER  CLABEL(2)*10, RLABEL(11)*10
      EXTERNAL   ANORIN, BSPBS, WRRRL, WRRRL
C
      DATA A/50, 43, 1, 88, 62, 2, 155, 110, 3, 379, 300, 4,
     &     18, 14, 5, 63, 144, 6/
      DATA RLABEL/’Count-1’, ’Count-2’, ’Count’, ’Mean(X)’,
     &     ’Mean(X-1)’, ’Mean(X-2)’, ’S-X’, ’r-b’, ’std(r-b)’,
     &     ’p-value’, ’r-p’/
      DATA CLABEL/’Statistic’, ’    ’/
C
      CALL WRRRN(’A’, 3, K, A, LDA, 0)
C
      CALL BSPBS (K, A, LDA, STAT)
C
      CALL WRRRL (’    ’, 11, 1, STAT, 11, 0, ’(W12.8)’, RLABEL,
     &            CLABEL)
      END

Output
                        A
        1       2       3       4       5       6
1    50.0    88.0   155.0   379.0    18.0    63.0
2    43.0    62.0   110.0   300.0    14.0   144.0
3     1.0     2.0     3.0     4.0     5.0     6.0
Statistic
Count-1          753.00
Count-2          673.00
Count           1426.00
Mean(X)            3.72
Mean(X-1)          3.55
Mean(X-2)          3.91
S-X                1.31
r-b               -0.17
std(r-b)           0.03
p-value            0.00
r-p               -0.14

BSCAT/DBSCAT (Single/Double precision)
Compute the biserial correlation coefficient for a dichotomous variable and a
classification variable.
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Usage
CALL BSCAT (K, A, LDA, STAT)

Arguments

K — Number of classes for the classification variable.   (Input)

A — 2 by K matrix containing the frequencies.   (Input)
The first row of A contains frequencies for the classification variable when the
dichotomous variable takes on one of its values, and the second row of A contains
the frequencies when the dichotomous variable takes on its other value. No
ordering is assumed for the values of the classification variable. The elements of
A must be nonnegative.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

STAT — Vector of length 5 containing various statistics.   (Output)

I STAT(I)
1 Total count of the first value of the dichotomous variable (the sum of the

first row of A)
2 Total count for the second value
3 Total count (sum of STAT(1) and STAT(2))
4 Absolute value of the biserial correlation coefficient
5 Square of the biserial correlation coefficient

Algorithm

Routine BSCAT computes the biserial correlation coefficient for a dichotomous
variable and a classification variable. The data are input in a 2 × k array, A, where
the row indicates the value of the dichotomous variable, and the column indicates
the value of the classification variable. In BSCAT, column scores are computed as

xL = Φ-1(a1L/(a1L + a2L)), and the row score is computed as y = Φ-1(a�1/(a�1 + a�2)),
where a�1 is the sum of the counts in row 1, a�2 is the sum of the counts for row 2,
and Φ denotes the cumulative normal distribution. Let N denote the total number
of observations (the sum of the elements of A). Then, the biserial correlation is
computed as
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An underlying bivariate normal distribution is assumed. The validity of the
estimate depends heavily upon this assumption.
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Example

The example is taken from Kendall and Stuart (1979, page 327). The data involve
the classification of criminals as alcoholic (first row) or nonalcoholic for each
level of a crimetype classification. The severity of the crime decreases with
increasing column number. The absolute value of the biserial correlation is 0.23.

      INTEGER    K, LDA
      PARAMETER  (K=6, LDA=2)
C
      REAL       A(LDA,K), STAT(5)
      CHARACTER  CLABEL(2)*10, RLABEL(5)*10
      EXTERNAL   BSCAT, WRRRL, WRRRN
C
      DATA A/50, 43, 88, 62, 155, 110, 379, 300, 18, 14, 63, 144/
      DATA RLABEL/’Count-1’, ’Count-2’, ’Count’, ’r-b’, ’(r-b)**2’/
      DATA CLABEL/’Statistic’, ’    ’/
C
      CALL WRRRN (’A’, 2, K, A, LDA, 0)
C
      CALL BSCAT (K, A, LDA, STAT)
C
      CALL WRRRL (’    ’, 5, 1, STAT, 5, 0, ’(W12.6)’, RLABEL,
     &            CLABEL)
      END

Output
                        A
        1       2       3       4       5       6
1    50.0    88.0   155.0   379.0    18.0    63.0
2    43.0    62.0   110.0   300.0    14.0   144.0
Statistic
Count-1          753.00
Count-2          673.00
Count           1426.00
r-b                0.23
(r-b)**2           0.05

CNCRD/DCNCRD (Single/Double precision)
Calculate and test the significance of the Kendall coefficient of concordance.

Usage
CALL CNCRD (NOBS, K, X, LDX, FUZZ, SUMS, STAT)

Arguments

NOBS — Number of observations per set of rankings.   (Input)

K — Number of sets of rankings.   (Input)
K must be greater than or equal to two.
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X — NOBS by K matrix containing the data.   (Input)
Each column of X is a set of observations (which can be converted to ranks) or a
set of ranks.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

FUZZ — Value to be used for determining ties.   (Input)
If within a column of X, the difference between two elements is less than or equal
to FUZZ in absolute value, then the elements are said to be tied.

SUMS — Vector of length NOBS containing the sums of the K ranks in the
corresponding row of X.   (Output)

STAT — Vector of length 4 containing the output statistics.   (Output)

i STAT(i)
1 W, the coefficient of concordance
2 Chi-squared statistic corresponding to W with NOBS − 1 degrees of

freedom
3 Asymptotic probability of exceeding STAT(2) under the null hypothesis

of independence
4 Kendall S statistic. This is the sum of the squared deviations from the

expected sum of the ranks

Comments

1. Automatic workspace usage is

CNCRD NOBS + NOBS * K units, or
DCNCRD NOBS + 2 * NOBS * K units.

Workspace may be explicitly provided, if desired, by use of
C2CRD/DC2CRD. The reference is

CALL C2CRD (NOBS, K, X, LDX, FUZZ, SUMS, STAT, IWK,
            XWK)

The additional arguments are as follows:

IWK — Work vector of length NOBS.

XWK — Work vector of length NOBS * K.

2. Informational errors
Type Code
   3    6 Within each of the K sets of rankings all observations

are tied. STAT(1) − STAT(3) cannot be computed and
are set to NaN (not a number).

   3    7 The chi-squared degrees of freedom is less than 7.
STAT(3) should be regarded with suspicion.
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Algorithm

Routine CNCRD computes and tests the significance of the Kendall coefficient of
concordance.

The coefficient of concordance is computed as follows: Within each of the k sets
the n = NOBS observations are ranked. Tied ranks are used for tied observations
where two observations are tied if they are within FUZZ of each other. Let xL
denote the sum of the ranks for the i-th observation over the k sets. The mean of
the xL is

x k n= +( ) /1 2

Using this mean, compute the sums of squares of the xL about their mean as

S x xi
i

N
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=
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1

This is the Kendall S statistic (STAT(4)). If there are tied ranks within a set i,
compute the adjustment
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where tM is the number of ties in the j-th group of ties, and the summation is over
all tie groups for the set. Kendall’s coefficient of concordance, W, is computed as
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Kendall’s coefficient of concordance is related to the Friedman one-way analysis
of variance on ranks chi-squared test statistic T (see IMSL routine FRDMN,
page 568,) as

W
T

n k
=

−( )1

When n or k is small, tables of the exact distribution of W exist. See Owen (1962,
pages 396−397). The probability reported in STAT(3) is asymptotic. It is only
approximate when k and n are small.

Example

The example is taken from Kendall (1962, pages 97−98). It involves ten
observations in three sets. The resulting coefficient of concordance, 0.828, is
quite large, indicating a strong relationship.

      INTEGER    K, LDX, NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, K=3, LDX=10, NOBS=10)
C
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      REAL       STAT(4), SUMS(NOBS), X(LDX,K)
      CHARACTER  CLABEL(2)*11, RLABEL(4)*11
      EXTERNAL   CNCRD, WRRRL, WRRRN
C
      DATA RLABEL/’W’, ’Chi-squared’, ’p-value’, ’S’/
      DATA CLABEL/’Statistic’, ’  ’/
      DATA X/1, 4.5, 2, 4.5, 3, 7.5, 6, 9, 7.5, 10, 2.5, 1, 2.5, 4.5,
     &     4.5, 8, 9, 6.5, 10, 6.5, 2, 1, 4.5, 4.5, 4.5, 4.5, 8, 8, 8,
     &     10/
C
      CALL WRRRN (’X’, NOBS, K, X, LDX, 0)
C
      CALL CNCRD (NOBS, K, X, LDX, FUZZ, SUMS, STAT)
C
      CALL WRRRN (’SUMS’, 1, 10, SUMS, 1, 0)
      CALL WRRRL (’  %/%/’, 4, 1, STAT, 4, 0, ’(W10.6)’, RLABEL,
     &            CLABEL)
      END

Output
               X
         1       2       3
 1    1.00    2.50    2.00
 2    4.50    1.00    1.00
 3    2.00    2.50    4.50
 4    4.50    4.50    4.50
 5    3.00    4.50    4.50
 6    7.50    8.00    4.50
 7    6.00    9.00    8.00
 8    9.00    6.50    8.00
 9    7.50   10.00    8.00
10   10.00    6.50   10.00

                                    SUMS
   1      2       3       4       5       6       7       8       9      10
5.50   6.50    9.00   13.50   12.00   20.00   23.00   23.50   25.50   26.50

Statistic
W                 0.828
Chi-squared      22.349
p-value           0.008
S               591.000

KENDL/DKENDL (Single/Double precision)
Compute and test Kendall’s rank correlation coefficient.

Usage
CALL KENDL (NOBS, X, Y, FUZZ, STAT, FREQ)

Arguments

NOBS — Number of observations.   (Input)
NOBS must be 3 or more.
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X — Vector of length NOBS containing the observations for the first variable.
(Input)

Y — Vector of length NOBS containing the observations for the second variable.
(Input)

FUZZ — Value used to determine ties in X or Y.   (Input)
Two observations are said to be tied if the absolute value of their difference is
less than or equal to FUZZ.

STAT — Vector of length 9 containing some output statistics.   (Output)
See the “Algorithm” section for full definitions. The output statistics are

i STAT(i)
1 Kendall τD (assumes no ties)

2 Kendall τE (corrects for ties)
3 Ties statistic for variable X
4 Ties statistic for variable Y
5 Statistic S corresponding to Kendall’s τ
6 Exact probability of achieving a score at least as large as S. S is not

calculated if NOBS is too large (34 on many computers) or there are ties.
In either case, STAT(6) is set to NaN (not a number).

7 The same probability as STAT(6) but using a normal approximation. (Set
to NaN if NOBS is less than 8.)

8 The same probability as STAT(6) but using a continuity correction with a
normal approximation. (Set to NaN if NOBS is less than 8.)

9 Index in FREQ corresponding to the frequency of the observed S statistic.
STAT(9) is not computed when there are ties.

FREQ — Vector of length NOBS * (NOBS − 1)/2 + 1 containing the frequencies of
occurrence of the possible values of the statistic S, STAT(5), under the null
hypothesis of no relationship.   (Output)
FREQ is not calculated if there are ties or if NOBS is too large (34 on many
computers).

Comments

1. Automatic workspace usage is

KENDL 3 * NOBS + (NOBS −1) * (NOBS −2)/2 + 1 units, or
DKENDL 5 * NOBS + (NOBS −1) * (NOBS −2) + 2 units.

Workspace may be explicitly provided, if desired, by use of
K2NDL/DK2NDL. The reference is

CALL K2NDL (NOBS, X, Y, FUZZ, STAT, FREQ, IWK, WK,
            XRNK, YRNK)

The additional arguments are as follows:

IWK — Work vector of length NOBS.

WK — Work vector of length (NOBS − 1) * (NOBS − 2)/2 + 1.
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XRNK — Work vector of length NOBS.

YRNK — Work vector of length NOBS.

2. Informational errors
Type Code
   3    4 Ties are detected in the two samples. STAT(6) is set to

NaN (not a number) and FREQ is not calculated.
   3    5 NOBS is less than 8 so the asymptotic normal

probabilities are not determined. STAT(7) and STAT(8)
are set to NaN (not a number).

   3    6 NOBS is too large (34 on many computers). STAT(6) is
set to NaN (not a number) and FREQ is not calculated.

   4    2 All the elements of X are tied. The output statistics are
not defined.

   4    3 All the elements of Y are tied. The output statistics are
not defined.

Algorithm

Routine KENDL performs Kendall’s test of the hypothesis of no correlation
(independence) by calculating τD and τE (τE handles ties), the Kendall sum S, and
associated probabilities. The frequencies of occurrence of S are also computed if
the sample size (NOBS) is not too large.

Kendall’s (1962) method is used in computing the τ statistics. Each pair (xL, yL) is
compared with every other pair (xM, yM). The Kendall S statistic is incremented if
the two pairs are concordant ((xL > xM and yL > yM) or (xL < xM and yL < yM)) and
decremented if the pairs are discordant ((xL > xM and yL < yM) or (xL < xM and

yL > yM)). Ties (xL = xM or yL = yM) are not counted. Generally, when ties exist, τE is a

better measure of correlation than is τD. The untied form of the denominator is

used to calculate τD. That is,

τa
S

n n
=

−( ) /1 2

where n = NOBS. Ties enter into the denominator of τE as follows:

τb
x y

S

D T D T
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− −( )( )

where D = n(n − 1)/2 and

T t tx i i
i

= −∑ ( ) /1 2

where tL is the number of ties in the x variable with the i-th tie value. T\ is
calculated in a similar manner.
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For NOBS less than 34 (on many machines other values on machines with a
different value for the largest real number that can be represented), the array
FREQ is computed. FREQ contains the frequency distribution of S under the null
hypothesis of independence. The probability distribution of S can be obtained
directly from these frequencies by dividing each frequency by the sum of the
frequencies. See routine KENDP (page 357) for further discussion on the use of the
FREQ array.

For a two-sided test, if the appropriate probability p of achieving or exceeding S
is small (less than α/2, where α is the significance level of the test) or if 1 − p is
small (less than α/2), then the two-sided hypothesis of no correlation can be
rejected. Alternatively, for small p or 1 − p, the appropriate one-sided hypothesis
can be rejected.

For n > 7, asymptotic normal probabilities are determined using the fact that

z
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is approximately standard normal for large n. Here,
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where tL is the number of observations in the i-th tie group for the x (or y)
summation variable.

STAT(7) contains the probability associated with the z statistic while STAT(8)
contains the same probability but with the value of S reduced by 1. This reduction
is for “continuity correction.” For n less than 25, these probabilities are
conservative at the 1% level of significance.

Example

In this example, the Kendall test is performed on a sample of size 8. The test fails
to reject the null hypothesis of no correlation.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, NOBS=8)
C
      REAL       FREQ(29), STAT(9), X(8), Y(8)
      CHARACTER  CLABEL(2)*10, RLABEL(9)*10
      EXTERNAL   KENDL, WRRRL, WRRRN
C
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      DATA RLABEL/’tau(a)’, ’tau(b)’, ’ties(X)’, ’ties(Y)’,
     &     ’S’, ’Pr(S)’, ’Pr(S)-n’, ’Pr(S)-na’, ’IFREQ’/
C
      DATA CLABEL/’Statistic’, ’    ’/
C
      DATA X/6, 4, 7, 3, 8, 1, 5, 2/
      DATA Y/7, 1, 5, 8, 6, 4, 2, 3/
C
      CALL KENDL (NOBS, X, Y, FUZZ, STAT, FREQ)
C
      CALL WRRRL (’STAT’, 9, 1, STAT, 9, 0, ’(W10.6)’, RLABEL, CLABEL)
      CALL WRRRN (’FREQ’, 1, NOBS*(NOBS-1)/2+1, FREQ, 1, 0)
      END

Output
          STAT
Statistic
tau(a)         0.1429
tau(b)         0.1429
ties(X)        0.0000
ties(Y)        0.0000
S              4.0000
Pr(S)          0.3598
Pr(S)-n        0.3103
Pr(S)-na       0.3553
IFREQ         17.0000

                                  FREQ
     1        2        3        4        5        6        7        8
   1.0      7.0     27.0     76.0    174.0    343.0    602.0    961.0

     9       10       11       12       13       14       15       16
1415.0   1940.0   2493.0   3017.0   3450.0   3736.0   3836.0   3736.0

    17       18       19       20       21       22       23       24
3450.0   3017.0   2493.0   1940.0   1415.0    961.0    602.0    343.0

    25       26       27       28       29
 174.0     76.0     27.0      7.0      1.0

KENDP/DKENDP (Single/Double precision)
Compute the frequency distribution of the total score in Kendall’s rank
correlation coefficient.

Usage
CALL KENDP (NOBS, K, FREQ, PROB)

Arguments

NOBS — Sample size.   (Input)
Must be greater than 1 and less than 34 (56 on some computers).

K — Score for which the probability is to be calculated.   (Input)
K must be in the range from minus to plus NOBS * (NOBS − 1)/2, inclusive.
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FREQ — Vector of length NOBS * (NOBS − 1)/2 + 1 containing the frequency
distribution of possible values of K.   (Output)
K will range from minus to plus NOBS * (NOBS − 1)/2, inclusive, in increments of
2, with frequency FREQ(i), for a possible K = 2 * (i − 1) − NOBS *
(NOBS − 1)/2, where i = 1, 2, …, NOBS * (NOBS − 1)/2 + 1.

PROB — Probability of equaling or exceeding K if the samples on which K is
based are uncorrelated.   (Output)

Comments

Automatic workspace usage is

KENDP (NOBS − 1) * (NOBS − 2)/2 + 1 units, or
DKENDP (NOBS − 1) * (NOBS − 2) + 2 units.

Workspace may be explicitly provided, if desired, by use of K2NDP/DK2NDP. The
reference is

CALL K2NDP (NOBS, K, FREQ, PROB, FWK)

The additional argument is

FWK — Work vector of length (NOBS − 1) * (NOBS −2)/2 + 1.

Algorithm

Routine KENDP computes the frequency distribution of the Kendall S statistic and
the probability that S equals or exceeds a given value K. Routine KENDP requires
the sample size, n = NOBS, on input. The frequencies reported in position i of
FREQ correspond to

S = 2(i − 1) − n(n − 1)/2

To obtain the probability distribution of S, divide each frequency by the sum of
the frequencies in FREQ.

The upper bound on NOBS that can be handled by KENDP depends upon the
largest real number that can be represented in the computer being used
(AMACH(2)). If this value is 1.0E+46 or less, NOBS cannot be greater than 33.

Example

The frequency distribution S for NOBS of 4 is computed. The probability is
computed for S = 4.

      INTEGER    K, NOBS
      PARAMETER  (K=4, NOBS=4)
C
      INTEGER    I, M, NOUT
      REAL       FREQ(NOBS*(NOBS-1)/2+1,3), PROB, SSUM, SUM
      CHARACTER  CLABEL(4)*10, RLABEL(1)*10
      EXTERNAL   KENDP, SCOPY, SSCAL, SSUM, UMACH, WRRRL
C
      DATA RLABEL/’NONE’/
      DATA CLABEL/’  ’, ’S’, ’FREQ’, ’pf’/
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C
      M = NOBS*(NOBS-1)/2 + 1
      DO 10  I=1, M
         FREQ(I,1) = 2*(I-1) - NOBS*(NOBS-1)/2
   10 CONTINUE
C
      CALL KENDP (NOBS, K, FREQ(1,2), PROB)
C                                 Compute the probabilities
      SUM = SSUM(M,FREQ(1,2),1)
      CALL SCOPY (M, FREQ(1,2), 1, FREQ(1,3), 1)
      CALL SSCAL (M, 1.0/SUM, FREQ(1,3), 1)
C                                 Print results
      CALL UMACH (2, NOUT)
      CALL WRRRL (’ ’, M, 3, FREQ, M, 0, ’(W10.4)’, RLABEL, CLABEL)
      WRITE (NOUT,*) ’PROB = ’, PROB
      END

Output
          S        FREQ          pf
     -6.000       1.000       0.042
     -4.000       3.000       0.125
     -2.000       5.000       0.208
      0.000       6.000       0.250
      2.000       5.000       0.208
      4.000       3.000       0.125
      6.000       1.000       0.042
PROB =    0.166667
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Chapter 4: Analysis of Variance

Routines
4.1. General Analysis

One-way............................................................................. AONEW 362
One-way analysis of covariance ......................................... AONEC 364
Randomized block or two-way balanced design................ ATWOB 375
Balanced incomplete block design........................................ ABIBD 380
Latin square design.............................................................. ALATN 386
Factorial ..............................................................................ANWAY 390
Balanced complete design for mixed models ...................... ABALD 396
Completely random nested design ......................................ANEST 409

4.2. Inference on Means and Variance Components
Contrast estimates and sums of squares ............................CTRST 417
Simultaneous confidence intervals
on differences of means .......................................................SCIPM 419
Student-Newman-Keuls multiple comparisons ...................SNKMC 424
CI on a difference of expected mean squares ..................... CIDMS 426

4.3. Service Routine
Reorder data for a balanced experimental design .............. ROREX 429

Usage Notes
The routines described in this chapter are for commonly-used experimental
designs. Typically, responses are stored in the input vector Y in a pattern that
takes advantage of the balanced design structure. Consequently, the full set of
model subscripts is not needed to identify each response. The routines assume the
usual pattern, which requires that the last model subscript change most rapidly,
the next to last model subscript change next most rapidly, and so forth, with the
first subscript changing the slowest. This pattern is referred to as lexicographical
ordering.

Routines AONEW (page 362), AONEC (page 364), and ANEST (page 409) allow
missing responses. NaN (not a number) is the missing value code used by these
routines. Use routine AMACH (or routine DMACH with the double precision
routines DAONEW, DAONEC, and DANEST ) to retrieve NaN. Any element of Y
that is missing must be set to AMACH(6) (or DMACH(6) for the double precision
routines). For a description of AMACH, see the section “Machine-Dependent
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Constants” in the Reference Material. Other routines described in this chapter do
not allow missing responses because they generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, routines in this
chapter typically perform a test for lack of fit when n (n > 1) responses are
available in each cell of the experimental design. Routines in Chapter 2,
“Regression,” are useful for analysis of generalizations of many of the models
treated in this chapter. In particular, Chapter 2 provides routines for the general
linear model.

AONEW/DAONEW (Single/Double precision)
Analyze a one-way classification model.

Usage
CALL AONEW (NGROUP, NI, Y, IPRINT, AOV, STAT, LDSTAT,
            NMISS)

Arguments

NGROUP — Number of groups.   (Input)

NI — Vector of length NGROUP containing the number of responses for each
group.   (Input)

Y — Vector of length NI(1) + NI(2) + L + NI(NGROUP) containing the responses
for each group.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 AOV is printed only.
2 STAT is printed only.
3 All printing is performed.

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for among groups
2 Degrees of freedom for within groups
3 Total (corrected) degrees of freedom
4 Sum of squares for among groups
5 Sum of squares for within groups
6 Total (corrected) sum of squares
7 Among-groups mean square
8 Within-groups mean square
9 F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
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13 Estimated standard deviation of the error within groups
14 Overall mean of Y
15 Coefficient of variation (in percent)

STAT — NGROUP by 4 matrix containing information concerning the groups.
(Output)
Row I contains information pertaining to the I-th group. The information in the
columns is as follows:

Col. Description
1 Group number
2 Number of nonmissing observations
3 Group mean
4 Group standard deviation

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement in the calling program.   (Input)

NMISS — Number of missing values.   (Output)
Elements of Y containing NaN (not a number) are omitted from the computations.

Algorithm

Routine AONEW performs an analysis of variance of responses from a one-way
classification design. The model is

yLM = µL + εLM     i = 1, 2, …, k; j = 1, 2, …, nL

where the observed value of yLM constitutes the j-th response in the i-th group, µL
denotes the population mean for the i-th group, and the εLM’s are errors that are
identically and independently distributed normal with mean zero and variance

σ2. AONEW requires the yLM’s as input into a single vector Y with responses in each
group occupying contiguous locations. The analysis of variance table is computed
along with the group sample means and standard deviations. A discussion of
formulas and interpretations for the one-way analysis of variance problem appears
in most elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter
10).

Example

This example computes a one-way analysis of variance for data discussed by
Searle (1971, Table 5.1, pages 165−179). The responses are plant weights for 6
plants of 3 different types−3 normal, 2 off-types, and 1 aberrant. The responses
are given by type of plant in the following table:

Type of Plant

Normal Off-Type Aberrant

101 84 32

105 88

94
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Note that for the group with only one response, the standard deviation is
undefined and is set to NaN (not a number).

      INTEGER    LDSTAT, NGROUP, NOBS
      PARAMETER  (NGROUP=3, NOBS=6, LDSTAT=NGROUP)
C
      INTEGER    IPRINT, NI(NGROUP), NMISS
      REAL       AOV(15), STAT(LDSTAT,4), Y(NOBS)
      EXTERNAL   AONEW
C
      DATA NI/3, 2, 1/
      DATA Y/101.0, 105.0, 94.0, 84.0, 88.0, 32.0/
C
      IPRINT = 3
      CALL AONEW (NGROUP, NI, Y, IPRINT, AOV, STAT, LDSTAT, NMISS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             98.028     96.714            4.83          84           5.751

                  * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Among Groups           2        3480      1740.0     74.571    0.0028
Within Groups          3          70        23.3
Corrected Total        5        3550

             Group Statistics
                                  Standard
 Group           N        Mean   Deviation
     1           3         100       5.568
     2           2          86       2.828
     3           1          32         NaN

AONEC/DAONEC (Single/Double precision)
Analyze a one-way classification model with covariates.

Usage
CALL AONEC (NGROUP, NI, NCOV, XY, LDXY, ITEST, IPRINT,
            COEF, LDCOEF, R, LDR, AOV, PTSS, TESTPL,
            XYMEAN, LDXYME, COVM, LDCOVM, COVB, LDCOVB,
            NRMISS)

Arguments

NGROUP — Number of groups.   (Input)

NI — Vector of length NGROUP containing the number of responses for each
group.   (Input)

NCOV — Number of covariates.   (Input)

XY — (NI(1) + NI(2) + … + NI(NGROUP)) by (NCOV + 1) matrix containing the
data for each covariate and the response variable.   (Input)
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Data for each group must appear in contiguous rows of XY, and the responses
must appear in the last column.

LDXY — Leading dimension of XY exactly as specified in the dimension
statement in the calling program.   (Input)

ITEST — Indicator for test for parallelism (equal covariate coefficients across
groups).   (Input)

ITEST Action
0 Test for parallelism is not performed.
1 Test for parallelism is performed.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing for model assuming parallelism is performed.
2 Printing for separate regression models for each group is performed as

well as for the model assuming parallelism.

COEF — NGROUP + NCOV by 4 matrix containing statistics relating to the
regression coefficients for the model assuming parallelism.   (Output)
Each row corresponds to a coefficient in the model. For I = 1, 2, …, NGROUP,
row I is for the Y intercept for the I-th group. The remaining NCOV rows are for
the covariate coefficients. The statistics in the columns are as follows:

Col. Description
1 Coefficient estimate
2 Estimated standard error of the estimate
3 t-statistic
4 p-value

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

R — NGROUP + NCOV by NGROUP + NCOV upper triangular matrix containing the
R matrix from the QR decomposition.   (Output)
The R matrix is from the regression assuming parallelism.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

AOV — Vector of length 15 that contains statistics relating to the analysis of
variance for the model assuming parallelism.   (Output)

I AOV(I)
1 Degrees of freedom for model (groups + covariates)
2 Degrees of freedom for error
3 Total (corrected) degrees of freedom
4 Sum of squares for model
5 Sum of squares for error
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 F -statistic
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10 p-value

11 R2 (in percent)

12 Adjusted R2(in percent)
13 Estimate of the error standard deviation
14 Overall response mean
15 Coefficient of variation (in percent)

PTSS — Vector of length 8 containing statistics relating to the partial sums of
squares for groups and for covariates in the model assuming parallelism.
(Output)

I PTSS(I)
1 Degrees of freedom for groups after covariates
2 Degrees of freedom for covariates after groups
3 Sum of squares for groups after covariates
4 Sum of squares for covariates after groups
5 F -statistic for groups
6 F -statistic for covariates
7 p-value for groups
8 p-value for covariates

TESTPL — Vector of length 10 containing statistics relating to the test for
parallelism.   (Output if ITEST = 1)
If ITEST = 0, TESTPL is not referenced and can be a vector of length one.

I TESTPL(I)
1 Extra degrees of freedom for model not assuming parallelism
2 Degrees of freedom for error for model not assuming parallelism
3 Degrees of freedom for error for model assuming parallelism
4 Extra sum of squares for model not assuming parallelism
5 Sum of squares for error for model not assuming parallelism
6 Sum of squares for error for model assuming parallelism
7 Mean square for TESTPL(1)
8 Mean square for TESTPL(2)
9 F -statistic
10 p-value

XYMEAN — NGROUP + 1 by NCOV + 3 matrix containing means.   (Output)
Each row for I = 1, 2, …, NGROUP corresponds to a group. Row NGROUP + 1
contains overall statistics. The statistics in the columns are as follows:

Column Description
1      Number of nonmissing cases
2 thru NCOV + 1 Covariate means
NCOV + 2 Response mean
NCOV + 3 Adjusted mean assuming parallelism

LDXYME — Leading dimension of XYMEAN exactly as specified in the dimension
statement in the calling program.   (Input)

COVM — NGROUP by NGROUP matrix containing the estimated variance-
covariance matrix of the adjusted group means in the model assuming parallelism.
(Output)
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LDCOVM — Leading dimension of COVM exactly as specified in the dimension
statement in the calling program.   (Input)

COVB — NGROUP + NCOV by NGROUP + NCOV matrix containing the estimated
variance-covariance matrix of the estimated coefficients in the model assuming
parallelism.   (Output)
If R is not needed, R and COVB can occupy the same storage locations.

LDCOVB — Leading dimension of COVB exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of XY that contain any missing values.   (Output)
Rows of XY containing NaN (not a number) are omitted from computations.

Comments

Automatic workspace usage is

AONEC 4 * (NGROUP + NCOV + 1) units, or
DAONEC 8 * (NGROUP + NCOV + 1) units.

Workspace may be explicitly provided, if desired, by use of A2NEC/DA2NEC. The
reference is
CALL A2NEC (NGROUP, NI, NCOV, XY, LDXY, ITEST, IPRINT,
            COEF, LDCOEF, R, LDR, AOV, PTSS, TESTPL,
            XYMEAN, LDXYME, COVM, LDCOVM, COVB, LDCOVB,
            NRMISS, WK)

The additional argument is

WK — Work vector of length 4 * (NGROUP + NCOV + 1).

Algorithm

Routine AONEC performs analyses for models that combine the features of a one-
way analysis of variance model with that of a multiple linear regression model.
The basic one-way analysis of covariance model is

y x x x i k j nij i ij ij m ijm ij i= + + + + + = =β β β β ε0 1 1 2 2 1 2 1 2K K K, , , ; , , ,

where the observed value of yLM constitutes the j-th response in the i-th group, β0i
denotes the y intercept for the regression function for the i-th group,
β1, β2, …, βP are the regression coefficients for the covariates, and the εLM’s are

independently distributed normal errors with mean zero and variance σ2. This
model allows the regression function for each group to have different intercepts.
However, the remaining m regression coefficients are the same for each group,
i.e., the regression functions are parallel. Often in practice, the regression
functions are not parallel. In addition to estimates for the model assuming
parallelism, AONEC computes estimates and summary statistics for the separate
regressions for each group. With IPRINT = 2, the estimates and summary
statistics for each group are printed. If ITEST = 1, a test for parallelism is
performed.

AONEC requires (xLM�, xLM2, …, xLMN, yLM) as input into a single data matrix XY with the
data for each group occupying contiguous rows of XY.
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Estimates for the β0L’s and β1, β2, …, βP in the model assuming parallelism are
computed and stored in COEF. Summary statistics are also computed for this
model. The adjusted group means (stored in column m + 3 of XYMEAN) are given
by

$ $ $ $β β β βoi m mx x x+ + + +1 1 2 2 K

The estimated covariance between the i1-th and i2-th adjusted group mean is given
by

v x v x x v x vi i r k r k s s r i k r r i k r
r

m

r

m

s

m

r

m

1 2 1 2
1111

+ + ++ + + +
====
∑∑∑∑ , , ,

where vST is the pq-th entry in COVB and is the estimated covariance between the
p-th and q-th estimated coefficients in the regression function.

The design of AONEC can be used with routines described in Chapter 2,
“Regression.” For example, confidence intervals and diagnostics for the
individual cases can be computed by using the output matrices R and COEF as
input into regression routines for case analysis.

A discussion of formulas and interpretations for the one-way analysis of
covariance problem appears in most elementary statistics texts, e.g., Snedecor and
Cochran (1967, Chapter 14).

Example 1

This example fits a one-way analysis of covariance model assuming parallelism
using data discussed by Snedecor and Cochran (Table 14.6.1, pages 432−436).
The responses are concentrations of cholesterol (in mg/100 ml) in the blood of
two groups of women: women from Iowa and women from Nebraska. Age of a
woman is the single covariate. The cholesterol concentrations and ages of the
women according to state are shown in the following table. (There are 11 Iowa
women and 19 Nebraska women in the study. Only the first 5 women from each
state are shown here.)

Iowa Nebraska

Age Cholesterol Age Cholesterol

46 181 18 137

52 228 44 173

39 182 33 177

65 249 78 241

54 259 51 225

There is no evidence from the data to indicate that the regression lines for
cholesterol concentration as a function of age are not parallel for Iowa and
Nebraska women (p-value is 0.5425). The parallel line model suggests that
Nebraska women may have higher cholesterol concentrations than Iowa women.
The cholesterol concentrations (adjusted for age) are 195.5 for Iowa women
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versus 224.2 for Nebraska women. The difference is 28.7 with an estimated
standard error of

170 97 2 2 9 161.4 .4 ( . ) .+ − =
      INTEGER    LDCOEF, LDCOVB, LDCOVM, LDR, LDXY, LDXYME, NCOV,
     &           NGROUP, NOBS
      PARAMETER  (NCOV=1, NGROUP=2, NOBS=30, LDCOEF=NGROUP+NCOV,
     &           LDCOVB=NGROUP+NCOV, LDCOVM=NGROUP, LDR=NGROUP+NCOV,
     &           LDXY=NOBS, LDXYME=NGROUP+1)
C
      INTEGER    IPRINT, ITEST, NI(NGROUP), NRMISS
      REAL       AOV(15), COEF(LDCOEF,4), COVB(LDCOVB,NGROUP+NCOV),
     &           COVM(LDCOVM,NGROUP), PTSS(8), R(LDR,NGROUP+NCOV),
     &           TESTPL(10), XY(LDXY,NCOV+1), XYMEAN(LDXYME,NCOV+3)
      EXTERNAL   AONEC
C
      DATA NI/11, 19/
      DATA XY/46.0, 52.0, 39.0, 65.0, 54.0, 33.0, 49.0, 76.0, 71.0,
     &     41.0, 58.0, 18.0, 44.0, 33.0, 78.0, 51.0, 43.0, 44.0, 58.0,
     &     63.0, 19.0, 42.0, 30.0, 47.0, 58.0, 70.0, 67.0, 31.0, 21.0,
     &     56.0, 181.0, 228.0, 182.0, 249.0, 259.0, 201.0, 121.0,
     &     339.0, 224.0, 112.0, 189.0, 137.0, 173.0, 177.0, 241.0,
     &     225.0, 223.0, 190.0, 257.0, 337.0, 189.0, 214.0, 140.0,
     &     196.0, 262.0, 261.0, 356.0, 159.0, 191.0, 197.0/
C
      ITEST  = 1
      IPRINT = 2
      CALL AONEC (NGROUP, NI, NCOV, XY, LDXY, ITEST, IPRINT, COEF,
     &            LDCOEF, R, LDR, AOV, PTSS, TESTPL, XYMEAN, LDXYME,
     &            COVM, LDCOVM, COVB, LDCOVB, NRMISS)
C
      END

Output
SEPARATE REGRESSION FOR GROUP  1

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             47.120     41.245            48.9       207.7           23.54

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  1     19177.2     19177.2      8.020    0.0197
Error                  9     21521.0      2391.2
Corrected Total       10     40698.2

                Inference on Coefficients
                    Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       35.81       62.47        0.573      0.5805
    2        3.24        1.14        2.832      0.0197

SEPARATE REGRESSION FOR GROUP  2
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             56.812     54.272           39.76       217.1           18.31
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                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  1     35351.9     35351.9     22.363    0.0002
Error                 17     26873.9      1580.8
Corrected Total       18     62225.8

                Inference on Coefficients
                     Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       101.3       26.13        3.876      0.0012
    2         2.5        0.53        4.729      0.0002

SAME REGRESSION FOR ALL GROUPS

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             47.303     45.421           44.14       213.7           20.66

                  * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  1     48976.3     48976.3     25.134    0.0000
Error                 28     54560.4      1948.6
Corrected Total       29    103536.7

                Inference on Coefficients
                     Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       91.57       25.65        3.570      0.0013
    2        2.51        0.50        5.013      0.0000

REGRESSION ASSUMING PARALLELISM

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             52.573     49.060           42.65       213.7           19.96

                   * * * Analysis of Variance * * *
                               Sum of        Mean            Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  2     54432.8     27216.4     14.965    0.0000
Error                 27     49103.9      1818.7
Corrected Total       29    103536.7

                   Partial Sums of Squares
                                Sum of            Prob. of
Source                 DF     Squares          F  Larger F
Groups after
   Covariates           1      5456.5      3.000    0.0947
Covariates after
   Groups               1     53820.1     29.593    0.0000

        R Matrix
        1       2       3
1     3.3     0.0   176.1
2             4.4   200.3
3                    86.0

                Inference on Coefficients
                     Standard                 Prob. of
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Coef.    Estimate       Error  t-statistic  Larger |t|
    1       64.49        29.3        2.201      0.0365
    2       93.14        24.8        3.756      0.0008
    3        2.70         0.5        5.440      0.0000

                          Test for Parallelism
                                Sum of        Mean             Prob. of
Source                  DF     Squares      Square          F  Larger F
Extra due to
   nonparallelism        1       709.0       709.0      0.381    0.5425
Error assuming
   nonparallelism       26     48394.9      1861.3
Error assuming
   parallelism          27     49103.9

                      XYMEAN
            1           2           3           4
1          11       53.09       207.7       195.5
2          19       45.95       217.1       224.2
3          30       48.57       213.7       213.7

Variance-Covariance Matrix of the Adjusted Group Means
                           1       2
                   1   170.4    -2.9
                   2            97.4

Variance-Covariance Matrix of the Estimated Coefficients
                        1       2       3
                1   858.6   600.0   -13.1
                2           615.0   -11.3
                3                     0.2

Figure 4-1   Plot of Cholesterol Concentrations and Fitted Parallel
Lines by State
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Example 2

This example fits a one-way analysis of covariance model and performs a test for
parallelism using data discussed by Snedecor and Cochran (1967, Table 14.8.1,
pages 438−443). The responses are weight gains (in pounds per day) of 40 pigs
for 4 groups of pigs under varying treatments. Two covariates-initial age (in days)
and initial weight (in pounds)−are used. For each treatment, there are 10 pigs.
Only the first 5 pigs from each treatment are shown here.

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Age Wt. Gain Age Wt. Gain Age Wt. Gain Age Wt. Gain

78 61 1.40 78 74 1.61 78 80 1.67 77 62 1.40

90 59 1.79 99 75 1.31 83 61 1.41 71 55 1.47

94 76 1.72 80 64 1.12 79 62 1.73 78 62 1.37

71 50 1.47 75 48 1.35 70 47 1.23 70 43 1.15

99 61 1.26 94 62 1.29 85 59 1.49 95 57 1.22

      INTEGER    LDCOEF, LDCOVB, LDCOVM, LDR, LDXY, LDXYME, NCOV,
     &           NGROUP, NOBS
      PARAMETER  (NCOV=2, NGROUP=4, NOBS=40, LDCOEF=NGROUP+NCOV,
     &           LDCOVB=NGROUP+NCOV, LDCOVM=NGROUP, LDR=NGROUP+NCOV,
     &           LDXY=NOBS, LDXYME=NGROUP+1)
C
      INTEGER    IPRINT, ITEST, NI(NGROUP), NRMISS
      REAL       AOV(15), COEF(LDCOEF,4), COVB(LDCOVB,NGROUP+NCOV),
     &           COVM(LDCOVM,NGROUP), PTSS(8), R(LDR,NGROUP+NCOV),
     &           TESTPL(10), XY(LDXY,NCOV+1), XYMEAN(LDXYME,NCOV+3)
      EXTERNAL   AONEC
C
      DATA NI/10, 10, 10, 10/
      DATA XY/78.0, 90.0, 94.0, 71.0, 99.0, 80.0, 83.0, 75.0, 62.0,
     &     67.0, 78.0, 99.0, 80.0, 75.0, 94.0, 91.0, 75.0, 63.0, 62.0,
     &     67.0, 78.0, 83.0, 79.0, 70.0, 85.0, 83.0, 71.0, 66.0, 67.0,
     &     67.0, 77.0, 71.0, 78.0, 70.0, 95.0, 96.0, 71.0, 63.0, 62.0,
     &     67.0, 61.0, 59.0, 76.0, 50.0, 61.0, 54.0, 57.0, 45.0, 41.0,
     &     40.0, 74.0, 75.0, 64.0, 48.0, 62.0, 42.0, 52.0, 43.0, 50.0,
     &     40.0, 80.0, 61.0, 62.0, 47.0, 59.0, 42.0, 47.0, 42.0, 40.0,
     &     40.0, 62.0, 55.0, 62.0, 43.0, 57.0, 51.0, 41.0, 40.0, 45.0,
     &     39.0, 1.40, 1.79, 1.72, 1.47, 1.26, 1.28, 1.34, 1.55, 1.57,
     &     1.26, 1.61, 1.31, 1.12, 1.35, 1.29, 1.24, 1.29, 1.43, 1.29,
     &     1.26, 1.67, 1.41, 1.73, 1.23, 1.49, 1.22, 1.39, 1.39, 1.56,
     &     1.36, 1.40, 1.47, 1.37, 1.15, 1.22, 1.48, 1.31, 1.27, 1.22,
     &     1.36/
C
      ITEST  = 1
      IPRINT = 2
      CALL AONEC (NGROUP, NI, NCOV, XY, LDXY, ITEST, IPRINT, COEF,
     &            LDCOEF, R, LDR, AOV, PTSS, TESTPL, XYMEAN, LDXYME,
     &            COVM, LDCOVM, COVB, LDCOVB, NRMISS)
C
      END

Output
SEPARATE REGRESSION FOR GROUP  1

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
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Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             13.271      0.000          0.2013       1.464           13.75

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.0434     0.02170      0.536    0.6075
 Error                  7      0.2836     0.04052
 Corrected Total        9      0.3270

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.357      0.4639        2.925      0.0222
     2      -0.006      0.0105       -0.572      0.5849
     3       0.011      0.0114        0.948      0.3749

SEPARATE REGRESSION FOR GROUP  2

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             21.989      0.000          0.1292       1.319           9.799

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.0330     0.01648      0.987    0.4193
 Error                  7      0.1169     0.01670
 Corrected Total        9      0.1499

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.401      0.2694        5.199      0.0013
     2      -0.005      0.0040       -1.164      0.2825
     3       0.005      0.0040        1.301      0.2343

SEPARATE REGRESSION FOR GROUP  3
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             49.246     34.745          0.1369       1.445           9.473

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.1273     0.06364      3.396    0.0931
 Error                  7      0.1312     0.01874
 Corrected Total        9      0.2584

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.452      0.4709        3.082      0.0178
     2      -0.008      0.0075       -1.017      0.3429
     3       0.011      0.0043        2.544      0.0384

SEPARATE REGRESSION FOR GROUP  4

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             17.076      0.000          0.1141       1.325           8.609
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                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.0188     0.00938      0.721    0.5193
 Error                  7      0.0911     0.01301
 Corrected Total        9      0.1098

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.044      0.2574        4.055      0.0048
     2       0.001      0.0038        0.251      0.8094
     3       0.004      0.0051        0.833      0.4324

SAME REGRESSION FOR ALL GROUPS

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             17.724     13.277          0.1508       1.388           10.86

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2       0.181     0.09064      3.985    0.0271
 Error                 37       0.842     0.02274
 Corrected Total       39       1.023

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.251      0.1708        7.327      0.0000
     2      -0.003      0.0028       -1.178      0.2464
     3       0.007      0.0027        2.743      0.0093

REGRESSION ASSUMING PARALLELISM

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             34.467     24.829          0.1404       1.388           10.11

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  5       0.353     0.07050      3.576    0.0105
 Error                 34       0.670     0.01971
 Corrected Total       39       1.023

                   Partial Sums of Squares
                                Sum of             Prob. of
 Source                 DF     Squares          F  Larger F
 Groups after
    Covariates           3      0.1712      2.895    0.0493
 Covariates after
    Groups               2      0.1750      4.438    0.0194

                     R Matrix
         1       2       3       4       5       6
 1     3.2     0.0     0.0     0.0   252.7   172.0
 2             3.2     0.0     0.0   247.9   173.9
 3                     3.2     0.0   236.9   164.4
 4                             3.2   237.2   156.5
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 5                                    67.4    42.7
 6                                            55.3

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.337      0.1724        7.751      0.0000
     2       1.182      0.1697        6.965      0.0000
     3       1.318      0.1626        8.109      0.0000
     4       1.217      0.1624        7.493      0.0000
     5      -0.003      0.0026       -1.314      0.1978
     6       0.007      0.0025        2.919      0.0062

                          Test for Parallelism
                                 Sum of        Mean             Prob. of
 Source                  DF     Squares      Square          F  Larger F
 Extra due to
    nonparallelism        6      0.0474     0.00790      0.355    0.9007
 Error assuming
    nonparallelism       28      0.6228     0.02224
 Error assuming
    parallelism          34      0.6703

                            XYMEAN
             1           2           3           4           5
 1          10       79.90       54.40       1.464       1.461
 2          10       78.40       55.00       1.319       1.307
 3          10       74.90       52.00       1.445       1.443
 4          10       75.00       49.50       1.325       1.342
 5          40       77.05       52.72       1.388       1.388

 Variance-Covariance Matrix of the Adjusted Group Means
                 1          2          3          4
      1   0.002007   0.000016  -0.000027  -0.000024
      2              0.001992  -0.000007  -0.000030
      3                         0.001994   0.000011
      4                                    0.002014

   Variance-Covariance Matrix of the Estimated Coefficients
           1         2         3         4         5         6
 1   0.02974   0.02729   0.02605   0.02602  -0.00033  -0.00002
 2             0.02880   0.02561   0.02556  -0.00032  -0.00003
 3                       0.02642   0.02441  -0.00031  -0.00003
 4                                 0.02638  -0.00032  -0.00001
 5                                           0.00001   0.00000
 6                                                     0.00001

ATWOB/DATWOB (Single/Double precision)
Analyze a randomized block design or a two-way balanced design.

Usage
CALL ATWOB (NBLK, NTRT, NRESP, Y, IPRINT, AOV, EFSS,
            TESTLF, YMEANS)

Arguments

NBLK — Number of blocks.   (Input)
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NTRT — Number of treatments.   (Input)

NRESP — Number of repeated responses within each block-treatment
combination.   (Input)

Y — Vector of length NBLK * NTRT * NRESP containing the responses.   (Input)
The first NRESP elements of Y contain the responses for block one, treatment one,
the second NRESP elements of Y contain the responses for block one, treatment
two; …; the last NRESP elements of Y contain the responses for block NBLK,
treatment NTRT.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print AOV, EFSS, and TESTLF (if NRESP > 1).
2 Print YMEANS only.
3 All printing is performed.

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model (blocks and treatments)
2 Degrees of freedom for error (interaction is pooled with the within-cell

error)
3 Total (corrected) degrees of freedom
4 Sum of squares for the model (blocks and treatments)
5 Sum of squares for error (interaction is pooled with the within-cell error)
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error
14 Overall mean of Y
15 Coefficient of variation (in percent)

EFSS — Vector of length 8 containing statistics relating to the sums of squares
for the effects in the model.   (Output)
Elements of EFSS are described as follows:

Elem. Description
1, 2   Degrees of freedom for blocks and treatments, respectively
3, 4   Sum of squares for blocks and treatments, respectively
5, 6   F-statistics for blocks and treatments, respectively. F-statistics are

computed using AOV(8) as the estimated error variance.
7, 8   p-values associated with the F -statistics

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the two-way model without interaction.   (Output if NRESP > 1)
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If NRESP = 1, TESTLF is not referenced and can be a vector of length one.
Elements of TESTLF are described as follows:

Elem. Description
1   Degrees of freedom for interaction
2   Degrees of freedom for within-cell error
3   Degrees of freedom for error (TESTLF(1) + TESTLF(2))
4   Sum of squares for interaction
5   Sum of squares for within-cell error
6   Sum of squares for error
7   Mean square for interaction
8   Mean square for within-cell error
9   F-statistic
10  p-value

YMEANS — Vector of length NBLK + NTRT + NBLK * NTRT containing the block
means, treatment means and block-by-treatment means, respectively.   (Output)

Algorithm

Routine ATWOB performs an analysis for a two-way classification design with
balanced data. For balanced data, there must be an equal number of responses in
each cell of the two-way layout. The basic model is the same as for the
randomized block design. The block and treatment effects are additive, i.e., there
are no interactions. The model is

yLMN = µ + αL + βM + εLM     i = 1, 2, …, n1; j = 1, 2, …, n2; k = 1, 2, …, n3

where the observed value of yLMN constitutes the k-th response in the ij-th cell of

the two-way layout, µ + αL + βM is the population mean for the ij-th cell, and the ε
LMN’s are identically and independently distributed normal errors with mean zero

and variance σ2. This model assumes that the effects for the two factors are
additive. Often in practice, there are interactions between the two factors. For this
reason, in addition to summary statistics for the additive model, ATWOB computes
a test for nonadditivity (lack of fit). The test used here requires at least two
responses in each cell. Tests for nonadditivity with one response per cell are
given by Tukey (1949) and Mandel (1961). Tukey’s test is discussed by Snedecor
and Cochran (1967, pages 331−334).

The routine ATWOB requires yLMN’s as input into a single vector Y with the data for
each cell occupying contiguous elements. The cells must be in standard order,
i.e., (1, 1), (1, 2), …, (1, n2), (2, 1), (2, 2), …, (2, n2), …, (n1, 1), (n1, 2), …,
(n1, n2):

Example 1

This example performs an analysis for a randomized block design using data
discussed by Neter and Wasserman (1974,Table 23.2, pages 725−730). Fifteen
businessmen were shown one of three methods for quantifying the maximum risk
premium they would be willing to pay to avoid uncertainty. The responses are a
stated degree of confidence, on a scale of 0 (no confidence) to 20 (highest
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confidence). The fifteen businessmen were grouped into five blocks by age. The
three businessmen in each block were randomly assigned to a rating method. The
data are given in the following table:

Confidence Rating

Block Method 1 Method 2 Method 3

1 1 5 8

2 2 8 14

3 7 9 16

4 6 13 18

5 12 14 17

      INTEGER    NBLK, NRESP, NTRT
      PARAMETER  (NBLK=5, NRESP=1, NTRT=3)
C
      INTEGER    IPRINT
      REAL       AOV(15), EFSS(8), TESTLF(10), Y(NBLK*NTRT*NRESP),
     &           YMEANS(NBLK+NTRT+NBLK*NTRT)
      EXTERNAL   ATWOB
C
      DATA Y/1.0, 5.0, 8.0, 2.0, 8.0, 14.0, 7.0, 9.0, 16.0, 6.0, 13.0,
     &     18.0, 12.0, 14.0, 17.0/
C
      IPRINT = 3
      CALL ATWOB (NBLK, NTRT, NRESP, Y, IPRINT, AOV, EFSS, TESTLF,
     &            YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             94.003     89.506           1.727          10           17.27

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  6       374.1       62.36     20.901    0.0002
 Error                  8        23.9        2.98
 Corrected Total       14       398.0

 * * * Decomposition of Variation Attributable to the Model * * *
                                Sum of             Prob. of
        Source          DF     Squares          F  Larger F
        Blocks           4       171.3     14.358    0.0010
        Treatment        2       202.8     33.989    0.0001

 * * * Block Means * * *
    Block  Mean (N=3)
        1      4.6667
        2      8.0000
        3     10.6667
        4     12.3333
        5     14.3333
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 * * * Treatment Means * * *
    Treatment  Mean (N=5)
            1      5.6000
            2      9.8000
            3     14.6000

    * * * Cell Means * * *
 Block  Treatment  Mean (N=1)
     1          1      1.0000
     1          2      5.0000
     1          3      8.0000
     2          1      2.0000
     2          2      8.0000
     2          3     14.0000
     3          1      7.0000
     3          2      9.0000
     3          3     16.0000
     4          1      6.0000
     4          2     13.0000
     4          3     18.0000
     5          1     12.0000
     5          2     14.0000
     5          3     17.0000

Example 2

This example fits an additive two-way analysis of variance model and performs a
test for nonadditivity (lack of fit) using data discussed by Kirk (1982,Table 8.3-1,
pages 354−359). The data for the two-way layout is given in the following table:

BLOCK

TREATMENT 1 2 3

1 24, 33, 37, 29, 42 44, 36, 25, 27, 43 38, 29, 28, 47, 48

2 30, 21, 39, 26, 34 35, 40, 27, 31, 22 26, 27, 36, 46, 45

3 21, 18, 10, 31, 20 41, 39, 50, 36, 34 42, 52, 53, 49, 64

      INTEGER    NBLK, NRESP, NTRT
      PARAMETER  (NBLK=3, NRESP=5, NTRT=3)
C
      INTEGER    IPRINT
      REAL       AOV(15), EFSS(8), TESTLF(10), Y(NBLK*NTRT*NRESP),
     &           YMEANS(NBLK+NTRT+NBLK*NTRT)
      EXTERNAL   ATWOB
C
      DATA Y/24.0, 33.0, 37.0, 29.0, 42.0, 30.0, 21.0, 39.0, 26.0,
     &     34.0, 21.0, 18.0, 10.0, 31.0, 20.0, 44.0, 36.0, 25.0, 27.0,
     &     43.0, 35.0, 40.0, 27.0, 31.0, 22.0, 41.0, 39.0, 50.0, 36.0,
     &     34.0, 38.0, 29.0, 28.0, 47.0, 48.0, 26.0, 27.0, 36.0, 46.0,
     &     45.0, 42.0, 52.0, 53.0, 49.0, 64.0/
C
      IPRINT = 3
      CALL ATWOB (NBLK, NTRT, NRESP, Y, IPRINT, AOV, EFSS, TESTLF,
     &            YMEANS)
      END
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Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             33.206     26.526           9.336          35           26.68

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  4      1733.3       433.3      4.971    0.0024
 Error                 40      3486.7        87.2
 Corrected Total       44      5220.0

 * * * Decomposition of Variation Attributable to the Model * * *
                                Sum of             Prob. of
        Source          DF     Squares          F  Larger F
        Blocks           2      1543.3      8.853    0.0007
        Treatment        2       190.0      1.090    0.3460

                  * * * Test for Lack of Fit * * *
                           Sum of        Mean              Prob. of
 Source            DF     Squares      Square          F   Larger F
 Interaction        4      1236.7       309.2      4.947     0.0028
 Within cell       36      2250.0        62.5
 Error             40      3486.7

 * * * Block Means * * *
    Block  Mean (N=3)
        1     27.6667
        2     35.3333
        3     42.0000

 * * * Treatment Means * * *
    Treatment  Mean (N=3)
            1     35.3333
            2     32.3333
            3     37.3333

    * * * Cell Means * * *
 Block  Treatment  Mean (N=5)
     1          1     33.0000
     1          2     30.0000
     1          3     20.0000
     2          1     35.0000
     2          2     31.0000
     2          3     40.0000
     3          1     38.0000
     3          2     36.0000
     3          3     52.0000

ABIBD/DABIBD (Single/Double precision)
Analyze a balanced incomplete block design or a balanced lattice design.

Usage
CALL ABIBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, INTER,
            IPRINT, AOV, SQSS, SSALT, TESTLF, YMEANS,
            SETRTD, EFNCY)
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Arguments

NTRT — Number of treatments.   (Input)

NREP — Number of replications.   (Input)

NBLK — Number of blocks.   (Input)

NTBLK — Number of treatments within each block.   (Input)

NRESP — Number of responses within each treatment-block combination.
(Input)

Y — Vector of length NBLK * NTBLK * NRESP containing the responses.   (Input)
The first NRESP elements of Y contain the responses for the first treatment in the
first block in the first replicate. The second NRESP elements of Y contain the
responses for the second treatment in the first block in the first replicate. … The
NTBLK-th NRESP elements of Y contain the responses for the NTBLK-th treatment
in the first block in the first replicate. … The last NRESP elements of Y contain the
responses for the NTBLK-th treatment in the NBLK-th block in the NREP-th
replicate.

ITRT — Vector of length NBLK * NTBLK containing the treatment numbers for
the responses in Y.   (Input)
The treatment numbers must be from the set 1, 2, …, NTRT. For I = 1, 2, …,
NBLK * NTBLK, element numbers (I − 1) * NRESP + 1 thru (I − 1) * NRESP +
NRESP of Y correspond to treatment number ITRT(I).

INTER — Interblock analysis option.   (Input)

INTER Means
0 Intrablock analysis is requested. (Blocks are fixed effects.)
1 Interblock analysis is requested. (Blocks are random effects.)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print AOV, SQSS, and TESTLF (if NRESP > 1).
2 Print YMEANS only.
3 All printing is performed.

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model (replicates, blocks, and treatments)
2 Degrees of freedom for error (experimental error pooled with the within-

cell error)
3 Total (corrected) degrees of freedom
4 Sum of squares for the model (replicates, blocks, and treatments)
5 Sum of squares for error (experimental error pooled with the within-cell

error)
6 Total (corrected) sum of squares
7 Model mean square
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8 Error mean square
9 F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error
14 Overall mean of Y
15 Coefficient of variation (in percent)

SQSS — Vector of length 12 containing statistics relating to the sequential sum
of squares for the model.   (Output)

Elem. Description
1, 2, 3 Degrees of freedom for replicates, blocks within replicates, and

treatments (adjusted), respectively
4, 5, 6 Sum of squares for replicates, blocks within replicates, and treatments

(adjusted), respectively
7, 8, 9 F -statistics for replicates, blocks, and treatments, respectively,

computed using AOV(8) as the estimated error variance
10−12 p-values associated with the F -statistics

SSALT — Vector of length 2 containing an alternative partitioning of the model
sum of squares.   (Output)
SSALT(1) is the treatment sum of squares (unadjusted) and SSALT(2) is the block
sum of squares (adjusted).

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model.   (Output, if NRESP > 1)
If NRESP = 1, TESTLF is not referenced and can be a vector of length one.
Elements of TESTLF are described as follows:

Elem. Description
1 Degrees of freedom for experimental error
2 Degrees of freedom for within-cell error
3 Degrees of freedom for error (TESTLF(1) + TESTLF(2))
4 Sum of squares for experimental error
5 Sum of squares for within-cell error
6 Sum of squares for error
7 Mean square for experimental error
8 Mean square for within-cell error
9 F-statistic
10 p-value

YMEANS — Vector of length NREP + NBLK + NTRT + NTBLK * NBLK containing
the replicate means, block by replicate means, treatment means (adjusted), and
treatment by block means, respectively.   (Output)
The treatment means (adjusted) in YMEANS are used for estimating treatment
differences.

SETRTD — Estimated standard error of a treatment difference.   (Output)

EFNCY — Estimated efficiency of this design relative to a randomized complete
block design.   (Output)
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The randomized complete block design has NBLK * NTBLK/NTRT complete
blocks.

Comments

Automatic workspace usage is

ABIBD  NTRT units, or
DABIBD 2 * NTRT units.

Workspace may be explicitly provided, if desired, by use of A2IBD/DA2IBD. The
reference is
CALL A2IBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, INTER,
            IPRINT, AOV, SQSS, SSALT, TESTLF, YMEANS,
            SETRTD, EFNCY, WK)

The additional argument is

WK — Work vector of length NTRT or 2 * NTRT.

Algorithm

Routine ABIBD performs analyses for balanced incomplete block designs. The
basic model used is the randomized block design with the source of variation for
“blocks” subdivided into replications and blocks within replications. For INTER =
0, the model is

yLMWP = µ + αL + βMM + δW + εLMNP   i = 1, …, r; j = 1, …, k; t = 1, …, p; m = 1, …, n

where the observed value of yLMWP constitutes the m-th response with treatment t in

block j within the i replicate, µ + αL + βLM + δW is the population mean for the

response, and the εLMWP’s are independently distributed normal errors with mean

zero and variance σ2. This model assumes the block effects and treatment effects
are additive. Often in practice, there are interactions between the blocks and
treatments. For this reason, ABIBD computes a test for nonadditivity (lack of fit),
in addition to summary statistics for the additive model. This test requires at least
two responses in each cell.

The analysis performed with the βLM’s regarded as fixed effects in the model

(INTER = 0) is called an “intrablock analysis.” For INTER = 1, the βLM’s are
assumed to be random effects in the model, the analysis performed for this mixed
model is called an “interblock analysis.”

Routine ABIBD requires the yLMWP’s to be entered in a single vector Y ordered
lexicographically, so that the i subscript varies least rapidly, the j subscript the
next most rapidly, and so forth. Formulas and interpretations for the analysis of
balanced incomplete block designs are discussed by Anderson and Bancroft
(1952, Chapters 19 and 24) and Kempthorne (1975, pages 532−539).

Example

This example performs an intrablock analysis for a balanced incomplete block
design using data discussed by Anderson and Bancroft (1952, pages 254−256).
The responses are weight gains of rats fed p = 9 different rations. There are four
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replications with k = 3 blocks within each replicate. (Since p = k2, this balanced
incomplete block design is a balanced lattice design.) The data with the treatment
numbers in parentheses are given in the following table:

Replicate Block (Treatment):  Weight Gain

1 1 (1): 20 (4): 15 (7): 11

1 2 (3): 8 (6): 18 (9): 26

1 3 (2): 18 (5): 16 (8): 2

2 1 (7): 8 (8): 12 (9): 16

2 2 (1): 20 (2): 2 (3): 2

2 3 (4): 20 (5): 6 (6): 2

3 1 (1): 13 (9): 19 (5): 14

3 2 (8): 14 (4): 34 (3): 2

3 3 (6): 14 (2): 20 (7): 14

4 1 (5): 19 (7): 23 (3): 6

4 2 (1): 22 (6): 12 (8): 2

4 3 (9): 27 (2): 7 (4): 20

      INTEGER    NBLK, NREP, NRESP, NTBLK, NTRT
      PARAMETER  (NBLK=12, NREP=4, NRESP=1, NTBLK=3, NTRT=9)
C
      INTEGER    INTER, IPRINT, ITRT(NBLK*NTBLK)
      REAL       AOV(15), EFNCY, SETRTD, SQSS(12), SSALT(2),
     &           TESTLF(10), Y(NBLK*NTBLK*NRESP),
     &           YMEANS(NREP+NBLK+NTRT+NTBLK*NBLK)
      EXTERNAL   ABIBD
C
      DATA Y/20.0, 15.0, 11.0, 8.0, 18.0, 26.0, 18.0, 16.0, 2.0, 8.0,
     &     12.0, 16.0, 20.0, 2.0, 2.0, 20.0, 6.0, 2.0, 13.0, 19.0,
     &     14.0, 14.0, 34.0, 2.0, 14.0, 20.0, 14.0, 19.0, 23.0, 6.0,
     &     22.0, 12.0, 2.0, 27.0, 7.0, 20.0/
      DATA ITRT/1, 4, 7, 3, 6, 9, 2, 5, 8, 7, 8, 9, 1, 2, 3, 4, 5, 6,
     &     1, 9, 5, 8, 4, 3, 6, 2, 7, 5, 7, 3, 1, 6, 8, 9, 2, 4/
C
      INTER  = 0
      IPRINT = 3
      CALL ABIBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, INTER,
     &            IPRINT, AOV, SQSS, SSALT, TESTLF, YMEANS, SETRTD,
     &            EFNCY)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             79.771     55.748           5.345          14           38.18

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 19      1802.8       94.88      3.321    0.0095
 Error                 16       457.2       28.57
 Corrected Total       35      2260.0
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 * * * Decomposition of Variation Attributable to the Model * * *
                                  Sum of             Prob. of
      Source              DF     Squares          F  Larger F
      Replicates           3       219.6      2.561    0.0913
      Blocks within
         Replicates        8       127.1      0.556    0.7980
      Treatments
         (adjusted)        8      1456.1      6.370    0.0009

 * * * Replicate means * * *
    Replicate  Mean (N=4)
            1     14.8889
            2      9.7778
            3     16.0000
            4     15.3333

 * * * Block by Replicate Means * * *
   Replicate        Block  Mean (N=3)
           1            1     15.3333
           1            2     17.3333
           1            3     12.0000
           2            1     12.0000
           2            2      8.0000
           2            3      9.3333
           3            1     15.3333
           3            2     16.6667
           3            3     16.0000
           4            1     16.0000
           4            2     12.0000
           4            3     18.0000

 * * * Adjusted Treatment Means * * *
         Treatment  Mean (N=1)
                 1       22.11
                 2       11.67
                 3        0.67
                 4       23.89
                 5       14.78
                 6       11.11
                 7       12.89
                 8        6.44
                 9       22.44

      * * * Treatment by Block Means * * *
  Replicate       Block   Treatment  Mean (N=1)
          1           1           1     20.0000
          1           1           4     15.0000
          1           1           7     11.0000
          1           2           3      8.0000
          1           2           6     18.0000
          1           2           9     26.0000
          1           3           2     18.0000
          1           3           5     16.0000
          1           3           8      2.0000
          2           1           7      8.0000
          2           1           8     12.0000
          2           1           9     16.0000
          2           2           1     20.0000
          2           2           2      2.0000
          2           2           3      2.0000
          2           3           4     20.0000
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          2           3           5      6.0000
          2           3           6      2.0000
          3           1           1     13.0000
          3           1           9     19.0000
          3           1           5     14.0000
          3           2           8     14.0000
          3           2           4     34.0000
          3           2           3      2.0000
          3           3           6     14.0000
          3           3           2     20.0000
          3           3           7     14.0000
          4           1           5     19.0000
          4           1           7     23.0000
          4           1           3      6.0000
          4           2           1     22.0000
          4           2           6     12.0000
          4           2           8      2.0000
          4           3           9     27.0000
          4           3           2      7.0000
          4           3           4     20.0000

ALATN/DALATN (Single/Double precision)
Analyze a Latin square design.

Usage
CALL ALATN (NTRT, NRESP, Y, ITRT, IPRINT, AOV, EFSS,
            TESTLF, YMEANS)

Arguments

NTRT — Number of treatments.   (Input)
NTRT must also be the number of rows and the number of columns.

NRESP — Number of repeated responses within each row-column position.
(Input)

Y — Vector of length NTRT * NTRT * NRESP containing the responses.   (Input)
The first NRESP elements of Y contain the responses for row 1, column 1; the
second NRESP elements of Y contain the responses for row 1, column 2. The last
NRESP elements of Y contain the responses for row NTRT, column NTRT.

ITRT — Vector of length NTRT * NTRT containing the treatment numbers for the
responses in Y.   (Input)
The treatment numbers must be from the set 1, 2, …, NTRT. For I = 1, 2, …,
NTRT**2, element numbers (I − 1) * NRESP + 1 through (I − 1) * NRESP +
NRESP of Y correspond to treatment number ITRT(I).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print AOV, EFSS, and TESTLF (if NRESP > 1) only.
2 Print YMEANS only.
3 All print is performed.
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AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model (rows, columns and treatments)
2 Degrees of freedom for error (experimental error pooled with the within-

cell error)
3 Total (corrected) degrees of freedom
4 Sum of squares for the model (rows, columns, and treatments)
5 Sum of squares for error (experimental error pooled with the within-cell

error)
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 F-statistic
10 p-value

11 R2 (in percent)
12 Adjusted R (in percent)
13 Estimated standard deviation of the model error
14 Overall mean of Y
15 Coefficient of variation (in percent)

EFSS — Vector of length 12 containing statistics relating to the sums of squares
for the effects in the model.   (Output)
Elements of EFSS are described as follows:

Elem. Description
1, 2, 3 Degrees of freedom for rows, columns, and treatments, respectively.
4, 5, 6 Sum of squares for rows, columns, and treatments, respectively.
7, 8, 9 F-statistics for rows, columns, and treatments, respectively. F-statistics

are computed using AOV(8) as the estimated error variance.
10−12 p-values associated with the F-statistics.

TESTLF — Vector of length 10 containing statistics relating to the test for lack
of fit of the model.(Output if NRESP > 1)
If NRESP = 1, TESTLF is not referenced and can be a vector of length one.
Elements of EFSS are described as follows:

Elem. Description
1 Degrees of freedom for experimental error
2 Degrees of freedom for within-cell error
3 Degrees of freedom for error (TESTLF(1) + TESTLF(2))
4 Sum of squares for experimental error
5 Sum of squares for within-cell error
6 Sum of squares for error
7 Mean square for experimental error
8 Mean square for within-cell error
9 F -statistic
10 p-value

YMEANS — Vector of length 3 * NTRT + NTRT * NTRT containing the row
means, column means, treatment means, and the row-column means, respectively.
(Output)
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Algorithm

Routine ALATN performs an analysis for a Latin square design. The model is

yLMNP = µ + αL + βM + δN + εLMNP     i, j, k = 1, 2, …, p; m = 1, 2, …, n

where the observed value of yLMNP constitutes the m-th response on the k-th

treatment in row i column j of the Latin square design; µ + αL + βM + δN is the

population mean for the response, and the εLMNP’s are identically and

independently distributed normal errors with mean zero and variance σ2. This
model assumes the row effects (αL), column effects (βM), and treatment effects

(δN) are additive. Often in practice, there are interactions between two or more of
these factors. For this reason, ALATN computes a test for nonadditivity (lack of
fit), in addition to summary statistics for the additive model. This test requires at
least two responses in each cell. A test for nonadditivity with one response per
cell in a Latin square design is discussed by Snedecor and Cochran (1967, pages
334−337).

Routine ALATN requires yLMN’s to be entered in single vector Y with the data for
each cell occupying contiguous elements. The cells must be in standard order,
i.e., (1, 1), (1, 2), …, (1, p), (2, 1), (2, 2), …, (2, p), …, (p, 1), (p, 2), …, (p, p). A
discussion of formulas and interpretations for the analysis of a Latin square
design appears in many elementary statistics texts, e.g., Snedecor and Cochran
(1967, pages 312−317).

Example

This example performs an analysis for a Latin square design using data discussed
by Kirk (1982, Table 7.3-2, pages 312−317). The responses are thickness of tread
remaining on each of 32 tires after 10,000 miles of driving. The tires are divided
equally among four different types, labeled A, B, C, and D. Four cars are used in
the study. The experiment is performed twice, sixteen tires are used in each
experiment. Each of the sixteen tires occupies one of the four wheel positions on
one of the cars. The data are given in the following table:

Wheel Position Car 1 Car 2 Car 3 Car 4

Right Front A: 1, 2 B: 2, 3 C: 5, 6 D: 9, 8

Left Front B: 3, 4 C: 8, 6 D: 9, 8 A: 2, 3

Right Rear C: 5, 7 D: 10, 11 A: 3, 2 B: 5, 4

Left Rear D: 7, 10 A: 6, 3 B: 3, 4 C: 6, 6

      INTEGER    NRESP, NTRT
      PARAMETER  (NRESP=2, NTRT=4)
C
      INTEGER    IPRINT, ITRT(NTRT*NTRT)
      REAL       AOV(15), EFSS(12), TESTLF(10), Y(NTRT*NTRT*NRESP),
     &           YMEANS(3*NTRT+NTRT*NTRT)
      EXTERNAL   ALATN
C
      DATA Y/1.0, 2.0, 2.0, 3.0, 5.0, 6.0, 9.0, 8.0, 3.0, 4.0, 8.0,
     &     6.0, 9.0, 8.0, 2.0, 3.0, 5.0, 7.0, 10.0, 11.0, 3.0, 2.0,
     &     5.0, 4.0, 7.0, 10.0, 6.0, 3.0, 3.0, 4.0, 6.0, 7.0/
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      DATA ITRT/1, 2, 3, 4, 2, 3, 4, 1, 3, 4, 1, 2, 4, 1, 2, 3/
      DATA IPRINT/3/
C
      CALL ALATN (NTRT, NRESP, Y, ITRT, IPRINT, AOV, EFSS, TESTLF,
     &            YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             89.809     85.640           1.044       5.375           19.43

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  9       211.5       23.50     21.542    0.0000
 Error                 22        24.0        1.09
 Corrected Total       31       235.5

 * * * Decomposition of Variation Attributable to the Model * * *
        Source                  Sum of             Prob. of
                        DF     Squares          F  Larger F
        Row              3         9.2      2.826    0.0622
        Column           3         7.8      2.368    0.0983
        Treatment        3       194.5     59.431    0.0000

                           Test for Lack of Fit
 Source                           Sum of        Mean             Prob. of
                          DF     Squares      Square          F  Larger F
 Experimental Error        6           5       0.833      0.702    0.6525
 Within Cell              16          19       1.188
 Error                    22          24

 * * * Row Means * * *
    Row  Mean (N=4)
      1       4.500
      2       5.375
      3       5.875
      4       5.750

 * * * Column Means * * *
    Column  Mean (N=4)
         1       4.875
         2       6.125
         3       5.000
         4       5.500

 * * * Treatment Means * * *
    Treatment  Mean (N=4)
            1         2.8
            2         3.5
            3         6.2
            4         9.0

 * * * Cell Means * * *
    Row      Column  Mean (N=2)
      1           1       1.500
      1           2       2.500
      1           3       5.500
      1           4       8.500
      2           1       3.500
      2           2       7.000
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      2           3       8.500
      2           4       2.500
      3           1       6.000
      3           2      10.500
      3           3       2.500
      3           4       4.500
      4           1       8.500
      4           2       4.500
      4           3       3.500
      4           4       6.500

ANWAY/DANWAY (Single/Double precision)
Analyze a balanced n-way classification model with fixed effects.

Usage
CALL ANWAY (NF, NL, Y, INTERA, IPRINT, AOV, EFSS, LDEFSS,
            YMEANS)

Arguments

NF — Number of factors (number of subscripts) in the model including
error.   (Input)

NL — Vector of length NF containing the number of levels for each of the
factors.   (Input)

Y — Vector of length NL(1) * NL(2) * … * NL(NF) containing the responses.
(Input)
Y must not contain NaN (not a number) for any of its elements, i.e., missing
values are not allowed.

INTERA — Interaction option.   (Input)
The absolute value of INTERA is the number of factors to be included in the
highest-way interaction in the model. The sign of INTERA indicates if factor NF is
error.

INTERA Meaning
< 0 Factor NF is not error. Only (−INTERA + 1)-way and higher-way

interactions are included in error.
> 0 Factor NF is error. Its main effect and all its interaction effects are

pooled into the error with the other (INTERA + 1)-way and higher-way

IPRINT — Printing option.   (Input)

IPRINT Action
0 Printing is not performed.
1 AOV and EFSS are printed.
2, −2 Only marginal means are printed. If IPRINT = 2, then all of YMEANS is

printed. If IPRINT = −2, then marginal means higher than (|INTERA|) -
way are not printed.

3, −3 AOV, EFSS, and all or some of YMEANS is printed. If IPRINT = 3, then all
of YMEANS is printed. If IPRINT = −3, then marginal means higher than
(|INTERA|) -way are not printed.
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AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model
2 Degrees of freedom for error
3 Total (corrected) degrees of freedom
4 Sum of squares for the model
5 Sum of squares for error
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error
14 Overall mean of Y
15 Coefficient of variation (in percent)

EFSS — NEF by 4 matrix containing statistics relating to the sums of squares for
the effects in the model.   (Output)
Here, NEF= BINOM(n, 1) + BINOM(n, 2) + … + BINOM(n, |INTERA|) where the
IMSL subroutine BINOM (IMSL MATH/LIBRARY Special Functions) returns the
binomial coefficient, and n is given by

n = %&'
NF

NF

if INTERA is negative

-1 if INTERA is positive

Suppose the factors are A, B, C, and error. With INTERA = 3, rows 1 through NEF
would correspond to A, B, C, AB, AC, BC, and ABC, respectively. The columns of
EFSS are as follows:

Column Description
1 Degrees of freedom
2 Sum of squares
3 F -statistic
4 p-value

LDEFSS — Leading dimension of EFSS exactly as specified in the dimension
statement in the calling program.   (Input)

YMEANS — Vector of length (NL(1) + 1) * (NL(2) + 1) * … * (NL(n) + 1)
containing subgroup means.   (Output)
See argument EFSS for a definition of n. Suppose that the factors are A, B, C, and
error. The ordering of the means is grand mean, A means, B means, C means, AB
means, AC means, BC means, and ABC means.

Comments

Automatic workspace usage is
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ANWAY (n + 12) * 2Q-� + NMEANS + (NF + 2) * 2NF-� + n + 2 units, or

DANWAY (n + 22) * 2Q-� + 2 * NMEANS + (NF + 2) * 2NF-� + n + 6 units.

Here, NMEANS = (NL(1) + 1) * (NL(2) + 1) * … * (NL(NF) + 1), and n is defined in
the description of argument EFSS. Workspace may be explicitly provided, if
desired, by use of A2WAY/DA2WAY. The reference is

CALL A2WAY (NF, NL, Y, INTERA, IPRINT, AOV, EFSS, LDEFSS,
            YMEANS, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 5 * 2Q + NMEANS + 4.

IWK — Work vector of length (NF + 2) * 2NF-1 + (n + 2) * 2Q-1 + n − 2.

Algorithm

Routine ANWAY performs an analysis for an n-way classification design with
balanced data. For balanced data, there must be an equal number of responses in
each cell of the n-way layout. The effects are assumed to be fixed effects. The
model is an extension of the twoway model to include n factors. The interactions
(two-way, three-way, up to n-way) can be included in the model, or some of the
higher-way interactions can be pooled into error. The argument INTERA specifies
which interactions are to be pooled into error. For example, if three-way and
higher-way interactions are to be pooled into error, set INTERA = −2 or INTERA =
2. A positive INTERA indicates there are repeated responses within the n-way
cells, while a negative INTERA indicates otherwise.

Routine ANWAY requires the responses as input into a single vector Y in
lexicographical order so that the response subscript associated with the first factor
varies least rapidly, the subscript associated with the second factor varies next
most rapidly, and so forth. Hemmerle (1967, Chapter 5) discusses the
computational method.

Example 1

A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, page 347). The responses are the
weight gains (in grams) of rats fed diets varying in two components—source of
protein (A) and level of protein (B). Here, INTERA = 2 is used. The model is

yLMN = µ + αL + βM + γLM + εLMN     i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

α β γi j ij
iji

= = =
===
∑∑∑ 0 0 0

1

2

1

3

1

2

; ;

for j = 1, 2, 3; and
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1

3

0
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for i = 1, 2.

The first responses in each cell in the two-way layout are given in the following
table:

Protein Source (A)

Protein
Level (B)

Beef Cereal Pork

High 73, 102, 118, 104, 81,
107, 100, 87, 117, 111

98, 74, 56, 111, 95,
88, 82, 77, 86, 92

94, 79, 96, 98, 102,
102, 108, 91, 120, 105

Low 90, 76, 90, 64, 86 51,
72, 90, 95, 78

107, 95, 97, 80, 98,
74, 74, 67, 89, 58

49, 82, 73, 86, 81, 97,
106, 70, 61, 82

      INTEGER    LDEFSS, NEF, NF, NMEANS, NOBS
      PARAMETER  (NEF=3, NF=3, NMEANS=12, NOBS=60, LDEFSS=NEF)
C
      INTEGER    INTERA, IPRINT, NL(NF)
      REAL       AOV(15), EFSS(LDEFSS,4), Y(NOBS), YMEANS(NMEANS)
      EXTERNAL   ANWAY
C
      DATA Y/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
     &     117.0, 111.0, 90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0,
     &     90.0, 95.0, 78.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0,
     &     82.0, 77.0, 86.0, 92.0, 107.0, 95.0, 97.0, 80.0, 98.0,
     &     74.0, 74.0, 67.0, 89.0, 58.0, 94.0, 79.0, 96.0, 98.0,
     &     102.0, 102.0, 108.0, 91.0, 120.0, 105.0, 49.0, 82.0, 73.0,
     &     86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0/
      DATA NL/3, 2, 10/
C
      INTERA = 2
      IPRINT = 3
      CALL ANWAY (NF, NL, Y, INTERA, IPRINT, AOV, EFSS, LDEFSS, YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             28.477     21.854           14.65       87.87           16.67

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  5      4612.9       922.6      4.300    0.0023
 Error                 54     11586.0       214.6
 Corrected Total       59     16198.9

         * * * Variation Due to the Model * * *
                            Sum of             Prob. of
 Source             DF     Squares          F  Larger F
 A                   2      266.53      0.621    0.5411
 B                   1     3168.27     14.767    0.0003
 A*B                 2     1178.13      2.746    0.0732

 * * * Subgroup Means * * *
  A Means (N=20)
  1       89.6000
  2       84.9000
  3       89.1000
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  B Means (N=30)
  1       95.1333
  2       80.6000

   A*B Means (N=10)
  1   1      100.0000
  1   2       79.2000
  2   1       85.9000
  2   2       83.9000
  3   1       99.5000
  3   2       78.7000

Example 2

This example performs a three-way analysis of variance using data discussed by
John (1971, pages 91−92). The responses are weights (in grams) of roots of
carrots grown with varying amounts of applied nitrogen (A), potassium (B), and
phosphorus (C). There is one response within each cell of the three-way layout.
INTERA is set to −2 in order to pool the ABC three-factor interaction into error.
(Note that the ABC interaction sum of squares, which is 186, is given incorrectly
by John [1971, Table 5.2].) IPRINT is set to −3 so that the ABC means will not
be printed (since |INTERA| is equal to 2). The three-way layout is given in the
following table:

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87

      INTEGER    LDEFSS, NEF, NF, NMEANS, NOBS
      PARAMETER  (NEF=6, NF=3, NMEANS=64, NOBS=27, LDEFSS=NEF)
C
      INTEGER    INTERA, IPRINT, NL(NF)
      REAL       AOV(15), EFSS(LDEFSS,4), Y(NOBS), YMEANS(NMEANS)
      EXTERNAL   ANWAY
C
      DATA Y/88.76, 87.45, 86.01, 91.41, 98.27, 104.20, 97.85, 95.85,
     &     90.09, 94.83, 84.57, 81.06, 100.49, 97.20, 120.8, 99.75,
     &     112.30, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,
     &     104.51, 110.94, 102.87/
      DATA NL/3, 3, 3/
C
      INTERA = -2
      IPRINT = -3
      CALL ANWAY (NF, NL, Y, INTERA, IPRINT, AOV, EFSS, LDEFSS, YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             92.804     76.612           4.819       98.96           4.869
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                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 18      2395.7       133.1      5.731    0.0083
 Error                  8       185.8        23.2
 Corrected Total       26      2581.5

         * * * Variation Due to the Model * * *
                            Sum of             Prob. of
 Source             DF     Squares          F  Larger F
 A                   2      488.37     10.515    0.0058
 B                   2     1090.66     23.483    0.0004
 C                   2       49.15      1.058    0.3911
 A*B                 4      142.59      1.535    0.2804
 A*C                 4       32.35      0.348    0.8383
 B*C                 4      592.62      6.380    0.0131

 * * * Subgroup Means * * *
   A Means (N=9)
  1       93.3211
  2       99.9744
  3      103.5900

   B Means (N=9)
  1       90.0311
  2      104.3067
  3      102.5478

   C Means (N=9)
  1       97.5256
  2       98.5922
  3      100.7678

    A*B Means (N=3)
  1   1       87.4067
  1   2       97.9600
  1   3       94.5967
  2   1       86.8200
  2   2      106.1633
  2   3      106.9400
  3   1       95.8667
  3   2      108.7967
  3   3      106.1067

    A*C Means (N=3)
  1   1       92.6733
  1   2       93.8567
  1   3       93.4333
  2   1       98.3567
  2   2       98.0233
  2   3      103.5433
  3   1      101.5467
  3   2      103.8967
  3   3      105.3267

    B*C Means (N=3)
  1   1       94.4967
  1   2       88.3333
  1   3       87.2633
  2   1       97.3767
  2   2      101.0800
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  2   3      114.4633
  3   1      100.7033
  3   2      106.3633
  3   3      100.5767

ABALD/DABALD (Single/Double precision)
Analyze a balanced complete experimental design for a fixed, random, or mixed
model.

Usage
CALL ABALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF,
            CONPER, IPRINT, MODEL, AOV, EMS, VC, LDVC,
            YMEANS)

Arguments

NF — Number of factors (number of subscripts) in the model, including
error.   (Input)

NL — Vector of length NF containing the number of levels for each of the
factors.   (Input)

Y — Vector of length NL(1) * NL(2) * ⋅⋅⋅ * NL(NF) containing the responses.
(Input)
Y must not contain NaN (not a number) for any of its elements, i.e., missing
values are not allowed.

NRF — For positive NRF, −NRF is the number of random factors.   (Input)
For negative NRF, −NRF is the number of random effects (sources of variation).

INDRF — Index vector of length |NRF| containing either the factor numbers to be
considered random (for NRF positive) or containing the effect numbers to be
considered random (for NRF negative).   (Input)
If NRF = 0, INDRF is not referenced and can be a vector of length one.

NEF — Number of effects (sources of variation) due to the model excluding the
overall mean and error.   (Input)

NFEF — Vector of length NEF containing the number of factors associated with
each effect in the model.   (Input)

INDEF — Index vector of length NFEF(1) + NFEF(2) + … + NFEF(NEF).
(Input)
The first NFEF(1) elements give the factor numbers in the first effect. The next
NFEF(2) elements give the the factor numbers in the second effect. The last
NFEF(NEF) elements give the factor numbers in the last effect. Main effects must
appear before their interactions. In general, an effect E cannot appear after an
effect F if all of the indices for E appear also in F .

CONPER — Confidence level for two-sided interval estimates on the variance
components, in percent.   (Input)
CONPER percent confidence intervals are computed, hence, CONPER must be in
the interval [0.0, 100.0). CONPER often will be 90.0, 95.0, or 99.0. For one-sided
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intervals with confidence level ONECL, ONECL in the interval [50.0, 100.0), set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 All is performed.
−k Printing restricted to exclude marginal means higher than k ways. For

example, only one-way and two-way marginal means will be printed if
IPRINT = −2.

Let

n =
−

%&'
NF INDEF NF

NF

if

otherwise

contains one or more elements equal to

1

The value of IPRINT must be between −n and 1, inclusively.

MODEL — Model Option.   (Input)

MODEL Meaning
0 Searle model
1 Scheffe model

For the Scheffe model, effects corresponding to interactions of fixed and random
factors have their sum over the subscripts corresponding to fixed factors equal to
zero. Also, the variance of a random interaction effect involving some fixed
factors has a multiplier for the associated variance component that involves the
number of levels in the fixed factors. The Searle model has no summation
restrictions on the random interaction effects and has a multiplier of one for each
variance component.

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model
2 Degrees of freedom for error
3 Total (corrected) degrees of freedom
4 Sum of squares for the model
5 Sum of squares for error
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 F -statistic
10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)
13 Estimated standard deviation of the model error
14 Overall mean of Y
15 Coefficient of variation (in percent)
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EMS — Vector of length (NEF + 1) * (NEF + 2)/2 containing expected mean
square coefficients.   (Output)
Suppose the effects are A, B, and AB. The ordering of the coefficients in EMS is
as follows:

Error AB B A
A EMS(1) EMS(2) EMS(3) EMS(4)
B EMS(5) EMS(6) EMS(7)
AB EMS(8) EMS(9)
Error EMS(10)

VC — NEF + 1 by 9 matrix containing statistics relating to the particular variance
components or effects in the model and the error.   (Output)
Rows of VC correspond to the NEF effects plus error. Columns of VC are as
follows:

Column Description
1 Degrees of freedom
2 Sum of squares
3 Mean squares
4 F -statistic
5 p-value for F test
6 Variance component estimate
7 Percent of variance of y explained by random effect
8 Lower endpoint for a confidence interval on the variance component
9 Upper endpoint for a confidence interval on the variance component

Columns 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if
there is no variance component to be estimated. If the variance component
estimate is negative, columns 8 and 9 contain NaN.

LDVC — Leading dimension of VC exactly as specified in the dimension
statement of the calling program.   (Input)

YMEANS — Vector of length (NL(1) + 1) * (NL(2) + 1) * … * (NL(n) + 1)
containing the subgroup means.   (Output)
Suppose the factors are A, B, and C. The ordering of the means is grand mean, A
means, B means, C means, AB means, AC means, BC means, and ABC means.

Comments

Automatic workspace usage is

ABALD 13 * max(NEF + 3, 2Q − 1) units of character workspace and 3 * 2NF +2

* NEF + m + 4 + 2NF − 1 + NF * 2NF-1 + max(2NF, NF + NEF + LINDEF)
units of numeric workspace, or

DABALD 13 * max(NEF + 3, 2Q − 1) units of character workspace and 6 * 2NF + 4

* NEF + 2 * m + 8 + 2NF − 1 + NF * 2NF-1 + max(2NF, NF + NEF +
LINDEF) units of numeric workspace.
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Here, m = (NL(1) + 1) * (NL(2) + 1) * … * (NL(NF) + 1), and LINDEF = NFEF(1)
+ NFEF(2) + … + NFEF(NEF). Workspace may be explicitly provided, if desired,
by use of A2ALD/DA2ALD. The reference is

CALL A2ALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF,
            CONPER, IPRINT, MODEL, AOV, EMS, VC, LDVC,
            YMEANS, WK, IWK, CHWK)

The additional arguments are as follows:

WK — Work vector of length 3 * 2NF + 2 * NEF+ m + 4.

IWK — Work vector of length max(2NF, NF + NEF + LINDEF )+ 2NF −1 + NF *

2NF-1.

CHWK — CHARACTER * 13 vector of length max(NEF + 3, 2Q − 1). If IPRINT =
0, CHWK is not referenced and can be a vector of length one.

Algorithm

Routine ABALD analyzes a balanced complete experimental design for a fixed,
random, or mixed model. The analysis includes an analysis of variance table, and
computation of subgroup means and variance component estimates. A choice of
two parameterizations of the variance components for the model can be made.

Scheffé (1959, pages 274−289) discusses the parameterization for MODEL = 1.
For example, consider the following model equation with fixed factor A and
random factor B:

yLMN = µ + αL + bM + cLM + eLMN     i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n

The fixed effects αL’s are subject to the restriction

∑ ==i
a

i1 0α

the bM’s are random effects identically and independently distributed

N B( , )0 2σ
cLM are interaction effects each distributed

N
a

a AB( , )0
1 2− σ

and are subject to the restrictions

∑ = ==i
a

ijc j b1 0 1 2for , , ,K

and the eLMN’s are errors identically and independently distributed N(0, σ2). In
general, interactions of fixed and random factors have sums over subscripts
corresponding to fixed factors equal to zero. Also in general, the variance of a
random interaction effect is the associated variance component times a product of
ratios for each fixed factor in the random interaction term. Each ratio depends on
the number of levels in the fixed factor. In the earlier example, the random
interaction AB has the ratio (a −1)/a as a multiplier of
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σ AB
2

and

var(y
a

aijk B AB) = + − +σ σ σ2 2 21

In a three-way crossed classification model, an ABC interaction effect with A
fixed, B random, and C fixed would have variance

( )( )a c

ac ABC
− −1 1 2σ

Searle (1971, pages 400−401) discusses the parameterization for MODEL = 0. This
parameterization does not have the summation restrictions on the effects
corresponding to interactions of fixed and random factors. Also, the variance of
each random interaction term is the associated variance component, i.e., without
the multiplier. This parameterization is also used with unbalanced data, which is
one reason for is popularity with balanced data also. In the earlier example,

var yijk B AB3 8 = + +~ ~σ σ σ2 2 2

Searle (1971, pages 400−404) compares these two parameterizations. Hocking
(1973) considers these different parameterizations and concludes they are
equivalent because they yield the same variance-covariance structure for the
responses. Differences in covariances for individual terms, differences in
expected mean square coefficients and differences in F tests are just a
consequence of the definition of the individual terms in the model and are not
caused by any fundamental differences in the models. For the earlier two-way
model, Hocking states that the relations between the two parameterizations of the
variance components are

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2

1= +

=

~ ~

~

where
~ ~σ σB AB

2 2 and 

are the variance components in the parameterization with MODEL = 0.

The computations for degrees of freedom and sums of squares are the same
regardless of the option specified by MODEL. ABALD first computes degrees of
freedom and sum of squares for a full factorial design. Degrees of freedom for
effects in the factorial design that are missing from the specified model are pooled
into the model effect containing the fewest subscripts but still containing the
factorial effect. If no such model effect exists, the factorial effect is pooled into
error. If more than one such effect exists, a terminal error message is issued
indicating a misspecified model.

The analysis of variance method is used for estimating the variance components.
This method solves a linear system in which the mean squares are set to the
expected mean squares. A problem that Hocking (1985, pages 324−330)
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discusses is that this method can yield a negative variance component estimate.
Hocking suggests a diagnostic procedure for locating the cause of the negative
estimate. It may be necessary to re-examine the assumptions of the model.

The percentage of variation explained by each random effect is computed (output
in VC(i, 7)) as the variance of the associated random effect divided by the
variance of y. The two parameterizations can lead to different values because of
the different definitions of the individual terms in the model. For example, the
percentage associated with the AB interaction term in the earlier two-way mixed
model is computed for MODEL = 1 using the formula

VC(3,7) =

−

+ − +

a

a
a

a

AB

B AB

1

1

2

2 2 2

σ

σ σ σ

while for the parameterization MODEL = 0, the percentage is computed using the
formula

VC(3,7) =
+ +

~

~ ~
σ

σ σ σ
AB

B AB

2

2 2 2

In each case, the variance compenents are replaced by their estimates (stored in
VC(i, 6)).

Confidence intervals on the variance components are computed using the method
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).
Routine CIDMS (page 426) is used.

Example 1

An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is

yLMN = µ + αL + bM + cLM + eLMN     i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yLMN is the response for the k-th experimental unit in block j with treatment i;

the αL’s are the treatment effects and are subject to the restriction

∑ ==i i1
2 0α

the bM’s are block effects identically and independently distributed

N B( , )0 2σ
cLM are interaction effects each distributed

N AB( , )0 3
4

2σ

and are subject to the restrictions

∑ = ==i ijc j1
4 0 1 2 3 4for , , ,

and the eLMN’s are errors, identically and independently distributed N(0, σ2). The
interaction effects are assumed to be distributed independently of the errors.
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The data are given in the following table:

Block

Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11

      INTEGER    LDVC, LINDEF, NEF, NF, NMEANS, NOBS, NRF
      PARAMETER  (LINDEF=4, NEF=3, NF=3, NMEANS=25, NOBS=32, NRF=2,
     &           LDVC=NEF+1)
C
      INTEGER    INDEF(LINDEF), INDRF(NRF), IPRINT, MODEL, NFEF(NEF),
     &           NL(NF)
      REAL       AOV(15), CONPER, EMS((NEF+1)*(NEF+2)/2),
     &           VC(LDVC,9), Y(NOBS), YMEANS(NMEANS)
      EXTERNAL   ABALD
C
      DATA NL/4, 4, 2/
      DATA INDRF/2, 3/
      DATA NFEF/1, 1, 2/
      DATA INDEF/1, 2, 1, 2/
      DATA Y/3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0,
     &     2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
     &     6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0/
C
      CONPER = 95.0
      IPRINT = 1
      MODEL  = 1
      CALL ABALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF, CONPER,
     &            IPRINT, MODEL, AOV, EMS, VC, LDVC, YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             91.932     84.368            1.09       5.375           20.27
\newpage

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 15       216.5       14.43     12.154    0.0000
 Error                 16        19.0        1.19
 Corrected Total       31       235.5

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      3      194.50     64.8333     32.873    0.0000
 B                      3        4.25      1.4167      1.193    0.3440
 AB                     9       17.75      1.9722      1.661    0.1802

      * * * EMS * * *
        Error  AB   B   A
 A          1   2   0   8
 B          1   0   8
 AB         1   2
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 Error      1

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 B               0.0286       1.897       0.00000        2.3168
 AB              0.3924      19.483       0.00000        2.7580
 Error           1.1875      78.621       0.65868        2.7506

 * * * Subgroup Means * * *
  A Means (N=8)
 1        2.7500
 2        3.5000
 3        6.2500
 4        9.0000

  B Means (N=8)
 1        6.0000
 2        5.1250
 3        5.1250
 4        5.2500

   AB  Means (N=2)
 1  1        4.5000
 1  2        2.0000
 1  3        2.0000
 1  4        2.5000
 2  1        4.5000
 2  2        3.0000
 2  3        3.5000
 2  4        3.0000
 3  1        7.5000
 3  2        6.0000
 3  3        5.5000
 3  4        6.0000
 4  1        7.5000
 4  2        9.5000
 4  3        9.5000
 4  4        9.5000

Example 2

An analysis of a split-plot design is performed using data discussed by Milliken
and Johnson (1984, Table 24.1, page 297). Label the two treatment factors A and
C. Denote the treatment combination aick as that at the i-th level of A and the k-th
level of C. The model is

yLMN = µ + αL + bM + dLM + δLN + eLMN     i = 1, 2; j = 1, 2; k = 1, 2, 3, 4

where yLMN is the response for the j-th experimental unit with treatment

combination aLcN; the αL’s are the effects due to treatment factor A, the bM’s are
block effects identically and independently distributed

N B( , )0 2σ
the dLM are split plot errors that are identically and independently distributed

N AB( , )0 2σ
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the γN’s are the effects due to treatment factor C, the δLN’s are interaction effects
between factors A and C, and the eLMN’s are identically and independently

distributed N(0, σ2). The block effects, whole plot errors, and split plot errors are
independent.

The data are given in the following table.

C

A Block 1 2

1 1

2

35.4

41.6

37.9

40.3

2 1

2

36.7

42.7

38.2

41.6

3 1

2

34.8

43.6

36.4

42.8

4 1

2

39.5

44.5

40.0

47.6

      INTEGER    LDVC, LINDEF, NEF, NF, NMEANS, NOBS, NRF
      PARAMETER  (LINDEF=7, NEF=5, NF=3, NMEANS=45, NOBS=16, NRF=1,
     &           LDVC=NEF+1)
C
      INTEGER    INDEF(LINDEF), INDRF(NRF), IPRINT, MODEL, NFEF(NEF),
     &           NL(NF)
      REAL       AOV(15), CONPER, EMS((NEF+1)*(NEF+2)/2), VC(LDVC,9),
     &           Y(NOBS), YMEANS(NMEANS)
      EXTERNAL   ABALD
C
      DATA NL/4, 2, 2/
      DATA INDRF/2/
      DATA NFEF/1, 1, 2, 1, 2/
      DATA INDEF/1, 2, 1, 2, 3, 1, 3/
      DATA Y/35.4, 37.9, 41.6, 40.3, 36.7, 38.2, 42.7, 41.6, 34.8,
     &     36.4, 43.6, 42.8, 39.5, 40.0, 44.5, 47.6/
C
      CONPER = 95.0
      IPRINT = -2
      MODEL  = 0
      CALL ABALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF, CONPER,
     &            IPRINT, MODEL, AOV, EMS, VC, LDVC, YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             95.574     83.401           1.452       40.22           3.609

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 11       182.0       16.55      7.852    0.0306
 Error                  4         8.4        2.11
 Corrected Total       15       190.4
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                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      3      40.190      13.397      5.802    0.0914
 B                      1     131.102     131.102     56.775    0.0048
 AB                     3       6.928       2.309      1.096    0.4476
 C                      1       2.250       2.250      1.068    0.3599
 AC                     3       1.550       0.517      0.245    0.8612

          * * * EMS * * *
        Error  AC   C  AB   B   A
 A          1   0   0   2   0   4
 B          1   0   0   2   8
 AB         1   0   0   2
 C          1   0   8
 AC         1   2
 Error      1

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 B               16.099      87.938        2.2597       16686.7
 AB               0.101       0.551        0.0000          15.1
 Error            2.108      11.512        0.7565          17.4

 * * * Subgroup Means * * *
  A Means (N=4)
 1       38.8000
 2       39.8000
 3       39.4000
 4       42.9000

  B Means (N=8)
 1       37.3625
 2       43.0875

  C Means (N=8)
 1       39.8500
 2       40.6000

   AB  Means (N=2)
 1  1       36.6500
 1  2       40.9500
 2  1       37.4500
 2  2       42.1500
 3  1       35.6000
 3  2       43.2000
 4  1       39.7500
 4  2       46.0500

   AC  Means (N=2)
 1  1       38.5000
 1  2       39.1000
 2  1       39.7000
 2  2       39.9000
 3  1       39.2000
 3  2       39.6000
 4  1       42.0000
 4  2       43.8000

   BC  Means (N=4)
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 1  1       36.6000
 1  2       38.1250
 2  1       43.1000
 2  2       43.0750

Example 3

An analysis of a split-plot factorial design is performed using data discussed by
Kirk (1982, Table 11.2-1, pages 493−496). Label the two treatment factors A and
C. Denote the treatment combination aLcN as that at the i-th level of A and the k-th
level of C. The model is

yLMN = µ + αL + bMM + γN + δLN + eLMN     i = 1, 2; j = 1, 2, 3, 4; k = 1, 2, 3, 4

where yLMN is the response for the j-th experimental unit with treatment

combination aLcN; the αL’s are the effects due to treatment factor A and are subject
to the restriction

∑ ==i i1
2 0α

the bLM’s are block effects identically and independently distributed

N B( , )0 2σ

the γN’s are the effects due to treatment factor C and are subject to the restriction

∑ ==k k1
4 0γ

the δLN’s are interaction effects between factors A and C and are subject to the
restrictions

∑ ==i ik1
2 0δ

for each k, and

∑ ==k ik1
4 0δ

for each i, and the eLMN’s are identically and independently distributed N(0, σ2).
The block effects are assumed to be distributed independently of the errors.

The data are given in the following table:

C

A Block 1 2 3 4

1 1 3 4 7 7

2 6 5 8 8

3 3 4 7 9

4 3 3 6 8

2 5 1 2 5 10

6 2 3 6 10

7 2 4 5 9

8 2 3 6 11
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      INTEGER    LDVC, LINDEF, NEF, NF, NMEANS, NOBS, NRF
      PARAMETER  (LINDEF=6, NEF=4, NF=3, NMEANS=75, NOBS=32, NRF=-1,
     &           LDVC=NEF+1)
C
      INTEGER    INDEF(LINDEF), INDRF(-NRF), IPRINT, MODEL, NFEF(NEF),
     &           NL(NF)
      REAL       AOV(15), CONPER, EMS((NEF+1)*(NEF+2)/2),
     &           VC(LDVC,9), Y(NOBS), YMEANS(NMEANS)
      EXTERNAL   ABALD
C
      DATA NL/2, 4, 4/
      DATA INDRF/2/
      DATA NFEF/1, 2, 1, 2/
      DATA INDEF/1, 1, 2, 3, 1, 3/
      DATA Y/3.0, 4.0, 7.0, 7.0, 6.0, 5.0, 8.0, 8.0, 3.0, 4.0, 7.0, 9.0,
     &      3.0, 3.0, 6.0, 8.0, 1.0, 2.0, 5.0, 10.0, 2.0, 3.0, 6.0,
     &       10.0, 2.0, 4.0, 5.0, 9.0, 2.0, 3.0, 6.0, 11.0/
C
      CONPER = 95.0
      IPRINT = 1
      MODEL  = 1
      CALL ABALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF, CONPER,
     &            IPRINT, MODEL, AOV, EMS, VC, LDVC, YMEANS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             96.125     93.327           0.712       5.375           13.25

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 13       226.4       17.41     34.350    0.0000
 Error                 18         9.1        0.51
 Corrected Total       31       235.5

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      1       3.125      3.1250      2.000    0.2070
 AB                     6       9.375      1.5625      3.082    0.0296
 C                      3     194.500     64.8333    127.890    0.0000
 AC                     3      19.375      6.4583     12.740    0.0001

        * * * EMS * * *
        Error  AC   C  AB   A
 A          1   0   0   4  16
 AB         1   0   0   4
 C          1   0   8
 AC         1   4

 Error      1
                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 AB             0.26389      34.234       0.00000        1.7760
 Error          0.50694      65.766       0.28944        1.1086

 * * * Subgroup Means * * *
 A Means (N=16)
 1        5.6875
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 2        5.0625

  B Means (N=8)
 1        4.8750
 2        6.0000
 1        5.3750
 2        5.2500

  C Means (N=8)
 1        2.7500
 2        3.5000
 1        6.2500
 2        9.0000

   AB  Means (N=4)
 1  1        5.2500
 1  2        6.7500
 1  3        5.7500
 1  4        5.0000
 2  1        4.5000
 2  2        5.2500
 2  3        5.0000
 2  4        5.5000

   AC  Means (N=4)
 1  1        3.7500
 1  2        4.0000
 1  3        7.0000
 1  4        8.0000
 2  1        1.7500
 2  2        3.0000
 2  3        5.5000
 2  4       10.0000

   BC  Means (N=2)
 1  1        2.0000
 1  2        3.0000
 1  3        6.0000
 1  4        8.5000
 2  1        4.0000
 2  2        4.0000
 2  3        7.0000
 2  4        9.0000
 1  1        2.5000
 1  2        4.0000
 1  3        6.0000
 1  4        9.0000
 2  1        2.5000
 2  2        3.0000
 2  3        6.0000
 2  4        9.5000

   ABC   Means (N=1)
 1  1  1        3.0000
 1  1  2        4.0000
 1  1  3        7.0000
 1  1  4        7.0000
 1  2  1        6.0000
 1  2  2        5.0000
 1  2  3        8.0000
 1  2  4        8.0000
 1  3  1        3.0000
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 1  3  2        4.0000
 1  3  3        7.0000
 1  3  4        9.0000
 1  4  1        3.0000
 1  4  2        3.0000
 1  4  3        6.0000
 1  4  4        8.0000
 2  1  1        1.0000
 2  1  2        2.0000
 2  1  3        5.0000
 2  1  4       10.0000
 2  2  1        2.0000
 2  2  2        3.0000
 2  2  3        6.0000
 2  2  4       10.0000
 2  3  1        2.0000
 2  3  2        4.0000
 2  3  3        5.0000
 2  3  4        9.0000
 2  4  1        2.0000
 2  4  2        3.0000
 2  4  3        6.0000
 2  4  4       11.0000

ANEST/DANEST (Single/Double precision)
Analyze a completely nested random model with possibly unequal numbers in the
subgroups.

Usage
CALL ANEST (NF, IEQ, NL, Y, CONPER, IPRINT, AOV, EMS, VC,
            LDVC, YMEANS, NMISS)

Arguments

NF — Number of factors (number of subscripts) in the model including
error.   (Input)

IEQ — Equal numbers option.   (Input)

IEQ Description
0 Unequal numbers in the subgroups
1 Equal numbers in the subgroups

NL — Vector with the number of levels.   (Input)
If IEQ = 1, NL is of length NF and contains the number of levels for each of the
factors. In this case, the following additional variables are referred to in the
description of ANEST:

Variable Description
LNL     NL(1) + NL(1) * NL(2) + … + NL(1) * NL(2) * … * NL(NF − 1)
LNLNF   NL(1) * NL(2) * …* NL(NF − 1)
NOBS    The number of observations. NOBS equals NL(1) * NL(2) * …

* NL(NF).
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If IEQ = 0, NL contains the number of levels of each factor at each level of the
factor in which it is nested. In this case, the following additional variables are
referred to in the description of ANEST:

Variable Description
LNL      Length of NL.
LNLNF     Length of the subvector of NL for the last factor.
NOBS    Number of observations. NOBS equals the sum of the last

LNLNF elements of NL.

For example, a random one-way model with two groups, five responses in the
first group and ten in the second group, would have LNL = 3, LNLNF = 2,
NOBS = 15, NL(1) = 2, NL(2) = 5, and NL(3) = 10.

Y — Vector of length NOBS containing the responses.   (Input)
The elements of Y are ordered lexicographically, i.e., the last model subscript
changes most rapidly, the next next to last model subscript changes the next most
rapidly, and so forth, with the first subscript changing the slowest.

CONPER — Confidence level for two-sided interval estimates on the variance
components, in percent.   (Input)
CONPER percent confidence intervals are computed, hence, CONPER must be in
the interval [0.0, 100.0). CONPER often will be 90.0, 95.0, or 99.0. For one-sided
intervals with confidence level ONECL, ONECL in the interval [50.0, 100.0), set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed.

AOV — Vector of length 15 containing statistics relating to the analysis of
variance.   (Output)

I AOV(I)
1 Degrees of freedom for the model
2 Degrees of freedom for error
3 Total (corrected) degrees of freedom
4 Sum of squares for the model
5 Sum of squares for error
6 Total (corrected) sum of squares
7 Model mean square
8 Error mean square
9 F-statistic
10 p-value

11 R2
12 Adjusted R2
13 Estimated standard deviation of the model error
14 Overall mean of Y
15 Coefficient of variation (in percent)

EMS — Vector of length (NF + 1) * NF/2 with expected mean square
coefficients.   (Output)



IMSL STAT/LIBRARY Chapter 4: Analysis of Variance • 411

VC — NF by 9 matrix containing statistics relating to the particular variance
components in the model.   (Output)
Rows of VC correspond to the NF factors. Columns of VC are as follows:

Column Description
1 Degrees of freedom
2 Sum of squares
3 Mean squares
4 F-statistic
5 p-value for F test
6 Variance component estimate
7 Percent of variance explained by variance component
8 Lower endpoint for a confidence interval on the variance component
9 Upper endpoint for a confidence interval on the variance component

A test for the error variance equal to zero cannot be performed. VC(NF, 4) and
VC(NF, 5) are set to NaN (not a number).

LDVC — Leading dimension of VC exactly as specified in the dimension
statement in the calling program.   (Input)

YMEANS — Vector containing the subgroup means.   (Output)

IEQ Length of YMEANS
0 1 + NL(1) + NL(2) + … NL(LNL − LNLNF) (See the description of

argument NL for definitions of LNL and LNLNF.)
1 1 + NL(1) + NL(1) * NL(2) + … + NL(1) * NL(2) * … * NL(NF − 1)

If the factors are labeled A, B, C, and error, the ordering of the means is grand
mean, A means, AB means, and then ABC means.

NMISS — Number of missing values in Y.   (Output)
Elements of Y equal to NaN (not a number) are omitted from the computations.

Comments

Automatic workspace usage is

ANEST 2 * NF + 1 units of character workspace and 5 * NF +
(2 * LNL − LNLNF) + NOBS units of numeric workspace, or

DANEST 2 * NF + 1 units of character workspace and 2 * (5 * NF +
(2 * LNL − LNLNF) + NOBS) units of numeric workspace.

See the description of argument NL for definitions of LNL, LNLNF, and NOBS.
Workspace may be explicitly provided, if desired, by use of A2EST/DA2EST. The
reference is
CALL A2EST (NF, IEQ, NL, Y, CONPER, IPRINT, AOV, EMS, VC,
            LDVC, YMEANS, NMISS, WK, IWK, CHWK)

The additional arguments are as follows:

WK — Work vector of length NOBS.

IWK — Work vector of length 5 * NF + (2 * LNL − LNLNF).

CHWK — CHARACTER * 10 vector of length 2 * NF + 1. If IPRINT = 0, CHWK is
not referenced and can be a vector of length one.
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Algorithm

Routine ANEST analyzes a nested random model with equal or unequal numbers
in the subgroups. The analysis includes an analysis of variance table and
computation of subgroup means and variance component estimates. Anderson and
Bancroft (1952, pages 325−330) discuss the methodology. The analysis of
variance method is used for estimating the variance components. This method
solves a linear system in which the mean squares are set to the expected mean
squares. A problem that Hocking (1985, pages 324−330) discusses is that this
method can yield negative variance component estimates. Hocking suggests a
diagnostic procedure for locating the cause of a negative estimate. It may be
necessary to reexamine the assumptions of the model.

Example 1

An analysis of a three-factor nested random model with equal numbers in the
subgroups is performed using data discussed by Snedecor and Cochran (1967,
Table 10.16.1, pages 285−288). The responses are calcium concentrations (in
percent, dry basis) as measured in the leaves of turnip greens. Four plants are
taken at random, then three leaves are randomly selected from each plant. Finally,
from each selected leaf two samples are taken to determine calcium
concentration. The model is

yLMN = µ + αL + βMM + eLMN     i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yLMN is the calcium concentration for the k-th sample of the j-th leaf of the i-

th plant, the αL’s are the plant effects and are taken to be independently
distributed

N( , )0 2σ

the βLM’s are leaf effects each independently distributed

N( , )0 2σβ

and the εLMN’s are errors each independently distributed N(0, σ2). The effects are
all assumed to be independently distributed. The data are given in the following
table:
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Plant Leaf Samples

1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80

2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19

3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55

4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31

      INTEGER    LDVC, NF, NMEANS, NOBS
      PARAMETER  (NF=3, NMEANS=17, NOBS=24, LDVC=NF)
C
      INTEGER    IEQ, IPRINT, NL(NF), NMISS
      REAL       AOV(15), CONPER, EMS(NF*(NF+1)/2), VC(LDVC,9), Y(NOBS),
     &           YMEANS(NMEANS)
      EXTERNAL   ANEST
C
      DATA Y/3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,
     &     1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,
     &     3.87, 4.07, 4.12, 3.31, 3.31/
      DATA NL/4, 3, 2/
C
      IEQ    = 1
      CONPER = 95.0
      IPRINT = 1
      CALL ANEST (NF, IEQ, NL, Y, CONPER, IPRINT, AOV, EMS, VC, LDVC,
     &            YMEANS, NMISS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             99.222     98.510         0.08158       3.012           2.708

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 11       10.19      0.9264    139.216    0.0000
 Error                 12        0.08      0.0067
 Corrected Total       23       10.27

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      3     7.56034     2.52011      7.665    0.0097

 B                      8     2.63020     0.32878     49.406    0.0000

 * * * Expected Mean Square Coefficients * * *
                 Error    Effect B    Effect A
 Effect A            1           2           6
 Effect B            1           2
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 Error               1

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 A              0.36522      68.530      0.039551        5.7867
 B              0.16106      30.221      0.069669        0.6004
 Error          0.00665       1.249      0.003422        0.0181

     A Means
 1        3.1750
 2        2.1783
 3        2.9517
 4        3.7433

      AB Means
 1  1        3.1850
 1  2        3.5000
 1  3        2.8400
 2  1        2.4500
 2  2        1.8950
 2  3        2.1900
 3  1        2.7150
 3  2        3.5900
 3  3        2.5500
 4  1        3.8250
 4  2        4.0950

Example 2

An analysis of a three-factor nested random model with unequal numbers in the
subgroups is performed. The data are given in the following table:
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A B C

1 1

2

23.0

31.0

19.0

37.0

2 1

2

33.0

29.0

29.0

3 1 36.0 29.0 33.0

4 1

2

3

4

5

6

7

8

9

11.0

23.0

33.0

23.0

26.0

39.0

20.0

24.0

36.0

21.0

18.0

5 1 25.0 33.0

6 1

2

3

4

5

6

7

8

9

10

28.0

25.0

32.0

41.0

35.0

16.0

30.0

40.0

32.0

44.0

31.0

42.0

36.0

      INTEGER    LDVC, LNL, NF, NMEANS, NOBS
      PARAMETER  (LNL=32, NF=3, NMEANS=32, NOBS=36, LDVC=NF)
C
      INTEGER    IEQ, IPRINT, NL(LNL), NMISS
      REAL       AOV(15), CONPER, EMS(NF*(NF+1)/2), VC(LDVC,9), Y(NOBS),
     &           YMEANS(NMEANS)
      EXTERNAL   ANEST
C
      DATA Y/23.0, 19.0, 31.0, 37.0, 33.0, 29.0, 29.0, 36.0, 29.0,
     &     33.0, 11.0, 21.0, 23.0, 18.0, 33.0, 23.0, 26.0, 39.0, 20.0,
     &     24.0, 36.0, 25.0, 33.0, 28.0, 31.0, 25.0, 42.0, 32.0, 36.0,
     &     41.0, 35.0, 16.0, 30.0, 40.0, 32.0, 44.0/
      DATA NL/6, 2, 2, 1, 9, 1, 10, 2, 2, 2, 1, 3, 2, 2, 1, 1, 1, 1,
     &     1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1/
C
      IEQ    = 0
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      CONPER = 95.0
      IPRINT = 1
      CALL ANEST (NF, IEQ, NL, Y, CONPER, IPRINT, AOV, EMS, VC, LDVC,
     &            YMEANS, NMISS)
      END

Output
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             85.376     53.470            5.31       29.53           17.98

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 24      1810.8       75.45      2.676    0.0459
 Error                 11       310.2       28.20
 Corrected Total       35      2121.0

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      5      461.42     92.2845      0.988    0.4601
 B                     19     1349.38     71.0202      2.519    0.0597

 * * * Expected Mean Square Coefficients * * *
                 Error    Effect B    Effect A
 Effect A      1.00000     1.96503     5.37778
 Effect B      1.00000     1.28990
 Error         1.00000

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 A               -0.214         NaN           NaN           NaN
 B               33.199      54.073          0.00        100.59
 Error           28.197      45.927         14.15         81.29

     A Means
 1       27.5000
 2       30.3333
 3       32.6667
 4       24.9091
 5       29.0000
 6       33.2308

       AB Means
  1   1       21.0000
  1   2       34.0000
  2   1       31.0000
  2   2       29.0000
  3   1       32.6667
  4   1       16.0000
  4   2       20.5000
  4   3       33.0000
  4   4       23.0000
  4   5       26.0000
  4   6       39.0000
  4   7       20.0000
  4   8       24.0000
  4   9       36.0000
  5   1       29.0000
  6   1       29.5000
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  6   2       33.5000
  6   3       34.0000
  6   4       41.0000
  6   5       35.0000
  6   6       16.0000
  6   7       30.0000
  6   8       40.0000
  6   9       32.0000
  6  10       44.0000

CTRST/DCTRST (Single/Double precision)
Compute contrast estimates and sums of squares.

Usage
CALL CTRST (NGROUP, NI, YMEANS, NCTRST, C, LDC, EST, SS)

Arguments

NGROUP — Number of groups or number of sample means involved in the
contrasts.   (Input)

NI — Vector of length NGROUP containing the number of responses for each of
the NGROUP groups.   (Input)

YMEANS — Vector of length NGROUP containing the sample mean for each
group or each level of a classification variable.   (Input)

NCTRST — Number of contrasts.   (Input)

C — NGROUP by NCTRST matrix containing in each column the coefficients for a
particular contrast.   (Input)

LDC — Leading dimension of C exactly as specified in the dimension statement
in the calling program.   (Input)

EST — Vector of length NCTRST containing the contrast estimates.   (Output)

SS — Vector of length NCTRST containing the sum of squares associated with
each contrast.   (Output)

Comments

Informational error
Type Code
   1    1 A column of C does not sum to zero within the computed

tolerance. Customarily, contrasts (linear combinations of means
whose coefficients sum to zero) are of interest.

Algorithm

Routine CTRST computes an estimate of a linear combination of means using the
sample means input in YMEANS. The sum of squares associated with each estimate
is also computed.
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Contrasts (linear combinations of means whose coefficients sum to zero) are
customarily of interest. Orthogonal contrasts (Neter and Wasserman 1974, pages
470−471) are often used to partition the among-groups sum of squares from a
one-way analysis of variance. The following discussion uses the term “contrast”,
however, the term “linear combination of means,” which places no restriction on
the coefficients, is equally valid.

Let

y y yk1 2, , ,K

be the k(= NGROUP) sample means, and let µ1, µ2, …, µN be the associated

population means. Let c1M, c2M, …, cNM be the contrast coefficients for contrast j
(stored in column j of the matrix C). The estimate of

l cj ij i
i

k

=
=
∑ µ

1

is

$l j

(stored as the j-th element of EST) computed by

$l c yj ij i
i

k

=
=
∑

1

The associated sum of squares QM (stored as the j-th element of SS) is computed
by

Q
l

c n
j

j

i
k

ij i

=
=∑
$

/

2

1
2

Example

The following example is taken from Neter and Wasserman (1974, Table 13.1,
page 432, Table 14.3, page 463, pages 470-471). Three orthogonal contrasts are
defined that partition the among-group sum of squares (258.0) from a one-way
analysis of variance. The first contrast compares groups 1 and 2, the second
contrast compares groups 3 and 4, the third contrast compares a weighted average
of groups 1 and 2 with a weighted average of groups 3 and 4.

      INTEGER    NGROUP, LDC, NCTRST
      PARAMETER  (NGROUP=4, LDC=NGROUP, NCTRST=3)
      INTEGER    NI(NGROUP), J, NOUT
      REAL       EST(NCTRST), SS(NCTRST), C(LDC,NCTRST), YMEANS(NGROUP)
C
      DATA YMEANS/15.0, 13.0, 19.0, 27.0/
      DATA NI/2, 3, 3, 2/
      DATA (C(I,1),I=1,NGROUP)/1.0, -1.0, 0.0, 0.0/
      DATA (C(I,2),I=1,NGROUP)/0.0, 0.0, 1.0, -1.0/
      DATA (C(I,3),I=1,NGROUP)/0.4, 0.6, -0.6, -0.4/
C
      CALL CTRST (NGROUP, NI, YMEANS, NCTRST, C, LDC, EST, SS)
      CALL UMACH (2, NOUT)
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      WRITE (NOUT,*) ’Contrast  Estimate  Sum of Squares’
      DO 10  J=1, NCTRST
         WRITE (NOUT,’(1X,I4,5X,F7.1,3X,F10.1)’) J, EST(J), SS(J)
   10 CONTINUE
      END

Output
Contrast Estimate Sum of Squares
  1         2.0          4.8
  2        -8.0         76.8
  3        -8.4        176.4

SCIPM/DSCIPM (Single/Double precision)
Compute simultaneous confidence intervals on all pairwise differences of means.

Usage
CALL SCIPM (NGROUP, NI, YMEANS, DFS2, S2, IMETH, CONPER,
            IPRINT, STAT, LDSTAT)

Arguments

NGROUP — Number of means.   (Input)

NI — Vector of length NGROUP containing the number of observations in each
mean.   (Input)

YMEANS — Vector of length NGROUP containing the means.   (Input)

DFS2 — Degrees of freedom for s2.   (Input)

S2 — s2, the estimated variance of an observation.   (Input)
The variance of YMEANS(I) is estimated by S2/NI(I).

IMETH — Method used for constructing confidence intervals on all pairwise
differences of means.   (Input)

IMETH Method
0 Tukey (if equal group sizes), Tukey-Kramer method (otherwise)
1 Dunn-Sidak method
2 Bonferroni method
3 Scheffe method
4 One-at-a-time t method−LSD test

CONPER — Confidence percentage for the simultaneous interval estimation.
(Input)

IMETH CONPER

0 Percentage must be greater than or equal to 90.0 and less than or equal
to 99.0.

≥ 1 Percentage must be greater than or equal to 0.0 and less than 100.0.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
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1 Printing is performed.

STAT — NGROUP * (NGROUP − 1)/2 by 5 matrix containing the statistics relating
to the difference of means.   (Output)

Col. Description
1 Group number for the i-th mean
2 Group number for the j-th mean
3 Difference of means (i-th mean) (j-th mean)
4 Lower confidence limit for the difference
5 Upper confidence limit for the difference

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

Automatic workspace usage is

SCIPM 2 * NGROUP units, or
DSCIPM 3 * NGROUP units.

Workspace may be explicitly provided, if desired, by use of S2IPM/DS2IPM. The
reference is

CALL S2IPM (NGROUP, NI, YMEANS, DFS2, S2, IMETH, CONPER,
            IPRINT, STAT, LDSTAT, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length NGROUP.

IWK — Integer work vector of length NGROUP.

Algorithm

Routine SCIPM computes simultaneous confidence intervals on all

k* = k(k −  1)/2 pairwise comparisons of k means µ1, µ2, …, µN in the one-way
analysis of variance model. Any of several methods can be chosen. A good
review of these methods is given by Stoline (1981). Also the methods are
discussed in many elementary statistics texts, e.g., Kirk (1982, pages 114−127).

Let s2 (input in S2) be the estimated variance of a single observation. Let v be the

degrees of freedom (input in DFS2) associated with s2: Let
α =1 − CONPER/100.0. The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means µL − µM in balanced (n1 = n2 = … =
nN = n) one-way designs. The method is exact and uses the Studentized range

distribution. The formula for the difference µL − µM is given by

y y q
s

ni j k v− ± −1

2

α; ,

where q1-a;N,Y is the (1 − α)100 percentage point of the Studentized range
distribution with parameters k and v.
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Tukey-Kramer method: The Tukey-Kramer method is an approximate
extension of the Tukey method for the unbalanced case. (The method simplifies
to the Tukey method for the balanced case.) The method always produces
confidence intervals narrower than the Dunn-Sidak and Bonferroni methods.
Hayter (1984) proved that the method is conservative, i.e., the method guarantees
a confidence coverage of at least (1 − α)100%. Hayter’s proof gave further
support to earlier recommendations for its use (Stoline 1981). (Methods that are
currently better are restricted to special cases and only offer improvement in
severely unbalanced cases, see, e.g., Spurrier and Isham 1985). The formula for
the difference µL − µM is given by

y y q
s

n

s

ni j k v
i j

− ± +−1

2 2

2 2α; ,

Dunn-Šidák method The Dunn-Šidák method is a conservative method. The
method gives wider intervals than the Tukey-Kramer method. (For large v and
small α and k, the difference is only slight.) The method is slightly better than the
Bonferroni method and is based on an improved Bonferroni (multiplicative)
inequality (Miller, pages 101, 254−255). The method uses the t distribution (see
IMSL routine TIN, page 1145). The formula for the difference µL − µM is given by

y y t
s

n

s

ni j
v i j

k
− ± +

+ ∗−
1

2

1

2
1

2 2

(1
/) ;α

where tI;Y is the 100f percentage point of the t distribution with v degrees of
freedom.

Bonferroni method: The Bonferroni method is a conservative method based on
the Bonferroni (additive) inequality (Miller, page 8). The method uses the t
distribution. The formula for the difference µL − µM is given by
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Scheffé method: The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method is
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear
combinations
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ic c1 1 0µ  where 

The method can be recommended here only if a large number of confidence
intervals on contrasts in addition to the pairwise differences of means are to be
constructed. The method uses the F distribution (see IMSL routine FIN,
page 1139). The formula for the difference µL − µM is given by
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where F1-a;N-1,Y is the (1 −α)100 percentage point of the F distribution with k −1
and v degrees of freedom.
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One-at-a-time t method (Fisher’s LSD): The one-at-a-time t method is the
method appropriate for constructing a single confidence interval. The confidence
percentage input is appropriate for one interval at a time. The method has been
used widely in conjunction with the overall test of the null hypothesis µ1 = µ2 = 
… = µN by the use of the F statistic. Fisher’s LSD (least significant difference)
test is a two-stage test that proceeds to make pairwise comparisons of means only
if the overall F test is significant.

Milliken and Johnson (1984, page 31) recommend LSD comparisons after a
significant F only if the number of comparisons is small and the comparisons
were planned prior to the analysis. If many unplanned comparisons are made,
they recommend Scheffe’s method. If the F test is insignificant, a few planned
comparisons for differences in means can still be performed by using either
Tukey, Tukey-Kramer, Dunn-Šidák or Bonferroni methods. Because the F test is
insignificant, Scheffe’s method will not yield any significant differences. The
formula for the difference µL − µM is given by
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Example

Simultaneous 99% confidence intervals are computed for all pairwise
comparisons of 5 means from a one-way analysis of variance design. In order to
compare the results of each method, all the options for IMETH are used for input.
The data are given by Kirk (1982, Table 3.5-1, page 117). In the output, pairs of
means declared not equal are indicated by the letter N. The other pairs of means
(for which there is insufficient evidence from the data to declare the means are
unequal) are indicated by an equal sign (=).

      INTEGER    LDSTAT, NGROUP
      PARAMETER  (NGROUP=5, LDSTAT=NGROUP*(NGROUP-1)/2)
C
      INTEGER    IMETH, IPRINT, NI(NGROUP)
      REAL       CONPER, DFS2, S2, STAT(LDSTAT,5), YMEANS(NGROUP)
      EXTERNAL   SCIPM
C
      DATA YMEANS/36.7, 48.7, 43.4, 47.2, 40.3/
      DATA NI/10, 10, 10, 10, 10/
C
      DFS2   = 45.0
      S2     = 28.8
      IMETH  = 0
      CONPER = 99.0
      IPRINT = 1
      DO 10  IMETH=0, 4
         CALL SCIPM (NGROUP, NI, YMEANS, DFS2, S2, IMETH, CONPER,
     &               IPRINT, STAT, LDSTAT)
   10 CONTINUE
      END
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Output
                     Simultaneous Confidence Intervals
                    for All Pairwise Differences of Means
                             (Tukey Method)

                                        99.0% Confidence Interval
                                       --------------------------

    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -20.261        -3.739
 =        1        3             -6.7       -14.961         1.561
 N        1        4            -10.5       -18.761        -2.239
 =        1        5             -3.6       -11.861         4.661
 =        2        3              5.3        -2.961        13.561
 =        2        4              1.5        -6.761         9.761
 N        2        5              8.4         0.139        16.661
 =        3        4             -3.8       -12.061         4.461
 =        3        5              3.1        -5.161        11.361
 =        4        5              6.9        -1.361        15.161

                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                        (Dunn-Sidak Method)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -20.445        -3.555
 =        1        3             -6.7       -15.145         1.745
 N        1        4            -10.5       -18.945        -2.055
 =        1        5             -3.6       -12.045         4.845
 =        2        3              5.3        -3.145        13.745
 =        2        4              1.5        -6.945         9.945
 =        2        5              8.4        -0.045        16.845
 =        3        4             -3.8       -12.245         4.645
 =        3        5              3.1        -5.345        11.545
 =        4        5              6.9        -1.545        15.345

                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                        (Bonferroni Method)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -20.449        -3.551
 =        1        3             -6.7       -15.149         1.749
 N        1        4            -10.5       -18.949        -2.051
 =        1        5             -3.6       -12.049         4.849
 =        2        3              5.3        -3.149        13.749
 =        2        4              1.5        -6.949         9.949
 =        2        5              8.4        -0.049        16.849
 =        3        4             -3.8       -12.249         4.649
 =        3        5              3.1        -5.349        11.549
 =        4        5              6.9        -1.549        15.349
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                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                         (Scheffe Method)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -21.317        -2.683
 =        1        3             -6.7       -16.017         2.617
 N        1        4            -10.5       -19.817        -1.183
 =        1        5             -3.6       -12.917         5.717
 =        2        3              5.3        -4.017        14.617
 =        2        4              1.5        -7.817        10.817
 =        2        5              8.4        -0.917        17.717
 =        3        4             -3.8       -13.117         5.517
 =        3        5              3.1        -6.217        12.417
 =        4        5              6.9        -2.417        16.217

                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                (One-at-a-Time t Method--LSD Test)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -18.455        -5.545
 N        1        3             -6.7       -13.155        -0.245
 N        1        4            -10.5       -16.955        -4.045
 =        1        5             -3.6       -10.055         2.855
 =        2        3              5.3        -1.155        11.755
 =        2        4              1.5        -4.955         7.955
 N        2        5              8.4         1.945        14.855
 =        3        4             -3.8       -10.255         2.655
 =        3        5              3.1        -3.355         9.555
 N        4        5              6.9         0.445        13.355

SNKMC/DSNKMC (Single/Double precision)
Perform Student-Newman-Keuls multiple comparison test.

Usage
CALL SNKMC (NGROUP, YMEANS, SEMEAN, DFSE, ALPHA, IPRINT,
            IEQMNS)

Arguments

NGROUP — Number of groups under consideration.   (Input)

YMEANS — Vector of length NGROUP containing the means.   (Input)

SEMEAN — Effective estimated standard error of a mean.   (Input)
In fixed effects models, SEMEAN equals the estimated standard error of a mean.
For example, in a one-way model

SEMEAN = s n2 /
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where s2 is the estimate of σ2 and n is the number of responses in a sample mean.
In models with random components, use

SEMEAN SEDIF= / 2

where SEDIF is the estimated standard error of the difference of two means.

DFSE — Degrees of freedom associated with SEMEAN.   (Input)

ALPHA — Significance level of test.   (Input)
ALPHA must be in the interval [0.01, 0.10].

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed.

IEQMNS — Vector of length NGROUP − 1 indicating the size of groups of means
declared to be equal.   (Output)
IEQMNS(I) = J indicates the I-th smallest mean and the next J − 1 larger means
are declared equal. IEQMNS(I) = 0 indicates no group of means starts with the I-
th smallest mean.

Comments

Automatic workspace usage is

SNKMC 3 * NGROUP units, or
DSNKMC 4 * NGROUP units.

Workspace may be explicitly provided, if desired, by use of S2KMC/DS2KMC. The
reference is

CALL S2KMC (NGROUP, YMEANS, SEMEAN, DFSE, ALPHA, IPRINT,
            IEQMNS, WK, IWK)

The additional arguments are as follows:

WK — Vector of length NGROUP containing YMEANS in ascending order.
(Output)

IWK — Work vector of length 2 * NGROUP.

Algorithm

Routine SNKMC performs a multiple comparison analysis of means using the
Student-Newman-Keuls method. The null hypothesis is equality of all possible
ordered subsets of a set of means. This null hypothesis is tested using the
studentized range for each of the corresponding subsets of sample means. The
method is discussed in many elementary statistics texts, e.g., Kirk (1982, pages
123−125).

Example

A multiple comparisons analysis is performed using data discussed by Kirk
(1982, pages 123−125). In the output, means that are not connected by a common
underline are declared different.
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      INTEGER    IEQMNS(4), IPRINT, N, NGROUP, NOUT
      REAL       ALPHA, DFSE, S2, SEMEAN, SQRT, YMEANS(5)
      INTRINSIC  SQRT
      EXTERNAL   SNKMC, UMACH
C
      DATA YMEANS/36.7, 48.7, 43.4, 47.2, 40.3/
C
      CALL UMACH (2, NOUT)
      NGROUP = 5
      S2     = 28.8
      N      = 10
      SEMEAN = SQRT(S2/N)
      DFSE   = 45.0
      ALPHA  = .01
      IPRINT = 1
      CALL SNKMC (NGROUP, YMEANS, SEMEAN, DFSE, ALPHA, IPRINT, IEQMNS)
      WRITE (NOUT,99999) IEQMNS
99999 FORMAT (’ IEQMNS = ’, 4I3)
      END

Output
 Group           1           5           3           4           2
 Mean        36.70       40.30       43.40       47.20       48.70

        AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
                    BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
                                CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

 IEQMNS =   3  3  3  0

CIDMS/DCIDMS (Single/Double precision)
Compute a confidence interval on a variance component estimated as
proportional to the difference in two mean squares in a balanced complete
experimental design.

Usage
CALL CIDMS (DF1, EFMS1, DF2, EFMS2, VCHAT, CONPER, IMETH,
            CI)

Arguments

DF1 — Degrees of freedom for effect 1.   (Input)

EFMS1 — Mean square for effect 1.   (Input)

DF2 — Degrees of freedom for effect 2.   (Input)

EFMS2 — Mean square for effect 2.   (Input)

VCHAT — Estimated variance component.   (Input)
VCHAT = (EFMS1 − EFMS2)/a, where a is some positive constant.

CONPER — Confidence level for two-sided interval estimate on the variance
component, in percent.   (Input)
A CONPER percent interval is computed, hence, CONPER must be in the interval
[0.0, 100.0). CONPER often will be 90.0, 95.0, or 99.0. For a one-sided interval
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with confidence level ONECL, ONECL in the interval [50.0, 100.0), set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

IMETH — Method option.   (Input)

IMETH Method
0 Graybill’s Method
1 Bross’ Method

CI — Vector of length 2 containing the lower and upper endpoints of the
confidence interval, respectively.   (Output)

Comments

Informational error
Type Code
   1    1 One or more endpoints of CI are set to zero.

Algorithm

Routine CIDMS computes a confidence interval on a variance component that has
been estimated as proportional to the difference of two mean squares. Let

$ $γ γ1
2

2
2 and 

(stored in EFMS1 and EFMS2, respectively) be the two mean squares. The variance
component estimate
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(stored in VCHAT) is assumed to be of the form
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where a is some positive constant. Two methods for computing a confidence

interval on σ2 can be used. For IMETH = 0, the method discussed by Graybill
(1976, Theorem 15.3.5, page 624, and Note 4, page 620) is used. The result was
proposed by Williams (1962). For IMETH = 1, the method due to Bross (1950)
and discussed by Anderson and Bancroft (1952, page 322) is used.

Routine CIDMS can also be used when a variance component is estimated by the
difference of two linear combinations of mean squares, each linear combination
contains nonnegative coefficients, and the two linear combinations do not use any
of the same mean squares. Let
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where a is some positive constant, the cL’s and dL’s are nonnegative, and for i = 1,

2, …, k, cLdL = 0. Satterthwaite (1946) approximations as discussed by Graybill

(1976, pages 642− 643) can be used to arrive at approximate degrees of freedom
for each linear combination of mean squares for input into CIDMS. Let vL be the
degrees of freedom associated with the i-th mean square

$γ i
2

The degrees of freedom stored in DF1 and DF2 should be taken to be
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respectively.

Example

This example computes a confidence interval on a variance component estimated
by a difference of mean squares using a nested design discussed by Graybill
(1976, pages 635−636). The nested design gave the following analysis of
variance table:

Source DF MS EMS

A 5 385.4 γ σ σ σ1
2 2 2 23 12= + +B A

B within A 18 85.4 γ σ σ2
2 2 23= + B

Error 48 12.3 γ σ3
2 2=

A confidence interval of

σ A
2

is computed using the method of Graybill. (Note that the lower endpoint of the
confidence interval, which is 3.136, is given incorrectly by Graybill [page 636].
Graybill uses an incorrect value for F0.975;5,18 in his computations.)

      INTEGER    IMETH, NOUT
      REAL       CI(2), CONPER, DF1, DF2, EFMS1, EFMS2, VCHAT
      EXTERNAL   CIDMS, UMACH
C
      DF1    = 5.0
      EFMS1  = 385.4
      DF2    = 18.0
      EFMS2  = 85.4
      VCHAT  = (EFMS1-EFMS2)/12.0
      CONPER = 95.0
      IMETH  = 0
C
      CALL CIDMS (DF1, EFMS1, DF2, EFMS2, VCHAT, CONPER, IMETH, CI)
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C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) CI
99999 FORMAT (’ Lower confidence limit’, F9.3, /’ Upper confidence ’,
     &       ’limit’, F9.3)
      END

Output
Lower confidence limit    3.136
Upper confidence limit  186.464

ROREX/DROREX (Single/Double precision)
Reorder the responses from a balanced complete experimental design.

Usage
CALL ROREX (NF, NL, IORD, YIN, JORD, YOUT)

Arguments

NF — Number of factors (number of subscripts) in the model, including error.
(Input)

NL — Vector of length NF containing the number of levels for each of the NF

factors.   (Input)
NL(I) is the number of levels for the I-th factor.

IORD — Vector of length NF indicating the ordering of the responses in vector
YIN.   (Input)
IORD(I) = J means the model subscript corresponding to factor I is altering
J-th most rapidly.

YIN — Vector of length NL(1) * NL(2) * … * NL(NF) containing the responses in
the order specified by IORD.   (Input)

JORD — Vector of length NF indicating the new ordering of the responses in
vector YOUT.   (Input)
JORD (K) = L means the model subscript corresponding to factor K is altering
L-th most rapidly.

YOUT — Vector of length NL(1) * NL(2) * … * NL(NF) containing the responses
in the order specified by JORD.   (Output)

Comments

Automatic workspace usage is

ROREX 4 * NF units, or
DROREX 4 * NF units.

Workspace may be explicitly provided, if desired, by use of R2REX/DR2REX. The
reference is
CALL R2REX (NF, NL, IORD, YIN, JORD, YOUT, IWK)

The additional argument is
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IWK — Work vector of length 4 * NF.

Algorithm

Typically, responses from a balanced complete experimental design are stored in
a pattern that takes advantage of the design structure, consequently, the full set of
model subscripts is not needed to identify each response. Routine ROREX assumes
the usual pattern, which requires that one model subscript changes most rapidly,
another changes next most rapidly, and so on, throughout the input data vector
YIN. In many programs, including IMSL programs for this kind of data, the
computations and ordering of output are dependent on which subscripts are
moving most rapidly relative to others, within the pattern, in the input data. Data
may be available in a form that needs reordering within the pattern before entry to
an analysis routine. Routine ROREX reorders data in YIN, as controlled by JORD,
and returns the reordered data in YOUT.

Let k (stored in NF) be the number of factors, and for j = 1, 2, …, k, let nM (stored
as the j-th element of NL) be the number of levels in the j-th factor. Let the data in
YIN be denoted by

yi i ik1 2 , ,K

where for j = 1, 2, …, k, iM = 1, 2, …, nM. For every response in YIN, let pU denote
the model subscript iM that is altering r-th most rapidly for r and j in the set {1, 2, 

…, k} For every response in YOUT, let qV have a similar definition. Let PU and QV
equal the number of levels for the factor whose model subscript is altering r-th
and s-th most rapidly in YIN and YOUT, respectively.

The m-th element of YIN, denoted by
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The m-th element of YOUT, denoted by

yq q qk1 2L
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is given by replacing the p’s by q’s in the formulas in the preceding equations.

Example

The input responses yLMN are ordered in YIN so that the subscript i varies most
rapidly, j the next most rapidly, and k the least rapidly. Routine ROREX is used to
reorder the responses into standard order, i.e., with the subscript i varying least
rapidly, j the next most rapidly, and k the most rapidly.

      INTEGER    NF, NOBS
      PARAMETER  (NF=3, NOBS=24)
C
      INTEGER    IORD(NF), JORD(NF), NL(NF)
      REAL       YIN(NOBS), YOUT(NOBS)
      CHARACTER  CLABEL(1)*6, RLABEL(1)*4
      DATA       CLABEL/’NUMBER’/, RLABEL/’NONE’/
      EXTERNAL   ROREX, WRRRL
C
      DATA NL/2, 3, 4/
      DATA IORD/1, 2, 3/
      DATA JORD/3, 2, 1/
      DATA YIN/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
     &     11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0,
     &     21.0, 22.0, 23.0, 24.0/
C
      CALL ROREX (NF, NL, IORD, YIN, JORD, YOUT)
C
      CALL WRRRL (’YOUT’, 1, NOBS, YOUT, 1, 0, ’(F4.1)’, RLABEL, CLABEL)
      END

Output
                                    YOUT
  1     2     3     4     5     6     7     8     9    10    11    12    13
1.0   7.0  13.0  19.0   3.0   9.0  15.0  21.0   5.0  11.0  17.0  23.0   2.0

 14    15    16    17    18    19    20    21    22    23    24
8.0  14.0  20.0   4.0  10.0  16.0  22.0   6.0  12.0  18.0  24.0
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Chapter 5: Categorical and Discrete
Data Analysis

Routines
5.1. Statistics in the Two-Way Contingency Table

Statistics in a 2 × 2 table .................................................... CTTWO 436
Chi-squared analysis in a r × c table.....................................CTCHI 446
Exact probabilities in a r × c table: total enumeration ..........CTPRB 456
Exact probabilities in a r × c table: network algorithm..........CTEPR 459

5.2. Log-Linear Models
The iterative proportional fitting algorithm............................ PRPFT 463
Statistics for a given model .................................................. CTLLN 467
Parameter estimates for a given model ...............................CTPAR 476
Partial association statistics .................................................CTASC 482
Hierarchical stepping............................................................CTSTP 489

5.3. Randomization Tests
Generalized Mantel-Haenszel statistics.............................. CTRAN 502

5.4. Generalized Categorical Models
Generalized linear models .................................................. CTGLM 510

5.5. Weighted Least Squares Analysis
Analysis by weighted least squares .................................... CTWLS 526

Usage Notes
Routines for modeling and analyzing a two- or higher-dimensional contingency
table are described in this chapter. Also included are routines for modeling
responses from some discrete distributions when discrete or continuous
covariates are measured.
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The Basic Data Structures

The most common of the three data structures used by the routines in this chapter
is a multidimensional (or multi-way) contingency table input as a real vector with
length equal to the product of the number of categories for each dimension. This
structure may be obtained from a data matrix X via the routine FREQ (page 13) in
Chapter 1. Alternatively, multi-way tables may be created and input directly by
the user. The multi-way structure is used by all of the log-linear modeling
routines (PRPFT, page 463; CTLLN, page 467; CTPAR, page 476; CTASC, page
482; and CTSTP, page 489), and is also used in the randomization tests routine,
CTRAN (page 502).

A second data structure used by the categorical generalized linear models routine,
CTGLM (page 510), is the data matrix X. In CTGLM (and elsewhere), if X has many
identical rows, at least on the variables of interest, consider using Chapter 1
routine CSTAT (page 54) to add a frequency variable to a reduced matrix X. The
transposed output from this routine can replace X as input to CTGLM, and CTGLM
will perform its computations faster (with a linear speed up) on the reduced
matrix.

Finally, two-way tables are input into routines CTCHI (page 446), CTTWO
(page 436), CTPRB (page 456), CTEPR (page 459), and CTWLS (page 526) as two-
dimensional real arrays. As with the multidimensional arrays, two-dimensional
arrays may be created via Chapter 1 routine FREQ, in which case the leading
dimension must equal the number of categories for the first dimension in the
table, or they can be created and input directly by the user. Alternatively, the
routine TWFRQ (page 7) from Chapter 1 may be used to obtain the two-way
frequency table.

Types of Analysis

Routines CTCHI (r × c) (page 446) and CTTWO (2 × 2) (page 436) compute many
statistics of interest in a two-way table. Statistics computed by these routines
include the usual chi-squared statistics, measures of association, Kappa, and many
others. Asymptotic statistics for a two-way table that are not computed by either
CTCHI or CTTWO can probably be computed by routines CTRAN (page 502) or
CTWLS (page 526), but note that these latter two routines require more setup since
they require that the user indicate how the statistics are to be computed. Exact
probabilities for two-way tables can be computed by CTPRB (page 456), but this
routine uses the total enumeration algorithm and, thus, often uses orders of
magnitude more computer time that CTEPR (page 459), which computes the same
probabilities by use of the network algorithm (but can still be quite expensive).

The routines in the second section are all concerned with hierarchical log-linear
models (see, e.g., Bishop, Fienberg, and Holland 1975). The routines in Chapter
1 will often be used to obtain the multi-dimensional tables input into these
routines, or the table will be input directly by the user. If the hierarchical is not
known, routine CTASC (page 482) will often be the first routine considered. The
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partial association statistics computed by this routine can be used to obtain a
rough estimate of the model to be used. This rough model can then be refined
through the use of CTSTP (page 489), which does stepwise model building. Of
course, both of these routines are subject to the usual problems associated with
building models once the data have been collected: the resulting models may not
be correct.

Once a model has been selected (provisional or otherwise), routine CTLLN
(page 467) can be used to compute and print many model statistics (parameter
estimates, residuals, goodness of fit tests, etc.). If only the parameter estimates
and associated variance/covariance matrix are needed, CTPAR (page 476) can be
used instead. Both of these routines can compute estimates when sampling and/or
structural zeros (cells in the table with observed or restricted counts of zero,
respectively) are present in the table, as can all routines in this section.

The algorithm underlying all of the routines in the second section is the iterative
proportional fitting algorithm, which is implemented in routine PRPFT
(page 463). When structural or sampling zeros are present in the table, this
algorithm can be quite slow to converge. Also, only the expected cell counts are
returned by PRPFT, it can be quite difficult to determine degrees of freedom when
structural zeros are present in the data. Because a structural zero is a restriction
on the parameter space, 1 degree of freedom must be subtracted for each
structural zero in the multiway table. The difficulty is in determining where the
subtraction should occur. All routines in this section use a Cholesky factorization

of X7 X where X is the “design matrix.” This is used to determine which effects
should lose degrees of freedom because of structural zeros. Sampling zeros,
although they can lead to infinite parameter estimates, do not subtract from the
total degrees of freedom. See Clarkson and Jennrich (1991), or Baker, Clarke,
and Lane (1985) for details.

Routine CTRAN (page 502) computes generalized Mantel-Haenszel statistics in
stratified r × c tables. Generalized Mantel-Haenszel statistics assume that the
“direction” of departure from the null hypothesis is consistent from one table to
the next. Under this assumption, statistics computed for each table are pooled
across all strata yielding a more powerful test than could be obtained otherwise.
The statistics computed include measures of correlation, location, and
independence using user selected row and/or column scores. Details can be found
in (Koch, Amara, and Atkinson 1983) or in the “Algorithm” section for CTRAN.

The routine CTGLM (page 510) in the fourth section is concerned with
generalized linear models (see McCullagh and Nelder 1983) in discrete data.
This routine may be used to compute estimates and associated statistics in
probit, logistic, minimum extreme value, Poisson, negative binomial (with
known number of successes), and logarithmic models. Classification variables as
well as weights, frequencies and additive constants may be used so that quite
general linear models can be fit. Residuals, a measure of influence, the
coefficient estimates, and other statistics are returned for each model fit. When
infinite parameter estimates are required, extended maximum likelihood
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estimation may be used. Log-linear models may be fit in CTGLM through the use
of Poisson regression models. Results from Poisson regression models involving
structural and sampling zeros will be identical to the results obtained from the
log-linear model routines but will be fit by a quasi-Newton algorithm rather than
through iterative proportional fitting.

The weighted least-squares analysis of Grizzle, Starmer, and Koch (1969) is
implemented in routine CTWLS (page 526). In this routine, the user first
transforms the observed probability estimates (in predefined ways) and then fits a
linear model to the transformed estimates using generalized least squares.
Multivariate hypotheses associated with the coefficient estimates for the linear
model fit may then be tested. In this way, many statistics of interest such as
generalized Kappa statistics and parameter estimates in logistic models may be
estimated. Of course, the logistic models fit by CTWLS use a generalized least-
squares criterion rather than the maximum likelihood criterion used to compute
the logistic model estimates in CTGLM. The generalized least-squares estimates
will generally differ somewhat from estimates computed via maximum likelihood.

Other Routines

The routines in Chapter 1, “Basic Statistics,” may be used to create the data
structures discussed above. These routines can also create one-dimensional
frequency tables, which may then be used by routine CHIGF (page 584), to
compute chi-squared goodness-of-fit test statistics or with routines VHSTP (page
1074) or HHSTP (page 1078) to prepare histograms. Routines CTRHO (page 339),
TETCC (page 342), BSCAT (page 348), and BSPBS (page 346) may be used to
compute some measures of correlation in two-way contingency tables.

CTTWO/DCTTWO (Single/Double precision)
Perform a chi-squared analysis of a 2 by 2 contingency table.

Usage
CALL CTTWO (TABLE, LDTABL, ICMPT, IPRINT, EXPECT, LDEXPE,
            CHI, LDCHI, CHISQ, STAT, LDSTAT)

Arguments

TABLE — 2 by 2 matrix containing the observed counts in the contingency table.
(Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement of the calling program.   (Input)

ICMPT — Computing option.   (Input)
If ICMPT = 0, all of the values in CHISQ and STAT are computed. ICMPT = 1
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means compute only the first 11 values of CHISQ, and no values of STAT are
computed.

IPRINT — Printing option.   (Input)
IPRINT = 0 means no printing is performed. If IPRINT = 1, printing is
performed.

EXPECT — 3 by 3 matrix containing the expected values of each cell in TABLE

under the null hypothesis of independence, in the first 2 rows and 2 columns, and
the marginal totals in the last row and column.   (Output)

LDEXPE — Leading dimension of EXPECT exactly as specified in the dimension
statement of the calling program.   (Input)

CHI — 3 by 3 matrix containing the contributions to chi-squared for each cell in
TABLE in the first 2 rows and 2 columns.   (Output)
The last row and column contain the total contribution to chi-squared for that row
or column.

LDCHI — Leading dimension of CHI exactly as specified in the dimension
statement of the calling program.   (Input)

CHISQ — Vector of length 15 containing statistics associated with this
contingency table.   (Output)

I CHISQ(I)
1 Pearson chi-squared statistic
2 Probability of a larger Pearson chi-squared
3 Degrees of freedom for chi-squared

4 Likelihood ratio G2 (chi-squared)

5 Probability of a larger G2
6 Yates corrected chi-squared
7 Probability of a larger corrected chi-squared
8 Fisher’s exact test (one tail)
9 Fisher’s exact test (two tail)
10 Exact mean
11 Exact standard deviation

The following statistics are based upon the chi-squared statistic CHISQ(1).

I CHISQ(I)
12 Phi (Φ)
13 The maximum possible Φ
14 Contingency coefficient P
15 The maximum possible contingency coefficient

STAT — 24 by 5 matrix containing statistics associated with this table.   (Output)
Each row of the matrix corresponds to a statistic.
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Row Statistic
1 Gamma
2 Kendall’s τE
3 Stuart’s τF
4 Somers’ D (row)
5 Somers’ D (column)
6 Product moment correlation
7 Spearman rank correlation
8 Goodman and Kruskal τ (row)
9 Goodman and Kruskal τ (column)
10 Uncertainty coefficient U (normed)
11 Uncertainty UU_F (row)
12 Uncertainty UF_U (column)

13 Optimal prediction λ (symmetric)
14 Optimal prediction λU_F (row)

15 Optimal prediction λF_U(column)
16 Optimal prediction

λ r c|
∗  (row)

17 Optimal prediction

λ c r|
∗  (column)

18 Yule’s Q
19 Yule’s Y
20 Crossproduct ratio
21 Log of crossproduct ratio
22 Test for linear trend
23 Kappa
24 McNemar test of symmetry

If a statistic is not computed, its value is reported as NaN (not a number). The
columns are as follows:

Column Statistic

1 Estimated statistic
2 Its estimated standard error for any parameter value
3 Its estimated standard error under the null hypothesis
4 z-score for testing the null hypothesis
5 p-value for the test in column 4

In the McNemar test, column 1 contains the statistic, column 2 contains the chi-
squared degrees of freedom, column 4 contains the exact p-value, and column 5
contains the chi-squared asymptotic p-value.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement of the calling program.   (Input)
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Comments

Informational errors
Type Code
   4    8 At least one marginal total is zero. The remainder of the

analysis cannot proceed.
   3    9 Some expected table values are less than 1.0. Some asymptotic

p-values may not be good.
   3  10 Some expected table values are less than 2.0. Some asymptotic

p-values may not be good.
   3  11 20% of the table expected values are less than 5.

Algorithm

Routine CTTWO computes statistics associated with 2 × 2 contingency tables.
Always computed are chi-squared tests of independence, expected values based
upon the independence assumption, contributions to chi-squared in a test of
independence, and row and column marginal totals. Optionally, when ICMPT = 0,
CTTWO can compute some measures of association, correlation, prediction,
uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and
the log odds ratio, and the Kappa statistic.

Other IMSL routines that may be of interest include TETCC (page 342) in Chapter
3 (for computing the tetrachoric correlation coefficient) and CTCHI (page 446) in
this chapter (for computing statistics in other than 2 × 2 contingency tables).

Notation

Let xLM denote the observed cell frequency in the ij cell of the table and n denote
the total count in the table. Let pLM = pL�p�M denote the predicted cell probabilities
(under the null hypothesis of independence) where pL� and p�M are the row and
column relative marginal frequencies, respectively. Next, compute the expected
cell counts as eLM = n pLM.

Also required in the following are aXY and bXY, u, v = 1, …, n. Let (rV, cV) denote

the row and column response of observation s. Then, aXY = 1, 0, or −1, depending
upon whether rX < rY, rX = rY, or rX > rY, respectively. The bXY are similarly
defined in terms of the cV’s.

The Chi-squared Statistics

For each cell of the four cells in the table, the contribution to chi-squared is given

as (xLM − eLM)2/eLM. The Pearson chi-squared statistic (denoted is χ2) is computed as
the sum of the cell contributions to chi-squared. It has, of course, 1 degree of
freedom and tests the null hypothesis of independence, i.e., of H0 : pLM = pL�p�M.
Reject the null hypothesis if the computed value of χ2 is too large.

Compute G2, the maximum likelihood equivalent of χ2, as
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− ∑2 0. ln ( / )
,

x x npij ij ij
i j

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi and the Contingency
Coefficient)

Two measures related to chi-squared but which do not depend upon sample size
are phi,

φ χ= 2 / n

and the contingency coefficient,

P n= +χ χ2 2/ ( )

Since these statistics do not depend upon sample size and are large when the
hypothesis of independence is rejected, they may be thought of as measures of
association and may be compared across tables with different sized samples.
While P has a range between 0.0 and 1.0 for any given table, the upper bound of
P is actually somewhat less than 1.0 (see Kendall and Stuart 1979, page 577). In
order to understand association within a table, consider also the maximum
possible P(CHISQ(15)) and the maximum possible φ(CHISQ(13)). The

significance of both statistics is the same as that of the χ2 statistic, CHISQ(1).

The distribution of the χ2 statistic in finite samples approximates a chi-squared

distribution. To compute the expected mean and standard deviation of the χ2
statistic, Haldane (1939) uses the multinomial distribution with fixed table
marginals. The exact mean and standard deviation generally differ little from the
mean and standard deviation of the associated chi-squared distribution.

Fisher’s exact test

Fisher’s exact test is a conservative but uniformly most powerful unbiased test of
equal row (or column) cell probabilities in the 2 × 2 table. In this test, the row and
column marginals are assumed fixed, and the hypergeometric distribution is used
to obtain the significance level of the test. A one- or a two-sided test is possible.
See Kendall and Stuart (1979, page 582) for a discussion.

Standard Errors and p-values for Some Measures of Association

In rows 1 through 7 of STAT, estimated standard errors and asymptotic p-values
are reported. Routine CTTWO computes these standard errors in two ways. The
first estimate, in column 2 of matrix STAT, is asymptotically valid for any value of
the statistic. The second estimate, in column 3 of STAT, is only correct under the
null hypothesis of no association. The z-scores in column 4 are computed using
this second estimate of the standard errors, and the p-values in column 5
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are computed from these z-scores. See Brown and Benedetti (1977) for a
discussion and formulas for the standard errors in column 3.

Measures of Association for Ranked Rows and Columns

The measures of association φ and P do not require any ordering of the row and
column categories. Routine CTTWO also computes several measures of association
for tables in which the rows and column categories correspond to ranked
observations. Two of these measures, the product-moment correlation and the
Spearman correlation, are correlation coefficients that are computed using
assigned scores for the row and column categories. In the product-moment
correlation, this score is the cell index, while in the Spearman rank correlation,
this score is the average of the tied ranks of the row or column marginals. Other
scores are possible.

Other measures of associations, Gamma, Kendall’s τE, Stuart’s τF and Somers’ D,
are also computed similarly to a correlation coefficient in that the numerator in
these statistics in some sense is a “covariance.” In fact, these measures differ only
in their denominators, their numerators being the “covariance” between the aXY’s
and the bXY’s defined earlier. The numerator is computed as

a buv uv
vu
∑∑

Since the product aXYbXY = 1 if both aXY and bXY are 1 or −1, it is easy to show that
the “covariance” is twice the total number of agreements minus the number
disagreements between the row and column variables where a disagreement
occurs when aXYbXY = −1.

Kendall’s τE is computed as the correlation between the aXY’s and the bXY’s (see
Kendall and Stuart 1979, page 583). Stuart suggested a modification to the
denominator of τ in which the denominator becomes the largest possible value of

the “covariance.” This value turns out to be approximately 2n2in 2 × 2 tables, and
this is the value used in the denominator of Stuart’s τF. For large n, τF ≈ 2τE.

Gamma can be motivated in a slightly different manner. Because the “covariance”
of the aXY’s and the bXY’s can be thought of as two times the number of

agreements minus the number of disagreements [2(A − D), where A is the number
of agreements and D is the number of disagreements], gamma is motivated as the
probability of agreement minus the probability of disagreement, given that either
agreement or disagreement occurred. This is just
(A − D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for
columns. Somers’ D for rows can be thought of as the regression coefficient for
predicting aXY from bXY. Moreover, Somers’ D for rows is the probability of
agreement minus the probability of disagreement, given that the column variable,
bXY, is not zero. Somers’ D for columns is defined in a similar manner.
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A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, starting on page 592).

The crossproduct ratio is also sometimes thought of as a measure of association
(see Bishop, Feinberg and Holland 1975, page 14). It is computed as:

p p

p p
11 22

12 21

⋅
⋅

The log of the crossproduct ratio is the log of this quantity.

The Yule’s Q and Yule’s Y are related to the cross product ratio. They are
computed as:

Q
p p p p

p p p p

Y
p p p p

p p p p

=
⋅ − ⋅
⋅ + ⋅

=
⋅ − ⋅
⋅ + ⋅

11 22 12 21

11 22 12 21

11 22 12 21

11 22 12 21

Measures of Prediction and Uncertainty

The Optimal Prediction Coefficients

The measures in this section do not require any ordering of the row or column
variables. They are based entirely upon probabilities. Most are discussed in
Bishop, Feinberg, and Holland (1975, page 385).

Consider predicting or classifying the column variable for a given value of the
row variable. The best classification for each row under the null hypothesis of
independence is the column that has the highest marginal probability (and thus the
highest probability for the row under the independence assumption). The
probability of misclassification is then one minus this marginal probability. On
the other hand, if independence is not assumed so that the row and columns
variables are dependent, then within each row one would classify the column
variables according to the category with the highest row conditional probability.
The probability of misclassification for the row is then one minus this conditional
probability.

Define the optimal prediction coefficient λF_U for predicting columns from rows as
the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by:

λ c r
m i im

m

p p

p
=

− − − ∑
−

•

•

( ) ( )1 1

1

where m is the index of the maximum estimated probability in the row (pLP) or
row margin (p�P). A similar coefficient is defined for predicting the rows from the

columns. The symmetric version of the optimal prediction λ is obtained by
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summing the numerators and denominators of λU_F and λF_U and dividing. Standard
errors for these coefficients are given in Bishop, Feinberg, and Holland (1975,
page 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct for this is to use row conditional

probabilities. The optimal prediction λ* coefficients are defined as the
corresponding λ coefficients in which one first adjusts the row (or column)
marginals to the same number of observations. This yields

λ c r

i j j i j i j i

j i j i

p p

R p
∗ =

∑ − ∑

− ∑

max max ( )

max

where i indexes the rows and j indexes the columns, and pM_L is the (estimated)
probability of column j given row i.

λ r c
∗

is similarly defined.

Goodman and Kruskal τ

A second kind of prediction measure attempts to explain the proportion of the
explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows to be

n x ni
i

/ ( ) / ( )2 22− •∑
This is 1/(2n) times the sums of squares of the aXY’s.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, define the total
variation for the rows within column j as

q x x xj j ij
i

i= −
�
��

�
��• •∑/ /2 22 1 6

Define the total variation for rows within columns as the sum of the qM’s.
Consistent with the usual methods in the analysis of variance, the reduction in the
total variation is the difference between the total variation for rows and the total
variation for rows within the columns.

Goodman and Kruskal’s τ columns is similarly defined. See Bishop, Feinberg,
and Holland (1975, page 391) for the standard errors.
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The Uncertainty Coefficients

The uncertainty coefficient for rows is the increase in the log-likelihood that is
achieved by the most general model over the independence model divided by the
marginal log-likelihood for the rows. This is given by

U
x x x nx

x x nr c
i j ij i j ij

i i i
|

, log /

log /
=

∑
• •

• •

Σ 3 84 9
1 6

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as UU_F and UF_U but averages
the denominators of these two statistics. Standard errors for U are given in Brown
(1983).

Kruskal-Wallis

The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test
that assumes that the column variable is monotonically ordered. It tests the null
hypothesis that the row populations are identical, using average ranks for the
column variable. This amounts to a test of HR : p1� = p2�. The Kruskal-Wallis
statistic for columns is similarly defined. Conover (1980) discusses the Kruskal-
Wallis test.

Test for Linear Trend

The test for a linear trend in the column probabilities assumes that the row
variable is monotonically ordered. In this test, the probability for column 1 is
predicted by the row index using weighted simple linear regression. The slope is
given by

$
/ /

β =
∑ − −

∑ −

• • •

•

j j j j

j j

x x x x n j j

x j j

1 1

2

3 82 7
2 7

where

j x j nj j= ∑ • /

is the average row index. An asymptotic test that the slope is zero may be
obtained as the usual large sample regression test of zero slope.

Kappa

Kappa is a measure of agreement. In the Kappa statistic, the rows and columns
correspond to the responses of two judges. The judges agree along the diagonal
and disagree off the diagonal. Let pR = p11+ p22 denote the probability that the two
judges agree, and let pF= p1�p�1 + p2�p�2 denote the expected probability of
agreement under the independence model. Kappa is then given by
(pR − pF)/(1 − pF).
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McNemar Test

The McNemar test is also a test of symmetry in square contingency tables. It tests
the null hypothesis HR : θLM = θML. The test statistic with 1 degree of freedom is
computed as

x x

x x

ij ji

ij jii j

−

+<
∑

3 8
3 8

2

Its exact probability may be computed via the binomial distribution.

Example

The following example from Kendall and Stuart (1979, pages 582-583) compares
the teeth in breast-fed versus bottle-fed babies.

      INTEGER    ICMPT, IPRINT, LDCHI, LDEXPE, LDSTAT, LDTABL
      PARAMETER  (ICMPT=0, IPRINT=1, LDCHI=3, LDEXPE=3, LDSTAT=24,
     &           LDTABL=2)
C
      REAL       CHI(LDCHI,3), CHISQ(15), EXPECT(LDEXPE,3),
     &           STAT(LDSTAT,5), TABLE(LDTABL,2)
      EXTERNAL   CTTWO
C
      DATA TABLE/4, 1, 16, 21/
C
      CALL CTTWO (TABLE, LDTABL, ICMPT, IPRINT, EXPECT, LDEXPE, CHI,
     &            LDCHI, CHISQ, STAT, LDSTAT)
      END

Output
       TABLE
         1       2
 1    4.00   16.00
 2    1.00   21.00

                Expected values
                Col 1       Col 2    Marginal
 Row 1         2.3810     17.6190     20.0000
 Row 2         2.6190     19.3810     22.0000
 Marginal      5.0000     37.0000     42.0000

       Contributions to chi-squared
             Col 1       Col 2       Total
 Row 1      1.1010      0.1488      1.2497
 Row 2      1.0009      0.1353      1.1361
 Total      2.1018      0.2840      2.3858

              CHISQ
                               1
 Pearson chi-squared      2.3858
 p-value                  0.1224
 Degrees of freedom       1.0000
 Likelihood ratio         2.5099
 p-value                  0.1131
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 Yates chi-squared        1.1398
 p-value                  0.2857
 Fisher (one tail)        0.1435
 Fisher (two tail)        0.1745
 Exact mean               1.0244
 Exact std dev            1.3267
 Phi                      0.2383
 Max possible phi         0.3855
 Contingency coef.        0.2318
 Max possible coef.       0.3597

                                    STAT
                  Statistic    Std err.  Std err. 0     t-value     p-value
Gamma                0.6800      0.3135      0.4395      1.5472      0.1218
Kendall’s tau B      0.2383      0.1347      0.1540      1.5472      0.1218
Stuart’s tau C       0.1542      0.0997         NaN      1.5472      0.1218
Somers’ D row        0.1545      0.0999      0.0999      1.5472      0.1218
Somers’ D col        0.3676      0.1966      0.2376      1.5472      0.1218
Correlation          0.2383      0.1347      0.1540      1.5472      0.1218
Spearman rank        0.2383      0.1347      0.1540      1.5472      0.1218
GK tau row           0.0568      0.0641         NaN         NaN         NaN
GK tau col           0.0568      0.0609         NaN         NaN         NaN
U normed             0.0565      0.0661         NaN         NaN         NaN
U row                0.0819      0.0935         NaN         NaN         NaN
U col                0.0432      0.0516         NaN         NaN         NaN
Lamda sym            0.1200      0.0779         NaN         NaN         NaN
Lamda row            0.0000      0.0000         NaN         NaN         NaN
Lamda col            0.1500      0.1031         NaN         NaN         NaN
Lamda star row       0.0000      0.0000         NaN         NaN         NaN
Lamda star col       0.1761      0.1978         NaN         NaN         NaN
Yule’s Q             0.6800      0.3135      0.4770      1.4255      0.1540
Yule’s Y             0.3923      0.2467      0.2385      1.6450      0.1000
Ratio                5.2500         NaN         NaN         NaN         NaN
Log ratio            1.6582      1.1662      0.9540      1.7381      0.0822
Linear trend        -0.1545      0.1001         NaN     -1.5446      0.1224
Kappa                0.1600      0.1572      0.1600      1.0000      0.3173
McNemar             13.2353      1.0000         NaN      0.0000      0.0003
*** WARNING  ERROR 11 from CTTWO.  Twenty percent of the table expected
***          values are less than 5.0.

CTCHI/DCTCHI (Single/Double precision)
Perform a chi-squared analysis of a two-way contingency table.

Usage
CALL CTCHI (NROW, NCOL, TABLE, LDTABL, ICMPT, IPRINT,
            EXPECT, LDEXPE, CHI, LDCHI, CHISQ, STAT,
            LDSTAT)

Arguments

NROW — Number of rows in the table.   (Input)

NCOL — Number of columns in the table.   (Input)
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TABLE — NROW by NCOL matrix containing the observed counts in the
contingency table.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement of the calling program.   (Input)

ICMPT — Computing option.   (Input)
If ICMPT = 0, all of the values in CHISQ and STAT are computed. ICMPT = 1
means compute only the first 5 values of CHISQ and none of the values in STAT.
(All values not computed are set to NaN (not a number).

IPRINT — Printing option.   (Input)
IPRINT = 0 means no printing is performed. If IPRINT = 1, printing is
performed.

EXPECT — (NROW + 1) by (NCOL + 1) matrix containing the expected values of
each cell in TABLE, under the null hypothesis, in the first NROW rows and NCOL
columns and the marginal totals in the last row and column.   (Output)

LDEXPE — Leading dimension of EXPECT exactly as specified in the dimension
statement in the calling program.   (Input)

CHI — (NROW +1) by (NCOL +1) matrix containing the contributions to chi-
squared for each cell in TABLE in the first NROW rows and NCOL columns.
(Output)
The last row and column contain the total contribution to chi-squared for that row
or column.

LDCHI — Leading dimension of CHI exactly as specified in the dimension
statement in the calling program.   (Input)

CHISQ — Vector of length 10 containing chi-squared statistics associated with
this contingency table.   (Output)

I CHISQ(I)
1 Pearson chi-squared statistic
2 Probability of a larger Pearson chi-squared
3 Degrees of freedom for chi-squared

4 Likelihood ratio G2 (chi-squared)

5 Probability of a larger G2
6 Exact mean
7 Exact standard deviation

The following statistics are based upon the chi-squared statistic CHISQ(1). If
ICMPT = 1, NaN (not a number) is reported.

I CHISQ(I)
8 Phi
9 Contingency coefficient
10 Cramer’s V
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STAT — 23 by 5 matrix containing statistics associated with this table.   (Output)
If ICMPT = 1, STAT is not referenced and may be a vector of length 1. Each row
of the matrix corresponds to a statistic.

Row Statistic
1 Gamma
2 Kendall’s τE
3 Stuart’s τF
4 Somers’ D for rows given columns
5 Somers’ D for columns given rows
6 Product moment correlation
7 Spearman rank correlation
8 Goodman and Kruskal τ for rows given columns
9 Goodman and Kruskal τ for columns given rows
10 Uncertainty coefficient U (symmetric)
11 Uncertainty UU_F (rows)
12 Uncertainty UF_U (columns)

13 Optimal prediction λ (symmetric)
14 Optimal prediction λU_F (rows)

15 Optimal prediction λF_U (columns)
16 Optimal prediction

λ r c
∗  (rows)

17 Optimal prediction

λ c r
∗  (columns)

18 Test for linear trend in row probabilities if NROW= 2. If NROW is not 2, a
test for linear trend in column probabilities if NCOL= 2.

19 Kruskal-Wallis test for no row effect
20 Kruskal-Wallis test for no column effect
21 Kappa (square tables only)
22 McNemar test of symmetry (square tables only)
23 McNemar one degree of freedom test of symmetry (square tables only)

If a statistic cannot be computed, its value is reported as NaN (not a number). The
columns are as follows:

Column Statistic
1 The estimated statistic
2 Its standard error for any parameter value
3 Its standard error under the null hypothesis
4 The t value for testing the null hypothesis
5 p-value of the test in column 4

In the McNemar tests, column 1 contains the statistic, column 2 contains the chi-
squared degrees of freedom, column 4 contains the exact p-value (one degree
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of freedom only), and column 5 contains the chi-squared asymptotic p-value. The
Kruskal-Wallis test is the same except no exact p-value is computed.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

Informational errors
Type Code
   3    1 Twenty percent of the expected values are less than 5.
   3    2 The degrees of freedom for chi-squared are greater than 30.

The exact mean, standard deviation, and normal distribution
function should be used.

   3    3 Some expected values are less than 2. Some asymptotic
p-values may not be good.

   3    4 Some expected values are less than 1. Some asymptotic
p-values may not be good.

Algorithm

Routine CTCHI computes statistics associated with an r × c (NROW × NCOL)
contingency table. The routine CTCHI always computes the chi-squared test of
independence, expected values, contributions to chi-squared, and row and column
marginal totals. Optionally, when ICMPT = 0, CTCHI can compute some measures
of association, correlation, prediction, uncertainty, the McNemar test for
symmetry, a test for linear trend, the odds and the log odds ratio, and the Kappa
statistic.

Other IMSL routines that may be of interest include TETCC (page 342) in Chapter
3, for computing the tetrachoric correlation coefficient, CTTWO (page 436), for
computing statistics in a 2 × 2 contingency table, and CTPRB (page 456), for
computing the exact probability of an r × c contingency table.

Notation

Let xLM denote the observed cell frequency in the LM cell of the table and n denote
the total count in the table. Let pLM = pL�p�M denote the predicted cell probabilities
under the null hypothesis of independence where pL� and p�M are the row and
column marginal relative frequencies, respectively. Next, compute the expected
cell counts as eLM = n pLM.

Also required in the following are aXY and bXY, u, v = 1, …, n. Let (rV, cV) denote

the row and column response of observation s. Then, aXY = 1, 0, or −1, depending
upon whether rX< rY, rX = rY, or rX > rY, respectively. The bXY are similarly defined
in terms of the cV’s.
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The Chi-squared Statistics

For each cell in the table, the contribution to χ2 is given as (xLM − eLM)2/eLM. The

Pearson chi-squared statistic (denoted χ2) is computed as the sum of the cell
contributions to chi-squared. It has
(r − 1)(c − 1) degrees of freedom and tests the null hypothesis of independence,
i.e., that H0 : pLM = pL�p�M. The null hypothesis is rejected if the computed value of 

χ2 is too large.

Compute G2, the maximum likelihood equivalent of χ2, as

G x x npij ij ij
i j

2 2= − ∑ ln( / )
,

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and
Cramer’s V )

Three measures related to chi-squared but that do not depend upon the sample
size are

phi,

φ χ= 2 / n

the contingency coefficient,

P n= +χ χ2 2/ ( )

and Cramer’s V,

V n r c= χ2 / ( min , )0 5
Since these statistics do not depend upon sample size and are large when the
hypothesis of independence is rejected, they may be thought of as measures of
association and may be compared across tables with different sized samples.
While both P and V have a range between 0.0 and 1.0, the upper bound of P is
actually somewhat less than 1.0 for any given table (see Kendall and Stuart 1979,

page 587). The significance of all three statistics is the same as that of the χ2
statistic, CHISQ(1).

The distribution of the χ2 statistic in finite samples approximates a chi-squared

distribution. To compute the exact mean and standard deviation of the χ2 statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The
exact mean and standard deviation generally differ little from the mean and
standard deviation of the associated chi-squared distribution.
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Standard Errors and p-values For Some Measures of Association

In rows 1 through 7 of STAT, estimated standard errors and asymptotic p-values
are reported. Estimates of the standard errors are computed in two ways. The first
estimate, in column 2 of matrix STAT, is asymptotically valid for any value of the
statistic. The second estimate, in column 3 of the matrix, is only correct under the
null hypothesis of no association. The z-scores in column 4 of matrix STAT are
computed using this second estimate of the standard errors. The p-values in
column 5 are computed from this z-score. See Brown and Benedetti (1977) for a
discussion and formulas for the standard errors in column 3.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row
and column categories. Routine CTCHI also computes several measures of
association for tables in which the rows and column categories correspond to
ranked observations. Two of these tests, the product-moment correlation and the
Spearman correlation, are correlation coefficients computed using assigned scores
for the row and column categories. The cell indices are used for the product-
moment correlation while the average of the tied ranks of the row and column
marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τE, Stuart’s τF, and Somers’ D are measures of association that
are computed like a correlation coefficient in the numerator. In all of these
measures, the numerator is computed as the “covariance” between the aXY’s and
bXY’s defined above, i.e., as

a buv uv
vu
∑∑

Recall that aXY and bXY can take values −1, 0, or 1. Since the product aXYbXY = 1

only if aXY and bXY are both 1 or are both −1, it is easy to show that this
“covariance” is twice the total number of agreements minus the number of
disagreements where a disagreement occurs when aXYbXY = −1.

Kendall’s τE is computed as the correlation between the aXY’s and the bXY’s (see

Kendall and Stuart 1979, page 593). In a rectangular table (r  ≠ c), Kendall’s τE
cannot be 1.0 (if all marginal totals are positive). For this reason, Stuart suggested
a modification to the denominator of τ in which the denominator becomes the
largest possible value of the “covariance.” This maximizing value is

approximately n2m/(m − 1), where m = min(r, c). Stuart’s τF uses this approximate

value in its denominator. For large n, τF ≈ mτE/(m − 1).

Gamma can be motivated in a slightly different manner. Because the
“covariance” of the aXY’s and the bXY’s can be thought of as twice the number of

agreements minus the disagreements, (2(A − D), where A is the number of
agreements and D is the number of disagreements), gamma is motivated as the
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probability of agreement minus the probability of disagreement, given that either
agreement or disagreement occurred. This is just γ = (A − D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for
columns. Somers’ D for rows can be thought of as the regression coefficient for
predicting aXY from bXY. Moreover, Somers’ D for rows is the probability of
agreement minus the probability of disagreement, given that the column variable,
bXY, is not zero. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, starting on page 592).

Measures of Prediction and Uncertainty

The Optimal Prediction Coefficients

The measures in this section do not require any ordering of the row or column
variables. They are based entirely upon probabilities. Most are discussed in
Bishop, Feinberg, and Holland (1975, page 385).

Consider predicting (or classifying) the column for a given row in the table.
Under the null hypothesis of independence, one would choose the column with
the highest column marginal probability for all rows. In this case, the probability
of misclassification for any row is one minus this marginal probability. If
independence is not assumed, then within each row one would choose the column
with the highest row conditional probability, and the probability of
misclassification for the row becomes one minus this conditional probability.

Define the optimal prediction coefficient λF_U for predicting columns from rows as
the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by

λ c r
m i im

m

p p

p
=

− − − ∑
−

•

•

( ) ( )1 1

1

where m is the index of the maximum estimated probability in the row (pLP) or
row margin (p�P). A similar coefficient is defined for predicting the rows from the

columns. The symmetric version of the optimal prediction λ is obtained by
summing the numerators and denominators of λU_F and λF_U and by dividing.
Standard errors for these coefficients are given in Bishop, Feinberg, and Holland
(1975, page 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct for this is to use row conditional

probabilities. The optimal prediction λ* coefficients are defined as the
corresponding λ coefficients in which one first adjusts the row (or column)
marginals to the same number of observations. This yields
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λ c r

i j j i j i j i

j i j i

p p

R p
*

max max ( )

max
=

∑ − ∑

− ∑

where i indexes the rows, j indexes the columns, and pM_L is the (estimated)
probability of column j given row i.

λ r c
*

is similarly defined.

Goodman and Kruskal τ
A second kind of prediction measure attempts to explain the proportion of the
explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows to be

n x ni
i

/ ( ) / ( )2 22− •∑
Note that this is 1/(2n) times the sums of squares of the aXY’s.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns, divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, note that the total
variation for the rows within column j is defined as

q x x xj j ij i
i

= −• •∑/ ( ) / ( )2 22

The total variation for rows within columns is the sum of the qM’s. Consistent with
the usual methods in the analysis of variance, the reduction in the total variation is
given as the difference between the total variation for rows and the total variation
for rows within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop, Feinberg,
and Holland (1975, page 391) for the standard errors.

The Uncertainty Coefficients

The uncertainty coefficient for rows is the increase in the log-likelihood that is
achieved by the most general model over the independence model, divided by the
marginal log-likelihood for the rows. This is given by

U
x x x nx

x x nr c
i j ij i j ij

i i i
=

∑
∑

• •

• •

, log( / ( ))

/ )log(

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as UU_F and UF_U but averages
the denominators of these two statistics. Standard errors for U are given in Brown
(1983).
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Kruskal-Wallis

The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test
that assumes the column variable is monotonically ordered. It tests the null
hypothesis that no row populations are identical, using average ranks for the
column variable. The Kruskal-Wallis statistic for columns is similarly defined.
Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend

When there are two rows, it is possible to test for a linear trend in the row
probabilities if one assumes that the column variable is monotonically ordered. In
this test, the probabities for row 1 are predicted by the column index using
weighted simple linear regression. This slope is given by

$ ( / / )( )

( )
β =

∑ − −

∑ −
• • •

•

j j j j

j j

x x x x n j j

x j j

1 1
2

where

j x j nj j= ∑ • /

is the average column index. An asymptotic test that the slope is zero may then be
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.

Kappa

Kappa is a measure of agreement computed on square tables only. In the Kappa
statistic, the rows and columns correspond to the responses of two judges. The
judges agree along the diagonal and disagree off the diagonal. Let

p x no i ii= ∑ /

denote the probability that the two judges agree, and let

p e nc i ii= ∑ /

denote the expected probability of agreement under the independence model.
Kappa is then given by (pR − pF)/(1 − pF).

McNemar Tests

The McNemar test is a test of symmetry in a square contingency table, that is, it is
a test of the null hypothesis HR : θLM = θML. The multiple-degrees-of-freedom

version of the McNemar test with r(r − 1)/2 degrees of freedom is computed as

( )

( )

x x

x x
ij ji

ij jii j

−
+<

∑
2
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The single-degree-of-freedom test assumes that the differences xLM − xML are all in
one direction. The single-degree-of-freedom test will be more powerful than the
multiple-degrees-of-freedom test when this is the case. The test statistic is given
as

( ( ))

( )

∑ −
∑ +

<

<

i j ij ji

i j ij ji

x x

x x

2

Its exact probability may be computed via the binomial distribution.

Example

The following example is taken from Kendall and Stuart (1979). It involves the
distance vision in the right and left eyes, and especially illustrates the use of
Kappa and McNemar tests. Most other test statistics are also computed.

      INTEGER    ICMPT, IPRINT, LDCHI, LDEXPE, LDSTAT, LDTABL, NCOL,
     &           NROW
      PARAMETER  (ICMPT=0, IPRINT=1, LDCHI=5, LDEXPE=5, LDSTAT=23,
     &           LDTABL=4, NCOL=4, NROW=4)
C
      REAL       CHI(NROW+1,NCOL+1), CHISQ(10), EXPECT(NROW+1,NCOL+1),
     &           STAT(LDSTAT,5), TABLE(NROW,NCOL)
      EXTERNAL   CTCHI
C
      DATA TABLE/821, 116, 72, 43, 112, 494, 151, 34, 85, 145, 583,
     &     106, 35, 27, 87, 331/
C
      CALL CTCHI (NROW, NCOL, TABLE, LDTABL, ICMPT, IPRINT, EXPECT,
     &            LDEXPE, CHI, LDCHI, CHISQ, STAT, LDSTAT)
      END

Output
           Table Values
         1       2       3       4
 1   821.0   112.0    85.0    35.0
 2   116.0   494.0   145.0    27.0
 3    72.0   151.0   583.0    87.0
 4    43.0    34.0   106.0   331.0

                        Expected Values
        row totals in column 5, column totals in row 5
             1           2           3           4           5
 1      341.69      256.92      298.49      155.90     1053.00
 2      253.75      190.80      221.67      115.78      782.00
 3      289.77      217.88      253.14      132.21      893.00
 4      166.79      125.41      145.70       76.10      514.00
 5     1052.00      791.00      919.00      480.00     3242.00

                  Contibutions to Chi-squared
        row totals in column 5, column totals in row 5
             1           2           3           4           5
 1      672.36       81.74      152.70       93.76     1000.56
 2       74.78      481.84       26.52       68.08      651.21
 3      163.66       20.53      429.85       15.46      629.50
 4       91.87       66.63       10.82      853.78     1023.10
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 5     1002.68      650.73      619.88     1031.08     3304.37

   Chi-square Statistics
 Pearson        3304.3682
 p-value           0.0000
 DF                9.0000
 G**2           2781.0188
 p-value           0.0000
 Exact mean        9.0028
 Exact std.        4.2402
 Phi               1.0096
 P                 0.7105
 Cramer’s V        0.5829

                             Table Statistics
                             standard  std. error     t-value
                statistic       error    under Ho  testing Ho     p-value
 Gamma             0.7757      0.0123      0.0149       52.19      0.0000
 Tau B             0.6429      0.0122      0.0123       52.19      0.0000
 Tau C             0.6293      0.0121         NaN       52.19      0.0000
 D-Row             0.6418      0.0122      0.0123       52.19      0.0000
 D-Column          0.6439      0.0122      0.0123       52.19      0.0000
 Correlation       0.6926      0.0128      0.0172       40.27      0.0000
 Spearman          0.6939      0.0127      0.0127       54.66      0.0000
 GK tau rows       0.3420      0.0123         NaN         NaN         NaN
 GK tau col.       0.3430      0.0122         NaN         NaN         NaN
 U - Sym.          0.3171      0.0110         NaN         NaN         NaN
 U - rows          0.3178      0.0110         NaN         NaN         NaN
 U - cols.         0.3164      0.0110         NaN         NaN         NaN
 Lambda-sym.       0.5373      0.0124         NaN         NaN         NaN
 Lambda-row        0.5374      0.0126         NaN         NaN         NaN
 Lambda-col.       0.5372      0.0126         NaN         NaN         NaN
 l-star-rows       0.5506      0.0136         NaN         NaN         NaN
 l-star-col.       0.5636      0.0127         NaN         NaN         NaN
 Lin. trend           NaN         NaN         NaN         NaN         NaN
 Kruskal row    1561.4861      3.0000         NaN         NaN      0.0000
 Kruskal col    1563.0300      3.0000         NaN         NaN      0.0000
 Kappa             0.5744      0.0111      0.0106       54.36      0.0000
 McNemar           4.7625      6.0000         NaN         NaN      0.5746
 McNemar df=1      0.9487      1.0000         NaN        0.35      0.3301

CTPRB/DCTPRB (Single/Double precision)
Compute exact probabilities in a two-way contingency table.

Usage
CALL CTPRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE, PCHEK)

Arguments

NROW — Number of rows in the contingency table.   (Input)

NCOL — Number of columns in the contingency table.   (Input)
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TABLE — NROW by NCOL matrix containing the contingency table cell
frequencies.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

PRT — Probability of the observed table assuming fixed row and column
marginal totals.   (Output)

PRE — Probability of a more extreme table where “extreme” is taken in the
Neyman-Pearson sense.   (Output)
A table is more extreme if its probability (for fixed marginals) is less than or
equal to PRT.

PCHEK — Sum of the probabilities of all tables with the same marginal totals.
(Output)
PCHEK should be 1.0. Deviation from 1.0 is numerical error.

Comments
1. Automatic workspace usage is

CTPRB (NROW + 2)(NCOL + 2) units, or

DCTPRB (NROW + 2)(NCOL + 2) units.

Workspace may be explicitly provided, if desired, by use of
C2PRB/DC2PRB. The reference is

CALL C2PRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE,
            PCHCK, IWK)

The additional argument is

IWK — Work vector of length (NROW + 2)(NCOL + 2).

2. Informational error
Type Code
   3    1 There are no observed counts in TABLE. PRE, PRT, and

PCHEK are set to NaN (not a number).

3. Routine CTPRB computes a two-tailed Fisher exact probability in 2 by 2
tables. For one-tailed Fisher exact probabilities, use routine CTTWO (page
436).

Algorithm

Routine CTPRB computes exact probabilities for an r × c contingency table for
fixed row and column marginals where r = NROW and c = NCOL. Let fLM denote the
element in row i and column j of a table, and let fL� and f�M denote the row and
column marginals. Under the independence hypothesis, the (conditional)
probability for fixed marginals of a table is given by
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where f�� is the total number of counts in the table and x! denotes x factorial.
When the fLM are obtained from the input table (fLM = TABLE(i, j)), PI = PRT. PRE is
the sum over all more extreme tables of the probability of each table.

In CTPRB, a more extreme table is defined in the probabilistic sense. Table X is
more extreme than the input table if the conditional probability computed for
table X (for the same marginal sums) is less than the conditional probability
computed for the input table. The user should note that this definition of “more
extreme” can be considered as “two-sided” in the cell counts.

Because CTPRB uses total enumeration in computing the probability of a more
extreme table, the amount of computer time required increases very rapidly with
the size of the table. Tables, with either a large total count f�� or in which the
product rc is not small, should not be analyzed with CTPRB. Rather, either the
approximate methods of Agresti, Wackerly, and Boyett (1979) should be used or
algorithms that do not require total enumeration should be used (see Pagano and
Halvorsen [1981], or Mehta and Patel [1983]).

Example

In this example, CTPRB is used to compute the exact conditional probability for a
2 × 2 contingency table. The input table is given as:

8 12

8 2
�
! 

"
$#

      INTEGER    NCOL, NROW, LDTABL
      PARAMETER  (NCOL=2, NROW=2, LDTABL=2)
C
      INTEGER    NOUT
      REAL       PCHEK, PRE, PRT, TABLE(LDTABL,NCOL)
      EXTERNAL   CTPRB, UMACH
C
      DATA TABLE/8, 8, 12, 2/
C
      CALL UMACH (2, NOUT)
C
      CALL CTPRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE, PCHEK)
C
      WRITE(NOUT,’(’’ PRT = ’’, F12.4, /, ’’ PRE = ’’, F12.4, /,
     &      ’’ PCHEK = ’’, F10.4)’)  PRT, PRE, PCHEK
      END

Output
PRT =       0.0390
PRE =       0.0577
PCHEK =     1.0000
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CTEPR/DCTEPR (Single/Double precision)
Compute Fisher’s exact test probability and a hybrid approximation to the Fisher
exact test probability for a contingency table using the network algorithm.

Usage
CALL CTEPR (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT,
            EMIN, PRT, PRE)

Arguments

NROW — The number of rows in the table.   (Input)

NCOL — The number of columns in the table.   (Input)

TABLE — NROW by NCOL matrix containing the contingency table.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

EXPECT — Expected value used in the hybrid approximation to Fisher’s exact
test algorithm for deciding when to use asymptotic probabilities when computing
path lengths.   (Input)
If EXPECT ≤ 0.0, then asymptotic theory probabilities are not used and Fisher
exact test probabilities are computed. Otherwise, asymptotic probabilities are
used in computing path lengths whenever PERCNT or more of the cells in the table
for which path lengths are to be computed have estimated expected values of
EXPECT or more, with no cell having expected value less than EMIN. See the
“Algorithm” section for details. Use EXPECT = 5.0 to obtain the “Cochran”
condition.

PERCNT — Percentage of remaining cells that must have estimated expected
values greater than EXPECT before asymptotic probabilities can be used in
computing path lengths.   (Input)
See argument EXPECT for details. Use PERCNT = 80.0 to obtain the “Cochran”
condition.

EMIN — Minimum cell estimated expected value allowed for asymptotic chi-
squared probabilities to be used.   (Input)
See argument EXPECT for details. Use EMIN = 1.0 to obtain the “Cochran”
condition.

PRT — Probability of the observed table for fixed marginal totals.   (Output)

PRE — Table p-value.   (Output)
PRE is the probability of a more extreme table, where “extreme” is in a
probabilistic sense. If EXPECT < 0, then the Fisher exact probability is returned.
Otherwise, a hybrid approximation to Fisher’s exact probability is computed.
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Comments

1. Automatic workspace usage is

CTEPR MMM − 50 units, or
DCTEPR MMM − 50 units,

where MMM is the total amount of workspace available. Workspace may
be explicitly provided, if desired, by use of C2EPR/DC2EPR. The
reference is

CALL C2EPR (NROW, NCOL, TABLE, LDTABL, EXPECT,
            PERCNT, EMIN, PRT, PRE, FACT, ICO, IRO,
            KYY, IDIF, IRN, KEY, LDKEY, IPOIN, STP,
            LDSTP, IFRQ, DLP, DSP, TM, KEY2, IWK,
            RWK)

The additional arguments are as follows:

FACT — Work vector of length NTOT + 1 where NTOT is the total count
in the table.

ICO — Work vector of length MX where MX = max(NROW, NCOL).

IRO — Work vector of length MX.

KYY — Work vector of length MX.

IDIF — Work vector of length MN where MN = max(NROW, NCOL).

IRN — Work vector of length MN.

KEY — Work vector of length 2 * LDKEY.

LDKEY — Leading dimension of KEY exactly as specified in the
dimension statement in the calling program.   (Input)

IPOIN — Work vector of length 2 * LDKEY.

STP — Work vector of length 2 * LDSTP.

LDSTP — Leading dimension of STP exactly as specified in the
dimension statement in the calling program.   (Input)

IFRQ — Work vector of length 6 * LDSTP.

DLP — Work vector of length 2 * LDKEY.

DSP — Work vector of length 2 * LDKEY.

TM — Work vector of length 2 * LDKEY.

KEY2 — Work vector of length 2 * LDKEY.

IWK — Work vector of length max((NROW + NCOL + 1)(5 + 2 * MX),
800 + 7 * MX).

RWK — Work vector of length max(400 + MX + 1, NROW + NCOL + 1).
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The exact value of LDKEY and LDSTP required is not known in advance.
Common values to try are LDKEY = 1000 and LDSTP = 30000.

2. Informational errors
Type Code
   3    1 All of the elements of TABLE are zero.
   4    2 The product of the marginal totals is greater than can

be exactly represented in an integer variable so the
hash table key cannot be computed. The computations
cannot proceed.

   4    3 LDKEY is too small. To increase LDKEY when invoking
CTEPR/DCTEPR, increase the total workspace used. A
doubling of the total workspace is a good place to
begin.

   4   4 LDSTP is too small. To increase LDSTP when invoking
CTEPR/DCTEPR, increase the total workspace used. A
doubling of the total workspace is a good place to
begin.

   4   5 The current value for IWKIN is too small. It is not
possible to give the value for IWKIN required, but you
might try doubling the amount. Refer to IWKIN in the
Reference Material section.

3. Routine CTEPR/DCTEPR will use all available workspace. It is not
unusual for CTEPR/DCTEPR to require 200,000 floating-point units of
workspace.

4. When C2EPR/DC2EPR is called by CTEPR/DCTEPR, LDSTP = 30 *
LDKEY.

5. Although not a restriction, it is not generally practical to call this routine
with large tables that are not sparse and in which the hybrid
approximation to Fisher’s exact test (see the “Algorithm” section) has
little effect. For example, although it is feasible to compute exact
probabilities for the table

1 8 5 4 4 2 2

5 3 3 4 3 1 0

10 1 4 0 0 0 0

computing exact probabilities for a similar table that has been enlarged
by the addition of an extra row (or column) may not be feasible.

Algorithm

Routine CTEPR computes Fisher exact probabilities or a hybrid algorithm
approximation to Fisher exact probabilities for a r ×  c contingency tables with
fixed row and column marginals where r = NROW is the number of rows in the
table and c = NCOL is the number of columns in the table. Let fLM denote the
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frequency count in row i and column j of a table, and let fL� and f�M denote the total
row and column frequency count for row i and column j, respectively. Under the
independence hypothesis, the (conditional) probability of the observed table for
fixed row and column marginal totals is given by

P
f f

f f
f
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i j
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j

i
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ij
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where f�� is the total number of counts in the table and x! denotes x factorial.
When the fLM are equal to the input table so that fLM = TABLE (i, j), then let
PR = PRT be the resulting value for PI.

In CTEPR, a more extreme table is defined in the probabilistic sense. Table X is
more extreme than the input table if the conditional probability computed for
table X (for the same marginal sums) is less than the conditional probability
computed for the input table. Let p = PRE be the probability of a more extreme
table. Then

p Pf
P P

=
≤
∑

0

The user should note that this definition of “more extreme” can be considered as
“two-sided” in the cell counts.

Routine CTEPR uses the hybrid network algorithm of Mehta and Patel (1983,
1986a, 1986b) with the Clarkson and Fan (1989) modifications to compute the
probability of a more extreme table. The hybrid algorithm uses asymptotic
probabilities for tables encountered in which PERCNT percent of the table
expected values are greater than or equal to EXPECT, and all expected values are
greater than EMIN. When PERCNT = 80, EXPECT = 5, and EMIN = 1, this is the
“Cochran” rule. Although the hybrid network algorithm can be orders of
magnitude faster than the total enumeration algorithm used in routine CTPRB

(page 456), the amount of computer time required by CTEPR still increases very
rapidly with the size of the table. Caution should be used whenever computer time
is a consideration.

Example

In this example, CTEPR is used to compute the hybrid approximation to the Fisher
exact probability for a 3 × 6 contingency table using the Cochran condition.
Because of the large initial counts and the input arguments EXPECT = 5, PERCNT
= 80, and EMIN = 1, the hybrid algorithm significantly reduces the computation
effort in this example. The input table is given as

20 20 0 0 0

10 10 2 2 1

20 20 0 0 0

�

!
   

"

$
###
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      INTEGER    LDTABL, NCOL, NROW
      REAL       EMIN, EXPECT, PERCNT
      PARAMETER  (EMIN=1.0, EXPECT=5.0, NCOL=5, NROW=3, PERCNT=80.0,
     &           LDTABL=NROW)
C
      INTEGER    NOUT
      REAL       PRE, PRT, TABLE(LDTABL,NCOL)
      EXTERNAL   CTEPR, UMACH
C
      DATA TABLE/20.0, 10.0, 20.0, 20.0, 10.0, 20.0, 0.0, 2.0, 0.0,
     &     0.0, 2.0, 0.0, 0.0, 1.0, 0.0/
C
      CALL UMACH (2, NOUT)
C
      CALL CTEPR (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT, EMIN,
     &            PRT, PRE)
C
      WRITE (NOUT,99999) PRT, PRE
C
99999 FORMAT (’ PRT = ’, E12.4, ’  PRE = ’, F8.4)
C
      END

Output
PRT =   0.1915E-04  PRE =   0.0601

For comparison, the usual asymptotic chi-squared p-value (which may be
computed through the use of routine CTCHI (page 446), do not use CTEPR) is
computed as 0.0323, and the Fisher exact probability (which may be computed
through CTEPR by setting EXPECT = 0.0) is computed as 0.0598 and requires
approximately ten times more computer time than the hybrid method. The Fisher
exact probability and the usual asymptotic chi-squared probability will often be
quite different. When it may be used, the hybrid algorithm can lead to
significantly greater savings in computer time.

PRPFT/DPRPFT (Single/Double precision)
Perform iterative proportional fitting of a contingency table using a loglinear
model.

Usage
CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS,
            MAXIT, FIT)

Arguments

NCLVAR — Number of classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)
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TABLE — Vector of length NCLVAL(1) * NCLVAL (2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.

NEF — Number of effects in the model.   (Input)
A marginal table is implied by each effect in the model. Lower order effects
should not be included since their inclusion is automatic (e.g., do not include
effects A or B if effect AB is in the model).

NVEF — Vector of length NEF that contains the number of classification
variables associated with each effect.   (Input)

INDEF — Vector of length NVEF(1) + …+ NVEF(NEF) that contains, in
consecutive positions, the indices of the variables that are included in each effect.
(Input)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the
indices of the variables in effect 1, the next NVEF(2) elements of INDEF contain
the indices of the variables in effect 2, etc. See Comment 4 for an example.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum deviation between an observed and
a fitted marginal total is less than EPS. EPS = 0.10 is a typical value.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 15 is a typical value.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR).
(Input/Output)
On input, FIT contains the initial estimates of the cell counts. Structural zeros in
the model are specified by setting the corresponding element of FIT to 0.0. All
other elements of FIT must be positive. 1.0 may be used if no other estimate of
the cell counts is available. See Comment 3 for the ordering of the elements of
FIT. On output, FIT contains the fitted table.

Comments

1. Automatic workspace usage is

PRPFT NEF + 2 * NCLVAR + (the sum from J = 1 to NEF of the product
of the nonzero elements of NCLVAL(INDEF(I)) for I = 1 to
NVEF(J)) + (the maximum over J = 1 to NEF of the product of
the elements of NCLVAL(INDEF (I)), for I = 1 to NVEF(J))
units, or

DPRPFT NEF + 2 * NCLVAR + 2 * ((the sum from J = 1 to NEF of the
product of the nonzero elements of NCLVAL(INDEF(I)) for
I = 1 to NVEF(J)) + (the maximum over J = 1 to NEF of the
product of the nonzero elements of NCLVAL(INDEF(I)), for I =
1 to NVEF(J))) units.



IMSL STAT/LIBRARY Chapter 5: Categorical and Discrete Data Analysis • 465

Workspace may be explicitly provided, if desired, by use of
P2PFT/DP2PFT. The reference is

CALL P2PFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF,
            EPS, MAXIT, FIT, AMAR, INDEX, WK, IWK)

The additional arguments are as follows.

AMAR — Work vector with length equal to the sum from J = 1 to NEF
of the product of the nonzero elements of NCLVAL(INDEF(I)) for I = 1
to NVEF(J).

INDEX — Work vector of length NEF.

WK — Work vector with length equal to the maximum over J = 1 to
NEF of the product of the nonzero elements of NCLVAL(INDEF(I)), for I
= 1 to NVEF(J).

IWK — Work vector of length 2 * NCLVAR.

2. Informational errors
Type Code
   3  11 The algorithm did not converge to the desired

accuracy within MAXIT iterations.
   4  12 A marginal total for an effect is zero. Since FIT

indicates this is not a structural zero, the algorithm will
not converge properly. One way to proceed is to add a
constant to all cells in the table.

3. The cells of the vectors TABLE and FIT are sequenced so that the first
variable cycles from 1 to NCLVAL(1), which is the slowest, the second
variable cycles from 1 to NCLVAL(2), which is the next slowest, etc., up
to the NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the
fastest.
Example. For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order.
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

4 INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables 1
and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1.

Since the sum of the NVEF(I) is 3, then INDEF is a vector of length 3
with values. INDEF (1) = 1, INDEF(2) = 3, and INDEF(3) = 2.

5. Typically, MAXIT = 5 is sufficient. If PRPFT does not converge, try using
DPRPFT, increasing EPS, increasing MAXIT, or using the values output in
FIT as input for another call to PRPFT/DPRPFT.
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Algorithm

Routine PRPFT uses the iterative proportional-fitting algorithm to fit a log-linear
hierarchical model to a contingency table. Structural zeros are allowed. A
hierarchical model is a factorial model in which lower-order terms are always
present. Thus, in a three-way table with classification variable names A, B, and C,
the following models are all hierarchical models.

A B C AB

A B C AB BC

A C AC

A B C AB AC BC

Many other hierarchical models exist for the three-way table. Since all
hierarchical models can be completely specified by the higher-order interactions
(the lower-order interactions will always be present), no lower-order effects are
included in model specification.

Corresponding to each hierarchical interaction is a marginal table. Iterations in
PRPFT proceed by fitting marginal tables successively until the desired precision
is achieved.

A structural zero is a cell in the table that, by design or otherwise, can have no
observations, i.e., the count for the cell must be zero. Structural zeros are
specified by setting the corresponding element in FIT to zero on input. Routine
PRPFT is best suited for tables with no structural zeros and in which the initial
estimates input in FIT are all 1. The user should be aware that the algorithm may
take (much) longer to converge when this is not the case.

Sampling zeros are cells that are not structural zeros, but for which no count is
observed. Routine PRPFT requires the absence of sampling zeros in all marginal
tables that are fit. One common way method of achieving this is to add a constant,
often 0.5, to each cell prior to fitting the table.

Example

The following example is taken from Bishop, Feinberg, and Holland (1975,
page 87). The data are originally from Bartlett (1935). This example examines the
survival of plants (factor A = factor 2) at different values for time of planting
(factor C = factor 3) and length of cutting (factor B = factor 1). The sample size
for each level of B and C is fixed at 240.

B

1 2

A A
1 2 1 2

C 1 156 84 C 1 84 156

2 107 133 2 31 209
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The model to be fit is given by:

ln(mijk i j ij k ik jk) = + + + + + +µ α β αβ γ αγ βγ

where mLMN is the cell expected value for levels i, j, and k of factors A, B, and C,
respectively.

      INTEGER    NCLVAR, NEF
      PARAMETER  (NCLVAR=3, NEF=3)
C
      INTEGER    INDEF(6), MAXIT, NCLVAL(NCLVAR), NOUT, NVEF(NEF)
      REAL       EPS, FIT(8), TABLE(8)
      EXTERNAL   PRPFT, UMACH
C
      DATA NCLVAL/2, 2, 2/, NVEF/2, 2, 2/
      DATA INDEF/1, 2, 1, 3, 2, 3/, EPS/0.0001/, MAXIT/15/
      DATA TABLE/156, 107, 84, 31, 84, 133, 156, 209/
      DATA FIT/8*1.0/
C
      CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT,
     &            FIT)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) FIT
99999 FORMAT (’ FIT =’, 8F7.1)
      END

Output
FIT =  161.1  101.9   78.9   36.1   78.9  138.1  161.1  203.9

CTLLN/DCTLLN (Single/Double precision)
Compute model estimates and associated statistics for a hierarchical log-linear
model.

Usage
CALL CTLLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS,
            MAXIT, TOL, IPRINT, FIT, NCOEF, COEF, LDCOEF,
            COV, LDCOV, RESID, LDRESI, STAT)

Arguments

NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.
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NEF — Number of effects in the model.   (Input)
A marginal table is implied by each effect in the model. Lower-order effects
should not be included since their inclusion is automatic in the hierarchical
models fit here (e.g., do not include effects A or B if effect AB is in the model).

NVEF — Vector of length NEF containing the number of classification variables
associated with each effect.   (Input)

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) containing, in
consecutive positions, the indices of the variables that are included in each effect.
(Input)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the
indices of the variables in effect 1, the next NVEF(2) elements of INDEF contain
the indices of the variables in effect 2, etc. See Comment 4 for an example.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum deviation between an observed and
a fitted marginal total is less than EPS. EPS = 0.10 is a typical value.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 15 is a typical value.

TOL — Tolerance used in determining linear dependence in COV.   (Input)
For CTLLN, TOL = 100.0 AMACH(4) is a common choice. For DCTLLN,
TOL = 100.0 DMACH(4) is a common choice. See the documentation for routine
AMACH/DMACH (Reference Material).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 TABLE, FIT, RESID, COEF, COV, and STAT are printed.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the model estimates of the cell frequencies.   (Input/Output)
On input, FIT contains the initial estimates of the cell counts. Structural zeros in
the model are specified by setting the corresponding element of FIT to 0.0. All
other elements of FIT may be set to 1.0 if no other estimate of the expected cell
counts is available. On output, FIT contains the fitted table. See Comment 3 for
the ordering of the elements of FIT. If an element of FIT is positive but the
corresponding element in TABLE is zero, then the element is called a sampling
zero. Sampling zeros may effect the number of parameters that can be estimated,
but they will not effect the degrees of freedom in chi-squared tests. See the
“Algorithm” section.

NCOEF — Number of regression coefficients in the model.   (Output)

COEF — NCOEF by 4 matrix containing the estimated coefficients and associated
statistics.   (Output)
Dummy variables used in fitting the log-linear model are generated using the
IDUMMY = 3 option of routine GRGLM (page 210). For this option, the k-th  dummy
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variable for classification variable I is the (0, 1) indicator variable for the k-th level of
the classification variable minus the (0, 1) indicator variable for the NCLVAL(I)-th
level of the classification variable.

Column Statistic
1 Coefficient estimate
2 Estimated standard error of the estimated coefficient
3 Asymptotic normal score for testing that the coefficient is zero
4 p-value associated with the normal score in column 3 (two-sided

alternative).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NCOEF by NCOEF covariance matrix for the estimated parameters.
(Output)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

RESID — NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) by 4 matrix
containing residual statistics for each cell in the table.   (Output)

Column Statistic
1 Signed square root of the contribution to chi-squared
2 Contribution to the likelihood ratio
3 Freeman-Tukey deviate
4 Residual difference

LDRESI — Leading dimension of RESID exactly as specified in the dimension
statement in the calling program.   (Input)

STAT — Vector of length 4 containing output statistics for the model.   (Output)

I STAT(I)
1 Log-likelihood.
2 Likelihood ratio statistic for testing the fit of the model.
3 Degrees of freedom in the likelihood ratio statistic. This statistic corrects

for parameters that cannot be estimated because of sampling zeros.
4 p-value corresponding to the likelihood ratio statistic.

Comments

1. Automatic workspace usage is

CTLLN NEF+ 4 * NCLVAR + 4 * NCOEF+ 2NCLVAR − 1 + NCLVAR *

2NCLVAR-1 + a + b + c + d + e + f + z + 3 units, or

DCTLLN NEF+ 5 * NCLVAR + 8 * NCOEF+ 2NCLVAR − 1 + NCLVAR *

2NCLVAR-1 + a + b + z + 2 * (c + d + e + f) + 5 units, where
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a = NVEF(1) +…+ NVEF(NEF),
b = NCLVAL(1) +…+ NCLVAL(NCLVAR),
c = NCLVAL(1) 2*…* NCLVAL(NCLVAR),
d = the sum over all effects in the model (J = 1 to NEF) of the length of
the marginal table required for the effect,
e = max (g, NCOEF+ 1) if IPRINT = 0, otherwise e = max(g, 6 * m, n)
where m is the maximal element in NCLVAL and n is the length of
TABLE,

f = NCOEF +NCOEF2 if there exists both structural and sampling zeros in
TABLE, otherwise, f = NCLVAR + 1,
g = the maximum over all effects in the model (J = 1 to NEF) of the
length of the marginal table required for the effect,
z = the number of structural zeros in TABLE.

The length of each marginal table is computed as the product of the
number of class values for each classification variable in the effect (the
product of the nonzero elements of NCLVAL(INDEF(I)) where I ranges
from K(J) through K(J) + NVEF(J) − 1. Here, K(1) = 1 and
K(J + 1) = K(J) + NVEF(J).)

Workspace may be explicitly provided, if desired, by use of
C2LLN/DC2LLN. The reference is

CALL C2LLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF,
            EPS, MAXIT, TOL, IPRINT, FIT, NCOEF,
            COEF, LDCOEF, COV, LDCOV, RESID, LDRESI,
            STAT, AMAR, INDEX, NCVEF, IXEF, IINDEF,
            IA, INDCL, CLVAL, REG, X, D, XMIN, XMAX,
            COVWK, WK, IWK)

The additional arguments are as follows.

AMAR — Vector of length equal to the sum over all effects in the model
(J = 1 to NEF) of the length of the marginal table required for the effect.
The length of each marginal table is computed as the product of the
number of class values for each classification variable in the effect (the
product of the nonzero elements of NCLVAL(INDEF(I)) where I ranges
from K(J) through K(J)+ NVEF(J) − 1. Here, K(1) = 1 and K(J + 1) =
K(J) + NVEF(J).)

INDX — Vector of length NEF.

NCVEF — Vector of length 2NCLVAR − 1.

IXEF — Vector of length NCLVAR * 2NCLVAR-1.

IINDEF — Vector of length NVEF(1) + … + NVEF(NEF).

IA — Vector of length NCLVAR.

INDCL — Vector of length NCLVAR.

CLVAL — Vector of length NCLVAL(1) + … + NCLVAL(NCLVAR).
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REG — Vector of length NCOEF + 1.

X — Vector of length NCOEF if there exists both structural structural and
sampling zeros in TABLE; otherwise, it is of length NCLVAR.

D — Vector of length NCOEF + 1.

XMIN — Vector of length NCOEF.

XMAX — Vector of length NCOEF.

COVWK — Vector of length NCOEF2 if there exists both structural and
sampling zeros in TABLE. Otherwise, COVWK is not referenced and can be
dimensioned of length one.

WK — Vector of length max(g, NCOEF + 1) if IPRINT = 0; otherwise,
WK is of length max(g, 6m, n) where m is the maximal element in
NCLVAL, n is the length of TABLE, and g equals the maximum over all
effects in the model (J = 1, NEF) of the length of the marginal table
required for the effect. The length of the marginal table is computed as
the product of the number of class values for each classification variable
in the effect (the product of the nonzero elements of NCLVAL(INDEF(I))
where I ranges from K(J) through
K(J) + NVEF(J) − 1, where K(1) = 1 and K(J + 1) = K(J) + NVEF(J)).

IWK — Vector of length 2 * NCLVAR + z + 1 where z is the number of
structural zeros in TABLE.

2. Informational errors
Type Code
  3    1 The optimization algorithm did not converge to the

desired accuracy within MAXIT iterations. Some of the
estimated statistics may not be accurate.

   3    5 The label for one or more of the tables exceeds the
buffer limit.

   3  11 The label for one or more effects exceeds the buffer
limit.

   4    2 LDCOEF or LDCOV is less than NCOEF.

3. The cells of the vectors TABLE and ZERO are sequenced so that the first
variable cycles from 1 to NCLVAL(1) the slowest, the second variable
cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order.
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables
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1 and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the
NVEF(I) is 3, then INDEF is a vector of length 3 with values: INDEF(1) =
1, INDEF(2) = 3, and INDEF(3) = 2.

Algorithm

Routine CTLLN computes statistics of interest for a hierarchical model in a log-
linear analysis of a multidimensional contingency table. Among the statistics
computed are the expected cell values, cell residuals, the log-linear parameters
and their estimated variances and covariances, the log-likelihood for the model
(plus a constant), and a likelihood-ratio test of the model (versus the alternative
that the cell probabilities are free to vary, subject only to the marginal
constraints). In addition, CTLLN can print and label all statistics that it computes.

Routine PRPFT (page 463) is used to find the maximum likelihood estimates of
the expected cell counts (FIT). These expected values are then used as input to
routine CTPAR (page 476) in order to compute estimates of the parameters in the
model and their estimated covariances.

The matrix RESID contains various residuals that may be used in analyzing the
model. These residuals are discussed in detail by Bishop, Feinberg, and Holland
(1975, pages 136-137), among others. Each is computed from the cell observed
(oL) and expected (fitted, fL) values according to the following methods:

1. The signed square root of the contributions to χ2 are computed as

( ) /o f fi i i−

2. The contributions to the likelihood ratio (G2) are computed as 2oL
log(oL/fL)

3. Freeman-Tukey deviates are computed as

o o fi i i+ + − +1 4 1

4. The residual differences are computed as oL − fL

The log-likelihood STAT(1) is computed as
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where n is the number of cells in the table. The likelihood ratio statistic for testing
the fit of the model is computed as
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which for large samples follows a chi-squared distribution.
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The number of degrees of freedom in G2 is computed as the number of cells in the
table, excluding structural zeros, minus the number of parameters that could be
estimated if there were no sampling zeros. When there are either structural or
sampling zeros in the model, some parameters may not be estimable because they
are infinite. Parameters that cannot be estimated due to structural zeros are not
counted in the number of parameters estimated when computing the degrees of

freedom for χ2. Parameters that cannot be estimated because of sampling zeros
are counted as estimated parameters when computing the degrees of freedom for 

χ2.

To explain the calculation of degrees of freedom, note that extended maximum
likelihood estimates may be written as

$ $ $β β ρβ= + ∞F

where

$ , $ $β β ρβF and ∞

are coefficient vectors, and ρ → ∞. Routine CTLLN estimates the finite portion of

the estimates, $βF  The infinite portion, $β∞  ensures that the fitted values for zero
marginal cells corresponding to a term in the hierarchical model have estimated
expectation of zero. Thus, CTLLN fits the finite portion of extended maximum
likelihood estimates where the extension is to ±∞. Because the Hessian elements
corresponding to infinite parameters are zero, the Hessian is computed from a
reduced likelihood in which cells leading to infinite estimates have been
eliminated. The user is referred to Clarkson and Jennrich (1991) for details.

Example

The example illustrates the use of CTLLN in a simple four-way table in which the
first three factors have two levels, and the fourth factor has three levels. The data,
taken from Lee (1977), involve brand preference in different situations.

      INTEGER    IPRINT, LDCOEF, LDCOV, LDRESI, LTAB, MAXIT, NCLVAR
      REAL       EPS
      PARAMETER  (EPS=0.01, IPRINT=1, LDCOEF=10, LDCOV=10, LDRESI=24,
     &           LTAB=24, MAXIT=10, NCLVAR=4)
C
      INTEGER    INDEF(6), NCLVAL(NCLVAR), NCOEF, NEF, NVEF(3)
      REAL       AMACH, COEF(LDCOEF,4), COV(LDCOV,LDCOV), FIT(LTAB),
     &           RESID(LDRESI,4), STAT(4), TABLE(LTAB), TOL
      EXTERNAL   AMACH, CTLLN
C
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47,
     &     55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NEF/3/, NVEF/2, 2, 2/, INDEF/2, 4, 1, 4, 2, 3/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
C
      TOL = 100.0*AMACH(4)
      CALL CTLLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT,
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     &            TOL, IPRINT, FIT, NCOEF, COEF, LDCOEF, COV, LDCOV,
     &            RESID, LDRESI, STAT)
C
      END

Output
Fitted Model: (B*D, A*D, B*C)

Variable   Number of Levels
1 A              3
2 B              2
3 C              2
4 D              2

Model Statistics
Log-likelihood            3.7906
Likelihood ratio           11.89
Degrees of freedom          14.0
P-value                   0.6154

                          Coefficient Statistics
                                     Standard   Asymptotic
                    Coefficient          Error  Z-statistic        P-value
  1 intercept            3.6827         0.0333       110.66         0.0000
  2  A(1)               -0.0591         0.0475        -1.24         0.2341
  3  A(2)                0.0278         0.0461         0.60         0.5562
  4  B                  -0.0166         0.0331        -0.50         0.6242
  5  C                  -0.0434         0.0319        -1.36         0.1943
  6  D                  -0.2783         0.0329        -8.45         0.0000
  7  A*D(1)             -0.1016         0.0475        -2.14         0.0506
  8  A*D(2)              0.0034         0.0461         0.07         0.9414
  9  B*C                -0.1438         0.0319        -4.51         0.0005
 10  B*D                -0.0684         0.0328        -2.09         0.0558

           ------------------------------
                Table 1: C = 1 D = 1
                 B = 1 by A (column)
                           1           2           3
 Observed              19.00       23.00       24.00
 Fit                   19.52       23.65       26.09
 Root chi-square       -0.12       -0.13       -0.41
 Likelihood            -1.03       -1.29       -4.02
 Freeman-Tukey         -0.06       -0.08       -0.37
 Residual              -0.52       -0.65       -2.09

                 B = 2 by A (column)
                           1           2           3
 Observed              29.00       47.00       43.00
 Fit                   30.85       37.37       41.23
 Root chi-square       -0.33        1.57        0.28
 Likelihood            -3.58       21.54        3.62
 Freeman-Tukey         -0.29        1.52        0.31
 Residual              -1.85        9.63        1.77
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           ------------------------------
                Table 2: C = 1 D = 2
                 B = 1 by A (column)
                           1           2           3
 Observed              57.00       47.00       37.00
 Fit                   47.85       46.99       42.89
 Root chi-square        1.32        0.00       -0.90
 Likelihood            19.95        0.03      -10.93
 Freeman-Tukey          1.29        0.04       -0.89
 Residual               9.15        0.01       -5.89

                 B = 2 by A (column)
                           1           2           3
 Observed              49.00       55.00       52.00
 Fit                   57.52       56.48       51.56
 Root chi-square       -1.12       -0.20        0.06
 Likelihood           -15.70       -2.92        0.89
 Freeman-Tukey         -1.13       -0.16        0.10
 Residual              -8.52       -1.48        0.44

           ------------------------------
                Table 3: C = 2 D = 1
                 B = 1 by A (column)
                           1           2           3
 Observed              29.00       33.00       42.00
 Fit                   28.39       34.40       37.94
 Root chi-square        0.11       -0.24        0.66
 Likelihood             1.23       -2.73        8.53
 Freeman-Tukey          0.16       -0.20        0.68
 Residual               0.61       -1.40        4.06

                 B = 2 by A (column)
                           1           2           3
 Observed              27.00       23.00       30.00
 Fit                   25.24       30.58       33.73
 Root chi-square        0.35       -1.37       -0.64
 Likelihood             3.64      -13.10       -7.04
 Freeman-Tukey          0.39       -1.41       -0.61
 Residual               1.76       -7.58       -3.73

           ------------------------------
                Table 4: C = 2 D = 2
                 B = 1 by A (column)
                           1           2           3
 Observed              63.00       66.00       68.00
 Fit                   69.58       68.32       62.37
 Root chi-square       -0.79       -0.28        0.71
 Likelihood           -12.51       -4.57       11.75
 Freeman-Tukey         -0.78       -0.25        0.73
 Residual              -6.58       -2.32        5.63

                 B = 2 by A (column)
                           1           2           3
 Observed              53.00       50.00       42.00
 Fit                   47.06       46.21       42.18
 Root chi-square        0.87        0.56       -0.03
 Likelihood            12.61        7.88       -0.36
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 Freeman-Tukey          0.87        0.58        0.01
 Residual               5.94        3.79       -0.18

                     Asymptotic Coefficient Covariance
                1             2             3             4             5
  1    1.1076E-03    9.7132E-05   -3.5887E-05    4.3244E-05    4.3786E-05
  2                  2.2562E-03   -1.1408E-03   -3.4043E-11    2.6829E-11
  3                                2.1232E-03    2.5675E-11   -5.1643E-11
  4                                              1.0968E-03    1.4480E-04
  5                                                            1.0146E-03

                6             7             8             9            10
  1    2.9815E-04    1.3065E-04   -1.6147E-05    1.4480E-04    7.6307E-05
  2    1.3065E-04    7.2117E-04   -4.0976E-04    6.2343E-11   -1.0681E-11
  3   -1.6147E-05   -4.0976E-04    5.7437E-04   -4.9217E-11   -2.3482E-11
  4    7.6307E-05    1.2601E-11   -4.1730E-11    4.3786E-05    2.8917E-04
  5   -1.4272E-11   -5.5301E-11    4.2801E-11    4.5231E-06   -4.6962E-11
  6    1.0851E-03    9.7132E-05   -3.5887E-05   -4.9749E-11    3.0847E-05
  7                  2.2562E-03   -1.1408E-03    5.9300E-11   -1.0361E-10
  8                                2.1232E-03   -2.4481E-11    2.9160E-11
  9                                              1.0146E-03    1.1201E-11
 10                                                            1.0743E-03

CTPAR/DCTPAR (Single/Double precision)
Compute model estimates and covariances in a fitted log-linear model.

Usage
CALL CTPAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT, TOL,
            IPRINT, NCOEF, COEF, LDCOEF, COV, LDCOV)

Arguments

NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

NEF — Number of effects in the model.   (Input)
A marginal table is implied by each effect in the model. Lower-order effects
should not be included since their inclusion is automatic in the hierarchical
models fit here (e.g., do not include effects A or B if effect AB is in the model).

NVEF — Vector of length NEF containing the number of classification variables
associated with each effect.   (Input)

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) containing, in
consecutive positions, the indices of the variables that are included in each effect.
(Input)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain
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the indices of the variables in effect 1, the next NVEF(2) elements of INDEF
contain the indices of the variables in effect 2, etc. See Comment 4 for an
example.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the model estimates of the cell counts.   (Input)
See Comment 3 for the ordering of the elements of FIT. To obtain a first iteration
approximation to the optimal parameter values, the observed counts may be input
in FIT, in which case a least-squares model is fit. In all cases, values of zero in
FIT are assumed to correspond to structural zeros in the table. See the
“Algorithm” section for details.

TOL — Tolerance used in determining linear dependence in COV.   (Input)
For CTPAR, TOL = 100.0 * AMACH(4) is a common choice. For DCTPAR,
TOL = 100.0 * DMACH(4) is a common choice. See the documentation for routine
AMACH/DMACH (Reference Material).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing of COEF and COV is performed.
2 COEF, COV, and FIT are printed.

In the printing, A * B(2) denotes the second variable in the AB interaction effect.

NCOEF — Number of regression coefficients in the model.   (Output)

COEF — NCOEF by 4 matrix containing the estimated coefficients and associated
statistics.   (Output)

Col. Statistic
1 Coefficient estimate
2 Estimated standard error of the estimated coefficient
3 Asymptotic normal score for testing that the coefficient is zero
4 p-value associated with the normal score in column 3 (two-sided

alternative)

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NCOEF by NCOEF covariance matrix of the estimated coefficients.
(Output)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTPAR 2NCLVAR − 1 + NCLVAR * 2NCLVAR-1 + 3 * NCLVAR + 4 *
NCOEF+ m + n + a + 1 units, or



478 • Chapter 5: Categorical and Discrete Data Analysis IMSL STAT/LIBRARY

DCTPAR 2NCLVAR − 1 + NCLVAR * 2NCLVAR-1 + 4 * NCLVAR + 8 *
NCOEF + m + n + 2 * a + 2 units, where

m = NVEF(1) + L + NVEF(NEF),

n = NCLVAL(1) +L+ NCLVAL(NCLVAR), and

a = NCOEF + 1 if IPRINT ≠ 2, and is equal to the maximum of NCOEF +
1 and the product of the the two largest elements of NCLVAL otherwise.

Workspace may be explicitly provided, if desired, by use of
C2PAR/DC2PAR. The reference is

CALL C2PAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT,
            TOL, IPRINT, NCOEF, COEF, LDCOEF, COV,
            LDCOV, IRANK, NCVEF, IXEF, IINDEF, IA,
            INDCL, CLVAL, REG, X, D, XMIN, XMAX, WK)

The additional arguments are as follows:

IRANK — Rank of COV.

NCVEF — Vector of length 2NCLVAR − 1.

IXEF — Vector of length NCLVAR * 2NCLVAR-1.

IINDEF — Vector of length NVEF(1) + L + NVEF(NEF).

IA — Vector of length NCLVAR.

INDCL — Vector of length NCLVAR.

CLVAL — Vector of length NCLVAL(1) + L + NCLVAL(NCLVAR).

REG — Vector of length NCOEF + 1.

X — Vector of length NCLVAR.

D — Vector of length NCOEF.

XMIN — Vector of length NCOEF.

XMAX — Vector of length NCOEF.

WK — Vector of length NCOEF + 1 if IPRINT ≠ 2. Otherwise, its length
is the maximum of NCOEF + 1 and the product of the two largest
elements of NCLVAL.

2. Informational errors
Type Code
   3    5 The label for one or more of the tables exceeds the

buffer limit.
   3  11 The label for one or more effects exceeds the buffer

limit.
   4    1 LDCOEF or LDCOV is less than NCOEF.
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3. The cells of the vector FIT are sequenced so that the first variable cycles
from 1 to NCLVAL(1) the slowest, the second variable cycles from 1 to
NCLVAL(2) the next slowest, etc., up to the NCLVAR-th variable, which
cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into FIT(1)
through FIT(12) in the following order: X(1, 1, 1), X(1, 1, 2), X(1, 2, 1),
X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1),
X(2, 2, 2), X(2, 3, 1), X(2, 3, 2).

4. INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables 1
and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the
NVEF(I) is 3, then INDEF is a vector of length 3 with values: INDEF(1) =
1, INDEF(2) = 3, and INDEF(3) = 2.

Algorithm

Routine CTPAR computes estimates of parameters and associated variances and
covariances in hierarchical loglinear models. A weighted least-squares algorithm
is used.

A hierarchical analysis of variance model is a factorial analysis of variance model
in which a lower-order effect is included in a model whenever a higher-order
effect containing it is in the model. Thus, if the effect ADF is in the model, then
effects A, D, F, AD, AF, and DF are automatically in the model.

Input to CTPAR may be either the expected table values for the given hierarchical
model as output, for example, by routine PRPFT (page 463), or the observed table
values. When the fitted values are input, the estimates computed are the
maximum likelihood estimates. When observed values are input, weighted least-
squares estimates of the parameters in the log-linear model are computed. (Least-
squares estimates and maximum likelihood estimates can also be computed via
routines CTWLS (page 526) and CTGLM (page 510), respectively.)

When an expected count (as input in FIT) is zero, the cell is taken to be a
structural zero. Such cells are not included in the weighted least-squares analysis.
Estimates corresponding to structural zeros are set to the missing value indicator
(NaN). To avoid this (and to determine the total degrees of freedom for each
effect), add a positive constant such as 0.5 to each of the observed cell counts of
zero, the “sampling” zeros. When structural zeros are present in the data the
estimates may be written as

$ $ $β β ρβ= +o I

where

$ , $ , $β β β0 and I
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are vectors, and ρ → ∞ Routine CTPAR estimates the finite portion of the

estimate, $β0  The infinite portion, $β I  ensures that the fitted values for cells

corresponding to structural zeros are zero (sampling zeros are considered to be
structural zeros in CTPAR). If there are no structural zeros

$β I = 0

Let fL denote the i-th element of the vector FIT. The asymptotic variance-
covariance matrix of the cell counts is estimated by a diagonal matrix S = diag(f)
where diag(f) denotes the diagonal matrix in which sLM = 0 for i ≠ j and sLL = fL
along the diagonal. If X denotes the design matrix for the hierarchical model (with
rows in X corresponding to structural zeros omitted), and yL = logfL, then the
weighted least-squares estimates are

$ ( )βo
T TX S X X S y= − − −1 1 1

and the estimated variance-covariance matrix is

(X7 S-1X)-1

(see Grizzle, Starmer, and Koch [1969]).

If main effect A has, for example, four levels, then the design matrix X contains
three dummy variables corresponding to this effect. Main effect dummy variables
are generated as follows: For an observation fL corresponding to level j of the
effect, if j < 3, then the j-th dummy variable is set to 1 with the remaining dummy
variables set to 0. If j = 4, then all three dummy variables are set to −1. Dummy
variables for interactions are generated as the product of the corresponding
dummy variables in the usual manner with the smallest index in the specification
of the interaction varying fastest. The indices of the classification variables for
each effect are always sorted from smallest to largest when computing the
columns of X.

Example

The example illustrates the use of CTPAR in a simple four-way table in which the
first three factors have two levels, and the fourth factor has three levels. The data,
which is taken from Lee (1977), involve the brand preference in different
situations.

      INTEGER    IPRINT, LDCOEF, LDCOV, LTAB, NCLVAR
      PARAMETER  (IPRINT=2, LDCOEF=13, LDCOV=13, LTAB=24, NCLVAR=4)
C
      INTEGER    INDEF(6), NCLVAL(NCLVAR), NCOEF, NEF, NVEF(3)
      REAL       AMACH, COEF(LDCOEF,4), COV(LDCOV,LDCOV), FIT(LTAB),
     &           TABLE(LTAB), TOL
      EXTERNAL   AMACH, CTPAR, PRPFT
C
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47,
     &     55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NEF/3/, NVEF/2, 2, 2/, INDEF/2, 4, 1, 4, 2, 3/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
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C
      TOL = 100.0*AMACH(4)
      CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, 0.1, 20,
     &            FIT)
C
      CALL CTPAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT, TOL, IPRINT,
     &            NCOEF, COEF, LDCOEF, COV, LDCOV)
C
      END

Output
Variable   Number of Levels
1 A              3
2 B              2
3 C              2
4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.52   23.65   26.09
 2   47.85   46.99   42.89

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   28.39   34.40   37.94
 2   69.58   68.32   62.37

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   30.85   37.37   41.23
 2   57.52   56.48   51.56

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   25.24   30.58   33.73
 2   47.06   46.21   42.18

                          Coefficient Statistics
                                     Standard   Asymptotic
                    Coefficient          Error  Z-statistic        P-value
  1 intercept            3.6827         0.0333       110.66         0.0000
  2  A(1)               -0.0591         0.0475        -1.24         0.2341
  3  A(2)                0.0278         0.0461         0.60         0.5562
  4  B                  -0.0166         0.0331        -0.50         0.6242
  5  C                  -0.0434         0.0319        -1.36         0.1943
  6  D                  -0.2783         0.0329        -8.45         0.0000
  7  A*D(1)             -0.1016         0.0475        -2.14         0.0506
  8  A*D(2)              0.0034         0.0461         0.07         0.9414
  9  B*C                -0.1438         0.0319        -4.51         0.0005
 10  B*D                -0.0684         0.0328        -2.09         0.0558
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                     Asymptotic Coefficient Covariance
              1              2              3              4              5
1    1.1076E-03     9.7132E-05    -3.5887E-05     4.3244E-05     4.3786E-05
2                   2.2562E-03    -1.1408E-03    -3.4043E-11     2.6829E-11
3                                  2.1232E-03     2.5675E-11    -5.1643E-11
4                                                 1.0968E-03     1.4480E-04
5                                                                1.0146E-03
              6              7              8              9             10

1    2.9815E-04     1.3065E-04    -1.6147E-05     1.4480E-04     7.6307E-05
2    1.3065E-04     7.2117E-04    -4.0976E-04     6.2343E-11    -1.0681E-11
3   -1.6147E-05    -4.0976E-04     5.7437E-04    -4.9217E-11    -2.3482E-11
4    7.6307E-05     1.2601E-11    -4.1730E-11     4.3786E-05     2.8917E-04
5   -1.4272E-11    -5.5301E-11     4.2801E-11     4.5231E-06    -4.6962E-11
6    1.0851E-03     9.7132E-05    -3.5887E-05    -4.9749E-11     3.0847E-05
7                   2.2562E-03    -1.1408E-03     5.9300E-11    -1.0361E-10
8                                  2.1232E-03    -2.4481E-11     2.9160E-11
9                                                 1.0146E-03     1.1201E-11
10                                                               1.0743E-03

CTASC/DCTASC (Single/Double precision)
Compute partial association statistics for log-linear models in a multidimensional
contingency table.

Usage
CALL CTASC (NCLVAR, NCLVAL, TABLE, ZERO, EPS, MAXIT,
            IPRINT, ASSOC, LDASSO, CHIHI, LDCHIH, CHISIM,
            LDCHIS)

Arguments

NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.

ZERO — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
indicating structural zeros in TABLE.   (Input)
ZERO has the same structure as TABLE. Structural zeros in the TABLE are
specified by setting the corresponding element of ZERO to 0.0. All other elements
of zero must be positive. If structural zeros do not exist in TABLE, TABLE and
ZERO can share the same storage locations. See Comment 3 for the ordering of
the elements of ZERO.
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EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum deviation between an observed and
a fitted marginal total is less than EPS. EPS = 0.10 is a typical value.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 15 is a typical value. When there are structural zeros a larger value, say
MAXIT = 100, should be used.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing of ASSOC, CHIHI, and CHISIM is performed.
2 ASSOC, CHIHI, CHISIM, and TABLE are printed.

ASSOC — 2NCLVAR − 1 by 4 matrix containing the partial association statistics
for each effect in the model.   (Output)

Column Statistic
1 Likelihood ratio partial association chi-squared for testing that all

parameters in the effect are zero against a model containing all
interactions of the same order

2 Degrees of freedom in chi-squared in columns 1 and 4
3 p-value for the chi-squared statistic in column 1
4 Number of zeros (structural and sampling) in the marginal table of the

effect

The rows of ASSOC are ordered with main effects first, followed by two-way
interactions, followed by the three-way interactions, etc., until the last row, which
contains the single NCLVAR-way interaction. Thus, if there are 3 classification
variables, there would be 8 rows in ASSOC and the rows would contain the A, B,
C, AB, AC, BC, and the ABC effects where A represents the first (in INDCL)
classification variable, B represents the second classification variable, etc.

LDASSO — Leading dimension of ASSOC exactly as specified in the dimension
statement in the calling program.   (Input)

CHIHI — NCLVAR by 5 matrix containing chi-squared statistics testing that all k
and higher interactions are zero where k = 1, 2, …, NCLVAR.   (Output)
In the following, k is the row number of the statistic where the row numbers are 1,
2, …, NCLVAR.

Col. Statistic
1 Likelihood ratio chi-squared statistic for testing that all interactions

higher than k are zero against a model including all interactions of order
k

2 p-value for the chi-squared value in column 1
3 Degrees of freedom for chi-squared in columns 1 and 4
4 Pearson chi-squared corresponding to column 1
5 p-value for the chi-squared value in column 4
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LDCHIH — Leading dimension of CHIHI exactly as specified in the dimension
statement in the calling program.   (Input)

CHISIM — NCLVAR by 5 matrix containing chi-squared statistics for testing that
all k-factor interactions are simultaneously zero where k = 1, …, NCLVAR.
(Output)
In the following, k is the row number of the statistic where the row numbers are 1,
2, …, NCLVAR.

Col. Statistic
1 Likelihood ratio chi-squared statistic for testing that all k-factor

interactions are all simultaneously zero given the model in which all
k-way interactions are present

2 p-value for the chi-squared value in column 1
3 Degrees of freedom for chi-squared in columns 1 and 4
4 Pearson chi-squared corresponding to column 1
5 p-value for the chi-squared value in column 4

LDCHIS — Leading dimension of CHISIM exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTASC n + m + 2 * NCLVAL(1) * … * NCLVAL(NCLVAR) + (NCLVAR/2

+ 1) * 2NCLVAR5 + 2 * NCLVAR − 1 units, or

DCTASC 2 * n + m + 4 * NCLVAL(1) * … * NCLVAL(NCLVAR) +
(NCLVAR/2 + 1) * 2NCLVAR + 2 * NCLVAR −1 units, where m is
defined in the description of variable INDX below, and n is
defined in the description of variable AMAR.

Workspace may be explicitly provided, if desired, by use of
C2ASC/DC2ASC. The reference is

CALL C2ASC (NCLVAR, NCLVAL, TABLE, ZERO, EPS, MAXIT,
            IPRINT, ASSOC, LDASSO, CHIHI, LDCHIH,
            CHISIM, LDCHIS, FITWK, NCVEF, IXEF,
            AMAR, INDX, WK, IWK, COVWK)

The additional arguments are as follows:

FITWK — Work vector of length 3 * NCLVAL(1) * … *
NCLVAL(NCLVAR).

NCVEF — Work vector of length 2NCLVAR − 1.

IXEF — Work vector of length NCLVAR * 2(NCLVAR-1)

AMAR — Work vector of length n. In defining n, let q(k) be the sum of
the sizes of all possible marginal tables with k effects. For example, q(2)
is the sum over all possible two-way interactions I and J of



IMSL STAT/LIBRARY Chapter 5: Categorical and Discrete Data Analysis • 485

NCLVAL(I) * NCLVAL(J) and q(NCLVAR) is the product NCLVAL(1) * …
* NCLVAL(NCLVAR). Then, n = max(q(k)), k = 1, …, NCLVAR.

INDX — Work vector of length m where m is the maximum number of
interactions at any level. That is, m = max(BINOM(NCLVAR, I)), I = 1, …
, NCLVAR, where BINOM(NCLVAR, I) is the binomial coefficient (see
routine BINOM (IMSL MATH/LIBRARY Special Functions)).

WK — Work vector of length 3 * NCLVAL(1) * … * NCLVAL(NCLVAR)
if there exists more than one structural zero in TABLE, and of length
NCLVAL(1) * … * NCLVAL(NCLVAR) otherwise.

IWK — Work vector of length 2 * NCLVAR.

COVWK — Work vector of length (NCLVAL(1) * … *

NCLVAL(NCLVAR))2 if there exists more than one structural zero in
TABLE. Otherwise, COVWK is not referenced and can be dimensioned of
length one in the calling program. On output, COVWK contains the upper
triangular matrix containing the R matrix from a QR decomposition of
the matrix of regressors for the full log-linear model.

2. Informational errors
Type Code
   3    1 The optimization algorithm did not converge to the

desired accuracy, EPS, within MAXIT iterations.
   3    5 The label for one or more of the tables exceeds the

buffer limit.
   3  11 The label for one or more effects exceeds the buffer

limit.

3. The cells of the vectors TABLE and ZERO are sequenced so that the first
variable cycles from 1 to NCLVAL(1) the slowest, the second variable
cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order:
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

Algorithm

Routine CTASC computes likelihood-ratio and Pearson χ2 tests of partial-
association for each effect in a hierarchical log-linear model. Also computed are
likelihood ratio and Pearson chi-squared tests that all interactions above a given
level are simultaneously zero. All of these tests are asymptotic in nature. All
models are hierarchical so that all lower order interactions that may be
composed from a higher order effect in the model are automatically included in
the model. All models are fit via the iterative proportional fitting algorithm,
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which is implemented in routine PRPFT (page 463). The algorithm proceeds as
follows:

1. The hierarchical model including all k-factor interactions is fit with
k = 0, …, m and m = NCLVAR. The k = 0 model corresponds to a constant
probability in each cell in the table while the k = m model is the full
model. For each value of k, the likelihood ratio chi-squared statistic for
testing that all interactions not included in the fitted model are all
simultaneously zero (against the alternative that this is not the case) is
computed as

2 ∑ i i io fln(oi / )

where oL is the observed count in the i-th cell, fL is the fitted count for the
given model, and the summation is over all cells in the table. Also
computed (for comparison, the two statistics are asymptotically
equivalent) is the usual Pearson chi-squared statistic,

∑ −i i i io f f( ) /2

2. Let gL = NCLVAL(i), and let

t gi
m

i= =∏ 1

and assume that there are no structural zeros in the table. Then, the
number of degrees of freedom in the chi-squared statistic for testing that
all k-order interactions are simultaneously zero is the sum over all k-th
order interaction effects of the degrees of freedom for the effect. In the
no structural zero case, the degrees of freedom for an effect may be
computed as

j jg( )−∏ 1

where j indexes the factors in the effect. Denote the sum of these degrees
of freedom at level k by sN, and let s0 = 1. Then, the degrees of freedom
in the k-th test is given by sN.

When more than one structural zero is present, the degrees of freedom in
the chi-squared statistics are computed by fitting a least-squares model
for the full full hierarchical model in which all interactions are included.
Routine RGIVN (page 107) is used in fitting the model. Cells with
sampling (as opposed to structural) zeros are included (but only when
degrees of freedom are computed) by using a cell count of 0.5.
Observations corresponding to structural zeros are not included. (Note
that a structural zero is a model restriction that requires that the
estimated count for a cell be zero. A sampling zero occurs by chance.)
The degrees of freedom for each effect are found by summing over the
estimated parameters for the effect. Parameters that are linearly related
to previous parameters in the model (as determined through RGIVN via
input argument TOL where TOL is 100 * AMACH(4) in CTASC and 100 *



IMSL STAT/LIBRARY Chapter 5: Categorical and Discrete Data Analysis • 487

DMACH(4) in DCTASC) are not estimated. When there is only one
structural zero, degrees of freedom are computed as if there were no
structural zeros except for the highest level interaction term, which is
given one fewer degree of freedom.

Chi-squared statistics for testing that all effects at a given level k are
simultaneously zero (given a hierarchical model in which all effects
above level k are absent) are computed as the difference between the chi-
squared statistics testing that all k and higher interactions are zero and
that of k + 1. That is, for J = 1 and 4, and I = 1, 2, …,
NCLVAR − 1, then CHISIM(I, J) = CHIHI(I, J) CHIHI(I + 1, J), and
CHISIM(NCLVAR, J) = CHIHI(NCLVAR, J).

3. For each effect, a “partial association” likelihood ratio chi-squared
statistic may be used to test the hypothesis that all parameters in the
effect are simultaneously zero, given a model in which all interactions at
the same level (or lower) are present, and all higher level interactions are
absent. The degrees of freedom for the effect are computed as in Step 2.

Programming Notes

1. When sampling zeros are present, the likelihood ratio test statistics may
not follow the appropriate chi-squared distribution closely. A common
(but not necessarily the best) practice in this case is to add a small
positive constant, often 0.5, to each cell in the table. This addition is
easily accomplished via routine SADD (IMSL MATH/LIBRARY). The
addition of such a constant should not effect the computed degrees of
freedom.

2. When marginal totals of zero are obtained, the optimization algorithm
may be slow to converge. In this case, increase the value of argument
MAXIT.

Example

The following example illustrates the use of CTASC for model building in a four-
way table involving brand preference. The first three factors each have 2 levels,
while the fourth factor has 3 levels. The data are originally from Lee (1977) and
are printed in the output. A model with two-way interaction effects AD, BC, and
BD looks promising.

      INTEGER    IPRINT, LDASSO, LDCHIH, LDCHIS, LTAB, MAXIT, NCLVAR
      REAL       EPS
      PARAMETER  (EPS=0.01, IPRINT=2, LDASSO=15, LDCHIH=4, LDCHIS=4,
     &           LTAB=24, MAXIT=30, NCLVAR=4)
C
      INTEGER    NCLVAL(4)
      REAL       ASSOC(LDASSO,4), CHIHI(LDCHIH,5), CHISIM(LDCHIS,5),
     &           TABLE(LTAB)
      EXTERNAL   CTASC
C
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      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47,
     &     55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NCLVAL/3, 2, 2, 2/
C
      CALL CTASC (NCLVAR, NCLVAL, TABLE, TABLE, EPS, MAXIT, IPRINT,
     &            ASSOC, LDASSO, CHIHI, LDCHIH, CHISIM, LDCHIS)
C
      END

Output
 Variable   Number of Levels
 1 A              3
 2 B              2
 3 C              2
 4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.00   23.00   24.00
 2   57.00   47.00   37.00

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   29.00   33.00   42.00
 2   63.00   66.00   68.00

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   29.00   47.00   43.00
 2   49.00   55.00   52.00

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   27.00   23.00   30.00
 2   53.00   50.00   42.00

                 Partial Association Statistics
 Omitted                      Degrees of                Marginal
 Effect           Chi-Square     Freedom       P-value     Zeros
 A                      0.50         2.0        0.7782       0.0
 B                      0.06         1.0        0.8010       0.0
 C                      1.92         1.0        0.1657       0.0
 D                     73.21         1.0        0.0000       0.0
 A*B                    0.22         2.0        0.8978       0.0
 A*C                    1.01         2.0        0.6050       0.0
 A*D                    6.10         2.0        0.0475       0.0
 B*C                   19.89         1.0        0.0000       0.0
 B*D                    3.74         1.0        0.0532       0.0
 C*D                    0.74         1.0        0.3898       0.0
 A*B*C                  4.57         2.0        0.1017       0.0
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 A*B*D                  0.16         2.0        0.9223       0.0
 A*C*D                  1.38         2.0        0.5022       0.0
 B*C*D                  2.22         1.0        0.1361       0.0
 A*B*C*D                0.74         2.0        0.6917       0.0

Chi-square statistics for testing that all k and higher interactions are
                                    zero.
           Likelihood                Degrees of
        k       Ratio       P-Value     Freedom     Pearson       P-Value
        1      118.63        0.0000        23.0      115.71        0.0000
        2       42.93        0.0008        18.0       43.90        0.0006
        3        9.85        0.3631         9.0        9.87        0.3611
        4        0.74        0.6917         2.0        0.74        0.6915

Chi-square statistics for testing that all k-factor interactions are
                         simultaneously zero.
      Likelihood                Degrees of
   k       Ratio       P-Value     Freedom     Pearson       P-Value
   1       75.70        0.0000         5.0       71.81        0.0000
   2       33.08        0.0001         9.0       34.03        0.0001
   3        9.11        0.2449         7.0        9.13        0.2433
   4        0.74        0.6917         2.0        0.74        0.6915

CTSTP/DCTSTP (Single/Double precision)
Build hierarchical log-linear models using forward selection, backward selection,
or stepwise selection.

Usage
CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP,
            NSTEP, NFORCE, IPRINT, NEF, NVEF, MAXNVF,
            INDEF, MAXIND, FIT, STAT, IEND)

Arguments

IDO — Processing option.   (Input)

IDO Action

0 This is the only invocation of CTSTP for this table. If there are sampling
zeros, set up for computing the degrees of freedom for each effect.
Perform NSTEP steps (if ISTEP, POUT, and PIN allow it) and then
release all workspace.

1 This is the first invocation, and additional calls to CTSTP will be made.
Set up for computing the degrees of freedom for each effect and then
perform NSTEP steps (if ISTEP, POUT, and PIN allow it).

2 This is an intermediate invocation of CTSTP. Perform NSTEP steps (if
ISTEP, POUT, and PIN allow it).

3 This is the final invocation of this routine. Perform NSTEP steps (if
ISTEP, POUT, and PIN allow it). Release all workspace.
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NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.

PIN — Largest p-value for entering variables.   (Input)
Variables with p-values less than PIN may enter the model. The choice 0.05 is
common.

POUT — Smallest p-value for removing variables.   (Input)
Variables with p-values greater than POUT may leave the model. POUT must be
greater than or equal to PIN. The choice 0.10 is common.

ISTEP — Stepping option.   (Input)

ISTEP Action

−1 An attempt is made to remove an effect from the model (a backward
step). An effect is removed if it has the largest p-value among all effects
considered for removal with p-value exceeding POUT.

0 A backward step is attempted. If a variable is not removed, a forward
step is attempted. This is a stepwise step.

1 An attempt is made to add an effect to the model (a forward step). An
effect is added if it has the smallest p-value among all effects with
p-value less than PIN.

NSTEP — Step length option.   (Input)
For nonnegative NSTEP, NSTEP steps are taken. Less than NSTEPS are taken if no
effect that can enter or leave the model meets the PIN or POUT criterion. Use
NSTEP = −1 to indicate that stepping is to continue until no effect meets the PIN

or POUT criterion to enter or leave the model.

NFORCE — The number of initial effects in the model that must be included in
any model considered.   (Input)
For NFORCE = k, the first k effects specified by NEF, NVEF, and INDEF will be
included in all models considered.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing of the initial and final model summary statistics and step

summaries.
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2 Printing of the input table is performed followed by printing of the initial
and final model summary statistics and of the step summaries.

NEF — Number of effects in the model.   (Input/Output)
A marginal table is implied by each effect in the model. Lower order effects
should not be included in the model specification since their inclusion is
automatic (e.g., do not include effects A or B if effect AB is in the model). On
input, NEF gives the number of effects in the initial model. On output, NEF gives
the number of effects in the final model.

NVEF — Vector of length MAXNVF containing the number of classification
variables associated with each effect.   (Input/Output)
On input, NVEF contains the number of classification variables for each effect in
the initial model. The final values are returned on output.

MAXNVF — The maximum length of NVEF as specified in the dimension
statement in the calling program.   (Input)
If the required length of NVEF becomes greater than MAXNVF, a type 4 error
message is issued and the final model chosen is returned in NEF, NVEF, and
INDEF. See Comment 2.

INDEF — Vector of length MAXIND containing, in consecutive positions, the
indices of the variables that are included in each effect.   (Input/Output)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the
indices of the variables in effect 1, the next NVEF(2) elements of INDEF contain
the indices of the variables in effect 2, etc. Each element of INDEF must be
greater than zero. See Comment 4 for an example.

MAXIND — The maximum possible length of INDEF as specified in the
dimension statement in the calling program.   (Input)
If the required length of INDEF becomes greater than MAXIND, a type 4 error
message is issued and the final model chosen is returned in NEF, NVEF, and
INDEF. See Comment 2.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the model estimates of the cell counts.   (Input/Output)
On input, FIT contains the initial estimates of the cell counts. Structural zeros in
the model are specified by setting the corresponding element of FIT to 0.0. All
other elements of FIT may be set to 1.0 if no other estimate of the expected cell
counts is available. On output, FIT contains the fitted table. See Comment 3 for
the ordering of the elements of FIT. If an element of FIT is positive but the
corresponding element in TABLE is zero, the the element is called a sampling
zero. Sampling zeros may effect the number of parameters that can be estimated,
but they will not effect the degrees of freedom in chi-squared tests. See the
“Algorithm” section of the manual document.

STAT — Vector of length 3 containing some output statistics for the final model
fit during this invocation.   (Output)
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I STAT(I)
1 Asymptotic chi-squared statistic based upon likelihood ratios for testing

that the current model fits the observed data.
2 Degrees of freedom in chi-squared. This is the number of cells in the

table minus the number of structural zeros minus the degrees of freedom
for the model.

3 Probability of a greater chi-squared.

IEND — Completion indicator.   (Output)

IEND Meaning
0 Additional steps may be possible.
1 No additional steps are possible for the values of PIN and POUT.

Comments

1. Automatic workspace usage is

CTSTP MAXMAR + 2 * NCLVAR + v + w + x + y + f
DCTSTP  2 * MAXMAR + 2 * NCLVAR + v + w + 2x + 2y + f

Let z be the number of structural zeros in TABLE and v = 2NCLVAR −1.
Then, the tables below define w, x, y, and f.

ISTEP IPRINT z w x

−1, 0, 1 0, 1 ,2 z > 1 3v + 3d + n +
z

n(n + 2)

0, 1 0, 1, 2 z ≤ 1 3v + 3d 0

−1 0 z ≤ 1 2v + 2d 0

IDO z y

0, 1 z > 1 2n + m

0, 1 z ≤ 1 n

2, 3 z > 1 n

2, 3 z ≤ 1 n

ISTEP NSTEP f

−1, 0 NSTEP = 0 NCLVAR + NEF

−1, 0 NSTEP ≠ 0 NCLVAR + v

1 NSTEP = 0 NEF

1 NSTEP ≠ 0 v
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Here, d = NCLVAR * 2NCLVAR-1, m = NCLVAL(1) + NCLVAL(2) + … +
NCLVAL(NCLVAR), n = NCLVAL(1) * NCLVAL (2) * … *
NCLVAL(NCLVAR), and the variable MAXMAR is defined below.

Workspace may be explicitly provided, if desired, by use of
C2STP/DC2STP. The reference is

CALL C2STP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT,
            ISTEP, NSTEP, NFORCE, NEF, IPRINT, NVEF,
            MAXNVF, INDEF, MAXIND, FIT, STAT, IEND,
            MAXMAR, AMAR, INVEF, IINDEF, IDF, ZWK,
            RWK, IWK)

The additional arguments are as follows.

MAXMAR — The length of AMAR.   (Input)
When workspace is allocated by CTSTP, MAXMAR is equal to the number
of workspace elements remaining after all other workspace is allocated.
MAXMAR should be chosen as the maximum over all models considered
of the sum over all marginal tables tables in the model of the number of
elements in each marginal table.

AMAR — Work vector of length MAXMAR used to store marginal means
in the proportional fitting algorithm.   (Output)

INVEF — Work vector whose length is dependent on ISTEP, IPRINT,
and z = the number of structural zeros in TABLE.

ISTEP IPRINT z Length of INVEF

−1, 0, 1 0, 1, 2 z > 1 3v

0, 1 0, 1, 2 z ≤ 1 3v

−1 0 z ≤ 1 2v

Here, v = 2NCLVAR − 1.

IINDEF — Work vector whose length is dependent on ISTEP, IPRINT,
and z = the number of structural zeros in TABLE.

ISTEP IPRINT z Length of IINDEF

−1, 0, 1 0, 1, 2 z > 1 3d

0, 1 0, 1, 2 z ≤ 1 3d

−1 0 z ≤ 1 2d

Here, d = NCLVAR * 2NCLVAR-�.

IDF — Vector of length n + z.   (Output, for IDO = 0 or 1; input/output
otherwise)
Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR). If there are
no structural zeros in TABLE, IDF is not referenced and may
dimensioned of length 1 in the calling program. When using the
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IDO = 1, 2, …, 2, 3 option, the values stored in IDF should not be
altered between calls to C2STP.

ZWK — Vector of length n(n + 2).   (Output, for IDO = 0 or 1;
input/output otherwise)
Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR). If there are
no structural zeros in TABLE, ZWK is not referenced and may
dimensioned of length 1 in the calling program. When using the IDO = 1,
2, …, 2, 3 option, the values stored in ZWK should not be altered between
calls to C2STP.

RWK — Work vector whose length is dependent on IDO and z, the
number of structural zeros in TABLE.

IDO z Length of RWK

0, 1 z > 1 2n + m

0, 1 z ≤ 1 n

2, 3 z > 1 n

2, 3 z ≤ 1 n

Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) and
m = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR).

IWK — Work vector whose length is dependent on ISTEP and NSTEP.

ISTEP NSTEP Length of IWK

−1, 0 NSTEP = 0 3 * NCLVAR + NEF

−1, 0 NSTEP ≠ 0 3 * NCLVAR + v

1 NSTEP = 0 2 * NCLVAR + NEF

1 NSTEP ≠ 0 2 * NCLVAR + v

Here, v = 2NCLVAR-�.

2. Informational errors
Type Code
   3    1 The proportional fitting algorithm did not converge.
   4    2 There is not enough workspace allocated for storing

the marginal means.
   4    3 The required length of NVEF to store the effects of the

new model exceeds MAXNVF.
   4    4 The required length of INDEF to store the effects of

the new model exceeds MAXIND.

3. The cells of the vectors TABLE, and FIT are sequenced so that the first
variable cycles from 1 to NCLVAL(1) the slowest, the second variable
cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
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Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order:
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables 1
and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the
NVEF(I) is 3, then INDEF is a vector of length 3 with values: INDEF(1) =
1, INDEF(2) = 3, and INDEF(3) = 2.

Algorithm

Routine CTSTP performs stepwise model building in hierarchical log-linear
models. CTSTP handles structural and sampling zeros, and allows “downward,”
“upward,” or “stepwise” stepping. For NFORCE > 0, the leading NFORCE effects in
the initial model specified in NEF, NVEF, and INDEF are forced to remain in the
model. A variable number (NSTEP) of steps from the input model are performed
during a single invocation of CTSTP. Printing of the input table and intermediate
results is performed if requested.

In hierarchical models, lower order effects are automatically included whenever a
higher order effect containing the lower order effect is in the model. That is, the
model (AB) automatically includes the mean and the main effects A and B, and
the model (AB, ACD) automatically includes the lower order effects A, B, C, D,
AC, AD, and CD.

The algorithm proceeds through the following steps during a single invocation
when IDO = 0. For IDO > 0, these steps are still followed, but they may require
more than one invocation of the routine.

1. The input model is fit. The current model is set to the input model.

2. If downward stepping is to be performed (ISTEP = −1 or ISTEP = 0),
then each effect in the model is examined to determine if it can be
deleted from the current model. An effect may be deleted from the
current model if it is not a “forced effect” and if it must be included in
the hierarchical specification of the model (in which lower order terms
are not specified). Thus, for example, the effect ABC can be deleted
from the model (ABC, BCD), yielding a model (AB, AC, BCD), but not
from the model (ABCD) since ABC is not included in the hierarchical
specification.

For each effect that can be deleted in a downward step, the usual chi-
squared likelihood-ratio test statistic is computed as twice the difference
of the log-likelihoods between the current model and the model in which
the effect has been deleted. The degrees of freedom for the effect
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are determined (see below), and an asymptotic p-value is computed via
the chi-squared distribution. After the p-values for all deleted models
have been determined, the maximum p-value is selected. If it is greater
than the p-value for deletion, POUT, the effect is deleted from the model,
and the resulting model is fit.

3. If a downward step is not possible, either because all computed p-values
are too small or because downward stepping is not to be performed, an
upward step is attempted if requested (ISTEP = 0 or ISTEP = 1). For
upward stepping, each effect in the full factorial analysis of variance
specification of the table is examined to determine if the effect differs
from the current model by exactly one term. For example, (ABC) differs
by one term from the model (AB, AC, BC) and from the model (ABD,
ACD, BCD), but it differs by more than one term from the model (AB,
BC).

For each effect that may be added to the model, a chi-squared
likelihood-ratio test statistic is computed comparing the current model to
the model with the added effect, its degrees of freedom are determined
(see below), and an asymptotic p-value based upon the chi-squared
distribution is computed. After all p-values for models with additive
effects have been computed, the model with the minimum p-value is
determined. If the minimum p-value is less than the p-value for addition,
PIN, then the effect is added to the model, and the resulting model is fit.

4. If neither a step down, nor a step up can be performed, then CTSTP sets
IEND = 1 and returns the original model to the user. Otherwise, if
additional steps are to be made, execution continues at Step 2 above.

Degrees of Freedom

In CTSTP, structural zeros are considered to be a restriction of the parameter
space. As such, they subtract from the degrees of freedom for an effect.
Alternatively, sampling zeros are a result of sampling, and thus, they do not
subtract for the degrees of freedom or restrict the parameter space. When
computing degrees of freedom, sampling zeros are treated as if they were
positive counts. If there are no structural zeros, then the degrees of freedom are
computed as the product of the degrees of freedom for each variable in the effect
where the degrees of freedom for the variable is the number of levels for the
variable minus one. When structural zeros are present, there are restrictions on
the parameter space, and the degrees of freedom for an effect are computed as the
number of non-zero diagonal elements corresponding to the effect along the

Cholesky factorization of the X7 X matrix where X is the “design matrix” for the
model. That is, each row of X contains the indicator variables for a cell in the
table, with the indicator variables for the current model preceding the indicator
variables for the effect for which degrees of freedom are desired. Because the
degrees of freedom for an effect must be relative to the model, when there are
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structural zeros, it is possible for the degrees of freedom for an effect to change
from one step to the next.

Example 1

The following example is taken from Lee (1977). It involves a simple four-way
table in which the first three factors have 2 levels, and the fourth factor has 3
levels. The data involves brand preference in different situations. In the example,
the three-way interaction is removed, leaving 3 two-way interactions. In the new
model, the three-way interaction is omitted.

      INTEGER    IFIT, IPRINT, LTAB, MAXIND, MAXNVF, NCLVAR
      REAL       PIN, POUT
      PARAMETER  (IFIT=0, IPRINT=2, LTAB=24, MAXIND=20, MAXNVF=10,
     &           NCLVAR=4, PIN=0.05, POUT=0.10)
C
      INTEGER    IDO, IEND, INDEF(MAXIND), ISTEP, ISUM, LIND,
     &           NCLVAL(NCLVAR), NEF, NFORCE, NOUT, NSTEP, NVEF(MAXNVF)
      REAL       FIT(LTAB), STAT(3), TABLE(LTAB)
      EXTERNAL   CTSTP, ISUM, UMACH, WRIRN, WRRRN
C
      DATA TABLE/19.0, 57.0, 29.0, 63.0, 29.0, 49.0, 27.0, 53.0, 23.0,
     &     47.0, 33.0, 66.0, 47.0, 55.0, 23.0, 50.0, 24.0, 37.0, 42.0,
     &     68.0, 43.0, 52.0, 30.0, 42.0/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
      DATA NEF/1/
C
      CALL UMACH (2, NOUT)
C
      IDO      = 0
      ISTEP    = 0
      NSTEP    = 1
      NFORCE   = 0
      NVEF(1)  = 3
      INDEF(1) = 1
      INDEF(2) = 2
      INDEF(3) = 4
C
      CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP, NSTEP,
     &            NFORCE, IPRINT, NEF, NVEF, MAXNVF, INDEF, MAXIND,
     &            FIT, STAT, IEND)
C
      WRITE (NOUT,99999) IEND, NEF
      CALL WRIRN (’NVEF’, 1, NEF, NVEF, 1, 0)
      LIND = ISUM(NEF,NVEF,1)
      CALL WRIRN (’INDEF’, 1, LIND, INDEF, 1, 0)
      CALL WRRRN (’FIT’, 1, LTAB, FIT, 1, 0)
C
99999 FORMAT (/, ’ IEND = ’, I3, ’   NEF = ’, I3)
      END

Output
 Variable   Number of Levels
 1 A              3
 2 B              2
 3 C              2
 4 D              2
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        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.00   23.00   24.00
 2   57.00   47.00   37.00

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   29.00   33.00   42.00
 2   63.00   66.00   68.00

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   29.00   47.00   43.00
 2   49.00   55.00   52.00

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   27.00   23.00   30.00
 2   53.00   50.00   42.00

 ----------------------  Step: 0  ----------------------
 Input Model:  (A*B*D)
 Smallest p-value for removing effects      0.100
 Largest  p-value for entering effects      0.050
 Chi-squared                  33.92
 Degrees of Freedom             12.
 p-value                     0.0007
                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*B*D                     0.12           2      0.9408
 Effect Removed: A*B*D

 ----------------------  Step: 1  ----------------------
 Model:  (A*B, A*D, B*D)
 Chi-squared                  34.05
 Degrees of Freedom             14.
 p-value                     0.0020

 IEND =   0   NEF =   3

    NVEF
  1   2   3
  2   2   2

          INDEF
  1   2   3   4   5   6
  1   2   1   4   2   4
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                                      FIT
    1       2       3       4       5       6       7       8       9      10
24.39   59.61   24.39   59.61   27.61   51.39   27.61   51.39   28.24   56.26

   11      12      13      14      15      16      17      18      19      20
28.24   56.26   34.76   52.74   34.76   52.74   32.38   53.12   32.38   53.12

   21      22      23      24
37.12   46.38   37.12   46.38

Example 2

Example two illustrates the use of CTSTP when sampling zeros are present. In this
example, which is taken from Brown and Fuchs (1983), there are thirteen
sampling zeros so that thirteen parameter estimates are infinite when the full
model is fit. Here, we begin with the model fit by Brown and Fuchs, which, in
CTSTP notation, is given as

(AC, AD, ABE, BCDE)

When this model is fit, there are five parameter estimates that are infinite. Note
that these estimates have no effect on the degrees of freedom used in the tests
computed here.

      INTEGER    IFIT, IPRINT, LTAB, MAXIND, MAXNVF, NCLVAR
      REAL       PIN, POUT
      PARAMETER  (IFIT=0, IPRINT=2, LTAB=32, MAXIND=30, MAXNVF=10,
     &           NCLVAR=5, PIN=0.05, POUT=0.10)
C
      INTEGER    IDO, IEND, INDEF(MAXIND), ISTEP, ISUM, LIND,
     &           NCLVAL(NCLVAR), NEF, NFORCE, NOUT, NSTEP, NVEF(MAXNVF)
      REAL       FIT(LTAB), STAT(3), TABLE(LTAB)
      EXTERNAL   CTSTP, ISUM, UMACH, WRIRN, WRRRN
C
      DATA TABLE/33.0, 32.0, 8.0, 8.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0,
     &     0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 2.0, 10.0, 3.0, 6.0, 1.0,
     &     2.0, 0.0, 2.0, 0.0, 1.0, 0.0, 4.0, 0.0, 1.0, 0.0, 2.0/
      DATA NCLVAL/2, 2, 2, 2, 2/, FIT/32*1.0/, NEF/4/
      DATA (NVEF(I),I=1,4)/2, 2, 3, 4/
      DATA (INDEF(I),I=1,11)/1, 3, 1, 4, 1, 2, 5, 2, 3, 4, 5/
C
      CALL UMACH (2, NOUT)
C
      IDO    = 0
      ISTEP  = -1
      NSTEP  = 2
      NFORCE = 0
C
      CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP, NSTEP,
     &            NFORCE, IPRINT, NEF, NVEF, MAXNVF, INDEF, MAXIND,
     &            FIT, STAT, IEND)
C
      WRITE (NOUT,99999) IEND, NEF
      CALL WRIRN (’NVEF’, 1, NEF, NVEF, 1, 0)
      LIND = ISUM(NEF,NVEF,1)
      CALL WRIRN (’INDEF’, 1, LIND, INDEF, 1, 0)
      CALL WRRRN (’FIT’, 1, LTAB, FIT, 1, 0)
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C
99999 FORMAT (/, ’ IEND = ’, I3, ’   NEF = ’, I3)
      END

Output
 Variable   Number of Levels
 1 A              2
 2 B              2
 3 C              2
 4 D              2
 5 E              2

          ----------
   Table 1: A = 1 B = 1 C = 1
     D (row) by E (column)
               1       2
       1   33.00   32.00
       2    8.00    8.00

          ----------
   Table 2: A = 1 B = 1 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   1.000   0.000

          ----------
   Table 3: A = 1 B = 2 C = 1
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   0.000

          ----------
   Table 4: A = 1 B = 2 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   0.000

          ----------
   Table 5: A = 2 B = 1 C = 1
     D (row) by E (column)
               1       2
       1    2.00   10.00
       2    3.00    6.00

          ----------
   Table 6: A = 2 B = 1 C = 2
     D (row) by E (column)
               1       2
       1   1.000   2.000
       2   0.000   2.000

          ----------
   Table 7: A = 2 B = 2 C = 1
     D (row) by E (column)



IMSL STAT/LIBRARY Chapter 5: Categorical and Discrete Data Analysis • 501

               1       2
       1   0.000   1.000
       2   0.000   4.000

          ----------
   Table 8: A = 2 B = 2 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   2.000

 ----------------------  Step: 0  ----------------------
 Input Model:  (A*C, A*D, A*B*E, B*C*D*E)
 Smallest p-value for removing effects      0.100
 Chi-squared                   9.07
 Degrees of Freedom             10.
 p-value                     0.5251

                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*C                       4.41           1      0.0358
 A*D                       6.56           1      0.0104
 A*B*E                     0.00           1      0.9912
 B*C*D*E                   0.00           1      0.9912
 Effect Removed: B*C*D*E

 ----------------------  Step: 1  ----------------------
 Model:  (A*C, A*D, A*B*E, B*C*D, B*C*E, B*D*E, C*D*E)
 Chi-squared                   9.07
 Degrees of Freedom             11.
 p-value                     0.6151

                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*C                       4.41           1      0.0358
 A*D                       6.56           1      0.0104
 A*B*E                     0.00           1      1.0000
 B*C*D                     0.53           1      0.4673
 B*C*E                     0.00           1      1.0000
 B*D*E                     0.00           1      1.0000
 C*D*E                     0.10           1      0.7522
 Effect Removed: B*C*E

 ----------------------  Step: 2  ----------------------
 Model:  (A*C, A*D, A*B*E, B*C*D, B*D*E, C*D*E)
 Chi-squared                   9.07
 Degrees of Freedom             12.
 p-value                     0.6966
 IEND =   0   NEF =   6

          NVEF
1   2   3   4   5   6
2   2   3   3   3   3

                            INDEF
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
1   3   1   4   1   2   5   2   3   4   2   4   5   3   4   5
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                                      FIT
    1      2       3       4       5      6       7        8       9      10
32.36  32.56    8.53    6.91    0.71    1.21    0.40    0.32    0.00    0.90

  11      12      13      14      15      16      17      18      19      20
0.00    0.75    0.00    0.27    0.00    0.09    2.64    9.44    2.47    7.09

  21      22      23      24      25      26      27      28      29      30
0.29    1.79    0.60    1.68    0.00    1.10    0.00    3.25    0.00    1.73

  31      32
0.00    1.91

CTRAN/DCTRAN (Single/Double precision)
Perform generalized Mantel-Haenszel tests in a stratified contingency table.

Usage
CALL CTRAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL, ITYPE,
            IROWSC, ICOLSC, IPRINT, ROWSCR, COLSCR, STAT,
            LDSTAT)

Arguments

NCLVAR — Number of classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels (categories) of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements in TABLE. For the
classification variables specified in INDROW and INDCOL, a series of two-
dimensional contingency tables are obtained from the elements in TABLE. All
other classification variables are stratification variables.

INDROW — Index of the classification variable to be used for the row variable
in the stratified two-dimensional table.   (Input)

INDCOL — Index of the classification variable to be used for the column
variable in the stratified two-dimensional table.   (Input)

ITYPE — The type of statistic to compute.   (Input)

ITYPE Statistic
1 Generalized Mantel-Haenszel based upon the two-dimensional

contingency tables.
2 Generalized Mantel-Haenszel based upon the row mean score in the

two-dimensional table.
3 Generalized Mantel-Haenszel based upon the correlation score for the

two-dimensional tables.
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IROWSC — Option parameter giving the scores associated with the column
index to be used when computing statistics in each row.   (Input)

IROWSC Weights
0 User specified (or no) weights.
1 The digits 1, 2, …, NCLVAL(INDCOL).
2 Combined (over all tables) ridit-type scores.
3 Rank scores computed separately for each table.
4 Ridit-type scores computed separately for each table.
5 Logrank scores computed separately for each table.

IROWSC is not used if ITYPE = 1.

ICOLSC — Option parameter giving the scores associated with the row index to
be used when computing statistics in each column.   (Input)

ICOLSC Weights
0 User specified (or no) weights.
1 The digits 1, 2, …, NCLVAL(INDROW).
2 Combined (over all tables) ridit-type scores.
3 Rank scores computed separately for each table.
4 Ridit-type scores computed separately for each table.
5 Logrank scores computed separately for each table.

ICOLSC is not used if ITYPE is not 3.

IPRINT — Print option.   (Input)

IPRINT Action
0 No printing.
1 Print the contents of the STAT array.
2 Print each stratified table followed by the contents of the STAT array.

ROWSCR — Vector of length NCLVAL(INDCOL) containing the scores associated
with the column and used in each row.   (Input, if IROWSC = 0; output, otherwise)
ROWSCR is not used and can be dimensioned of length 1 in the calling program if
ITYPE = 1. If IROWSC is 3, 4, or 5, then ROWSCR contains the scores used in the
last contingency table analyzed.

COLSCR — Vector of length NCLVAL(INDROW) containing the scores associated
with each row and used in each column.   (Input, if ICOLSC = 0; output,
otherwise)
COLSCR is not used and can be dimensioned of length 1 in the calling program if
ITYPE is not 3. If ICOLSC is 3, 4, or 5, then COLSCR contains the scores used in
the last contingency table analyzed.

STAT — Table of size m by 3 containing the Mantel-Haenszel statistics.
(Output)
Where m is one plus the number of stratified tables, i.e., m = 1 + NCLVAL(1) *
NCLVAL(2) * … * NCLVAL(NCLVAR)/(NCLVAL(INDROW) * NCLVAL(INDCOL)).
The first column of STAT contains the chi-squared statistic for a test of partial
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association, the second column contains its degrees of freedom, and the third
column contains the probability of a greater chi-squared. The first m − 1 rows of
STAT contain the statistics computed for each of the stratified tables. The first row
corresponds to the classification stratification variable levels (1, 1, …, 1). The
second row corresponds to levels (1, 1, …, 2), etc., so that in row m − 1 all
stratification variables are at their highest levels. The last row of STAT contains
the same statistics pooled over all of the stratified tables.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTRAN NCLVAR + IR * IC + IC + IR + IT units, or
DCTRAN NCLVAR + 2(IR * IC + IC + IR + IT) units.

Here, IR= NCLVAL(INDROW), IC= NCLVAL(INDCOL), and

IT

IR IC IR IC

IR IC

IR IR
=

∗ − ∗ − + − ∗ −
− + − =

∗ + ∗ =
=

%
&
KK

'
KK

2 1 1 2 1 1

1 1 1

3 2 2

2 3

2

2 2

2

0 5 0 5 0 5 0 51 6
0 5 0 5 if ITYPE

if ITYPE

if ITYPE

Workspace may be explicitly provided, if desired, by use of
C2RAN/DC2RAN. The reference is

CALL C2RAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL,
            ITYPE, IROWSC, ICOLSC, IPRINT, ROWSCR,
            COLSCR, STAT, LDSTAT, IX, F, COLSUM,
            ROWSUM, DIFVEC, DIFSUM, COV, COVSUM,
            AWK, BWK)

The additional arguments are as follows:

IX — Work array of length NCLVAR.

F — Work array of length NCLVAL(INDROW) * NCLVAL(INDCOL).

COLSUM — Work array of length NCLVAL(INDCOL).

ROWSUM — Work array of length NCLVAL(INDROW).

DIFVEC — Work array. If ITYPE = 1, the length is (NCLVAL(INDROW) 
− 1) * (NCLVAL(INDCOL) − 1). For ITYPE = 2, the length is
NCLVAL(INDROW). For ITYPE = 3, DIFVEC is not used and may be of
length 1.

DIFSUM — Work array. If ITYPE = 1, the length is
(NCLVAL(INDROW) − 1) * (NCLVAL(INDCOL) − 1). DIFSUM contains
the sum of the tables containing the observed minus expected
frequencies (excluding the last row and column of each table). For
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ITYPE = 2, the length is NCLVAL(INDROW). DIFSUM contains the sum of
the table row mean scores minus their expected value. For ITYPE = 3,
the length is 1. DIFSUM contains the sum of the table correlations
between the row and column mean scores.   (Output)

COV — Work array. If ITYPE = 1, the length is

(NCLVAL(INDROW) − 1)2 * (INCLVA(INDCOL) − 1)2. For ITYPE = 2, the

length is NCLVAL(INDROW)2. For ITYPE = 3, COV is not used and may be
of length 1.

COVSUM — Work array. If ITYPE = 1, the length is (NCLVAL(INDROW) 

− 1)2 * (INCLVA(INDCOL) − 1)2. For ITYPE = 2, the length is

NCLVAL(INDROW)2. For ITYPE = 3, the length is 1.

AWK — Work array. If ITYPE = 1, the length is

(NCLVAL(INDROW) − 1)2. For ITYPE = 2, the length is NCLVAL(INDROW).
For ITYPE = 3, AWK is not used and may be of length 1.

BWK — Work array. If ITYPE = 1, the length is

(NCLVAL(INDCOL) − 1)2. For ITYPE= 2 or 3, BWK is not used and may
be of length 1.

2. Informational errors
Type  Code
   3    1 All frequencies of stratified table K are zero. This table

will be excluded from the Mantel-Haenszel test
statistic.

   3    2 The elements of stratified table K sum to one. This
table will be excluded from the Mantel-Haenszel test
statistic.

   3    3 The variance of the response variable for stratified
table K is zero.

   3    4 The variance of either the sub-population or the
response variable is zero for stratified table K.

   3    5 The label for table K exceeds the buffer limit of 72.

Here, K is an integer that is greater than or equal to one and less than or
equal to the number of stratified contingency tables.

3. The cells of the vectors TABLE are sequenced so that the first variable
cycles from 1 to NCLVAL(1) the slowest, the second variable cycles from
1 to NCLVAL(2) the next most slowly, and so on, up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2 the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order:
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1,
1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2).
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Algorithm

Routine CTRAN computes tests of partial association (a test of homogeneity, a test
on means, and a test on correlations) in stratified two-dimensional contingency
tables. The type of test computed depends upon parameter ITYPE. All tests are
generalizations of the Mantel-Haenszel stratified 2 × 2 contingency table test
statistic in the sense that information is “pooled” over all tables without
increasing the total degrees of freedom in the test. Like the Mantel-Haenszel test,
if all tables violate the null hypothesis in the same direction, the tests computed
here are more powerful than most other tests of the same null hypothesis.

While CTRAN allows for an arbitrary number of classification variables, only three
are required to describe the test statistics since all stratification variables could be
(if desired) lumped into a single classification variable. Because of this, only
three classification variables are discussed here. Let fLMN denote the frequency in

cell LM�of stratum k where k = 1, …, m, i = 1, …, r, and j = 1, …, c. Then, the input
data can be described as a series of contingency tables. For example, if r = c = 2,
so that 2 × 2 tables are used, then we would have:

f111 f121 f112 f122 … f11P f12P

f211 f221 f212 f222 f21P f22P

All tests are computed as follows: For each table, a test statistic vector xk with
estimated covariance matrix

$∑k

is computed. The test statistic vector xN represents the mean difference (from the
null hypothesis) for the test being computed. Thus, if ITYPE = 1, xN is a vector of
cell frequencies minus their expected value under the hypothesis of homogeneity
while if ITYPE = 2, xN is a vector containing the row means (based upon the row
scores) for the elements in a row of a table minus the estimated mean for the table
(estimated under the assumption that all means are equal). Finally, if ITYPE = 3,
xN is a vector of length 1 containing an estimated correlation coefficient computed
between the row and column scores.

Note that for nominal data in both the rows and columns, one would generally use
ITYPE = 1 while if an ordering (and scores) make sense for each row of a table,
ITYPE = 2 would be used. If an ordering (and scores) make sense for both the
rows and the columns of a table, then a correlation measure (ITYPE = 3) is
appropriate.

Test statistics for each table are computed as

χk k
T

k kx x2 1= ∑−$

which has degrees of freedom (r − 1)(c − 1) when ITYPE = 1, r − 1 when
ITYPE = 2, and 1 for ITYPE = 3. While these test statistics could be combined
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by summing them over all tables (yielding a χ2 test with m times the of degrees of
freedom in a single table), the Mantel-Haenszel test combines the scores in a
different way. Let

x xk k k k= ∑ ∑ = ∑ ∑,  and let $ $

Then, an overall χ2 may be computed as

x xT $∑−1

This test statistic has the same degrees of freedom as the test statistic computed
for a single stratum of the three-way table and is reported in the last row of STAT.
Routine CTRAN uses simplified computational methods. See Landis, Cooper,
Kennedy, and Koch (1979) for details.

Landis, Cooper, Kennedy, and Koch (1979, page 225) give the null hypothesis
for a test of partial association as follows (paraphrased):

H0 : For each of the separate tables, the data in the respective rows of the
table can be regarded as a successive set of simple random samples from
a fixed population corresponding to the column marginal totals for the
table.

All three tests above are tests of partial association.

For ITYPE= 2 and 3, different row and column (ITYPE = 3) scores are used in
computing measures of location and association. The scores used by CTRAN for
the rows are

1. For IROWSC = 0, the user supplies the scores to be used in each row of
the table.

2. For IROWSC = 1, uniform scores are used. These scores consist of the
digits 1, 2, …, c where c is the number of columns in each table.

3 For IROWSC = 2, combined ridit scores are used. A combined ridit score
is computed by summing the column marginals over all tables. The
combined row score for the j-th column is then computed as the sum of
the initial j − 1 column marginals plus half of the j-th column marginal.
The result is divided by the number of observations in all tables to yield
the ridit score.

4. For IROWSC = 3, marginal rank scores are used. The j-th marginal rank
score is computed for each table from the column marginals for that
table as the sum of the initial j − 1 column marginals plus half the j-th
column marginal.

5. For IROWSC = 4, marginal ridit scores are used. These are computed as
the marginal rank scores divided by the total frequency in the table.

6. For IROWSC = 5, logrank scores are used. These are computed as
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where f+ON is the column marginal for column l in table k.

Column scores are computed in a similar manner.

Example

In the following example, all three values of ITYPE are used in computing the
partial association statistics. This is accomplished via three calls to CTRAN. The
value of ITYPE changes on each call. The example is taken from Landis, Cooper,
Kennedy, and Koch (1979, page 241). Uniform scores are used in both the rows
and column as required by the tests type. The results indicate the presence of
association between the row and column variables.

      INTEGER    ICOLSC, INDCOL, INDROW, IROWSC, LDSTAT, NCLVAR
      PARAMETER  (ICOLSC=1, INDCOL=1, INDROW=3, IROWSC=1, LDSTAT=5,
     &           NCLVAR=3)
C
      INTEGER    IPRINT, ITYPE, NCLVAL(NCLVAR), NOUT
      REAL       COLSCR(4), ROWSCR(3), STAT(LDSTAT,3), TABLE(48)
      EXTERNAL   CTRAN, UMACH
C
      DATA TABLE/23, 23, 20, 24, 18, 18, 13, 9, 8, 12, 11, 7, 12, 15,
     &     14, 13, 7, 10, 13, 10, 6, 6, 13, 15, 6, 4, 6, 7, 9, 3, 8,
     &     6, 2, 5, 5, 6, 1, 2, 2, 2, 3, 4, 2, 4, 1, 2, 3, 4/
      DATA NCLVAL/3, 4, 4/
C
      IPRINT = 2
      CALL UMACH (2, NOUT)
      DO 10  ITYPE=1, 3
         CALL CTRAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL, ITYPE,
     &               IROWSC, ICOLSC, IPRINT, ROWSCR, COLSCR, STAT,
     &               LDSTAT)
         IPRINT = 1
C
   10 CONTINUE
      END

Output
 Values for the class variables are defined to be:
 Variable   Number of Levels
 1 A              3
 2 B              4
 3 C              4

        ----------
     Strata 1: B = 1
   C (row) by A (column)
         1       2       3
 1   23.00    7.00    2.00
 2   23.00   10.00    5.00
 3   20.00   13.00    5.00
 4   24.00   10.00    6.00
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        ----------
     Strata 2: B = 2
   C (row) by A (column)
         1       2       3
 1   18.00    6.00    1.00
 2   18.00    6.00    2.00
 3   13.00   13.00    2.00
 4    9.00   15.00    2.00

        ----------
     Strata 3: B = 3
   C (row) by A (column)
         1       2       3
 1    8.00    6.00    3.00
 2   12.00    4.00    4.00
 3   11.00    6.00    2.00
 4    7.00    7.00    4.00

        ----------
     Strata 4: B = 4
   C (row) by A (column)
         1       2       3
 1   12.00    9.00    1.00
 2   15.00    3.00    2.00
 3   14.00    8.00    3.00
 4   13.00    6.00    4.00
 Test of independence between row and column variables

                          Degrees of
     Strata  Chi-Squared     Freedom  Probability
          1          3.4           6       0.7575
          2         10.8           6       0.0942
          3          3.1           6       0.7987
          4          5.2           6       0.5177

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         10.6           6       0.1016
 Test of equality of location for rows given column scores

                            Degrees of
       Strata  Chi-Squared     Freedom  Probability
            1         2.62           3       0.4536
            2         7.34           3       0.0617
            3         1.69           3       0.6381
            4         1.68           3       0.6420

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         6.59           3      0.08618
       Row Scores
      1       2       3
  1.000   2.000   3.000
 Test of correlation given row and column scores

                       Degrees of
  Strata  Chi-Squared     Freedom  Probability



510 • Chapter 5: Categorical and Discrete Data Analysis IMSL STAT/LIBRARY

       1         1.57           1       0.2105
       2         7.06           1       0.0079
       3         0.16           1       0.6927
       4         0.66           1       0.4161

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         6.34           1       0.0118
       Row Scores
      1       2       3
  1.000   2.000   3.000

          Column Scores
      1       2       3       4
  1.000   2.000   3.000   4.000

CTGLM/DCTGLM (Single/Double precision)
Analyze categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Usage
CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ,
            IFIX, IPAR, ICEN, INFIN, MAXIT, EPS, INTCEP,
            NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, IPRINT,
            MAXCL, NCLVAL, CLVAL, NCOEF, COEF, LDCOEF,
            ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR,
            IADD, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

MODEL — Model option parameter.   (Input)
MODEL specifies the distribution of the response variable and the function used to
model the distribution parameter. The lower-bound given in the following table is
the minimum possible value of the response variable.

MODEL Distribution Function Lower-bound
0 Poisson     Exponential 0
1 Neg. Binomial Logistic    0
2 Logarithmic Logistic    1
3 Binomial Logistic    0
4 Binomial Probit     0
5 Binomial Log-log     0
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Let γ be the dot product of a row in the design matrix with the parameters (plus
the fixed parameter, if used). Then, the functions used to model the distribution
parameter are given by:

Name      Function
Exponential  exp(γ)
Logistic     exp(γ)/(1 + exp(γ))
Probit      Normal(γ) (normal cdf)
Log-log     1 − exp(−γ)

ILT — For full-interval and left-interval observations, the column number in X

that contains the upper endpoint of the observation interval.   (Input)
See argument ICEN. If ILT = 0, left-interval and full-interval observations cannot
be input.

IRT — For full-interval and right-interval observations, the column number in X

that contains the lower endpoint of the interval.   (Input)
For point observations, X(i, IRT) contains the observation point. IRT must not be
zero. See argument ICEN. In the usual case, all observations are “point”
observations (see argument ICEN).

IFRQ — Column number in X containing the frequency of response for each
observation.   (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed.

IFIX — Column number in X containing a fixed parameter for each observation
that is added to the linear response prior to computing the model parameter.
(Input)
The “fixed” parameter allows one to test hypothesis about the parameters via the
log-likelihoods. If IFIX = 0, the fixed parameter is assumed to be 0.

IPAR — Column number in X containing an optional distribution parameter for
each observation.   (Input)
If IPAR = 0, the distribution parameter is assumed to be 1. The meaning of the
distributional parameter depends upon MODEL as follows:

MODEL Meaning of X(i, IPAR)
0 The Poisson parameter is given by X(i, IPAR) * exp(γ).
1 The number of successes required in the negative binomial is given by

X(i, IPAR).
2 X(i, IPAR) is not used.
3−5 The number of trials in the binomial distribution is given by X(i, IPAR).

ICEN — Column number in X containing the interval-type for each observation.
(Input)
If ICEN = 0, a code of 0 is assumed. Valid codes are

X(i, ICEN) Censoring
0 Point observation. The response is unique and is given by

X(i, IRT).
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1 Right-interval. The response is greater than or equal to
X(i, IRT) and less than or equal to the upper bound, if any, of
the distribution.

2 Left-interval. The response is less than or equal to X(i, ILT) and
greater than or equal to the lower bound of the distribution.

3 Full-interval. The response is greater than or equal to X(i, IRT),
but less than or equal to X(i, ILT).

INFIN — Method to be used for handling infinite estimates.   (Input)

INFIN Method

0 Remove a right or left-censored observation from the log-likelihood
whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have an estimated linear response that is infinite.
Set IADD(i) for observation i to 2 if the linear response is infinite. If not
all removed observations have infinite linear response, recompute the
estimates based upon the observations with estimated linear response
that is finite.

1 Iterate without checking for infinite estimates.

See the “Algorithm” section for more discussion.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is usually sufficient. Use MAXIT = 0 to compute the Hessian, stored
in COV, and the Newton step, stored in GR, at the initial estimates.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum relative change in any coefficient
estimate is less than EPS from one iteration to the next or when the relative
change in the log-likelihood, ALGL, from one iteration to the next is less than
EPS/100. If EPS is negative, EPS = 0.001 is assumed.

INTCEP — Intercept option.   (Input)

INTCEP Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 Intercept is automatically included in the model.

NCLVAR — Number of classification variables.   (Input)
Dummy or indicator variables are generated for classification variables using the
IDUMMY = 2 option of IMSL routine GRGLM (page 210). See Comment 3.

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are classification variables.   (Input, if NCLVAR is positive; not used
otherwise)
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in
the calling program.
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NEF — Number of effects in the model.   (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input, if NEF is positive; not used otherwise)
If NEF is zero, NVEF is not used and can be dimensioned of length 1 in the calling
program.

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF)
containing the column numbers in X associated with each effect.(Input, if NEF is
positive, not used otherwise) The first NVEF(1) elements of INDEF give the
column numbers of the variables in the first effect. The next NVEF(2) elements
give the column numbers for the second effect, etc. If NEF is zero, INDEF is not
used and can be dimensioned of length 1 in the calling program.

INIT — Initialization option.   (Input)

INIT Action
0 Unweighted linear regression is used to obtain initial estimates.
1 The NCOEF elements in the first column of COEF contain initial estimates

of the parameters on input to SVGLM (requiring that the user know
NCOEF prior to calling SVGLM).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed, but observational statistics are not printed.
2 All output statistics are printed.

MAXCL — An upper bound on the sum of the number distinct values taken on by
each classification variable.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken by
each classification variable.(Output, if NCLVAR is positive; not used otherwise)
NCLVAL(i) is the number of distinct values for the i-th classification variable. If
NCLVAR is zero, NCLVAL is not used and can be dimensioned of length 1 in the
calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the distinct values of the classification variables in ascending order.
(Output, if NCLVAR is positive; not used otherwise)
Since in general the length of CLVAL will not be known in advance, MAXCL (an
upper bound for this length) should be used for purposes of dimensioning CLVAL.
The first NCLVAL(1) elements of CLVAL contain the values for the first
classification variables, the next NCLVAL(2) elements contain the values for the
second classification variable, etc. If NCLVAR is zero, then CLVAL is not
referenced and can be dimensioned of length 1 in the calling program.

NCOEF — Number of estimated coefficients in the model.   (Output)
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COEF — NCOEF by 4 matrix containing the parameter estimates and associated
statistics.   (Output, if INIT = 0; input, if INIT = 1 and MAXIT = 0; input/output,
if INIT = 1 and MAXIT > 0)

Col. Statistic
1 Coefficient estimate.
2 Estimated standard deviation of the estimated coefficient.
3 Asymptotic normal score for testing that the coefficient is zero.
4 p-value associated with the normal score in column 3.

When INIT = 1, only the first column needs to be specified on input.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

ALGL — Optimized criterion.   (Output)
The criterion to be maximized is a constant plus the log-likelihood.

COV — NCOEF by NCOEF matrix containing the estimated asymptotic covariance
matrix of the coefficients.   (Output)
For MAXIT = 0, this is the Hessian computed at the initial parameter estimates.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

XMEAN — Vector of length NCOEF containing the means of the design variables.
(Output)

CASE — NOBS by 5 vector containing the case analysis.   (Output)

Col. Statistic
1 Predicted parameter.
2 The residual.
3 The estimated standard error of the residual.
4 The estimated influence of the observation.
5 The standardized residual.

Case statistics are computed for all observations except where missing values
prevent their computation.

The predicted parameter in column 1 depends upon MODEL as follows.

MODEL Parameter
0 The predicted mean for the observation
1−5 The probability of a success on a single trial

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

GR — Vector of length NCOEF containing the last parameter updates (excluding
step halvings).   (Output)
For MAXIT = 0, GR contains the inverse of the Hessian times the gradient vector,
all computed at the initial parameter estimates.
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IADD — Vector of length NOBS indicating which observations are included in the
extended likelihood.   (Output, if MAXIT > 0; input/output, if MAXIT = 0)

Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the likelihood because it contains at least one

missing value in X.
2 Observation i is not in the likelihood. Its estimated parameter is infinite.

For MAXIT = 0, the IADD array must be initialized prior to calling
CTGLM.

In this case, some elements of IADD may be set to 1, by CTGLM, but no check for
infinite estimates performed.

NRMISS — Number of rows of data in X that contain missing values in one or
more columns ILT, IRT, IFRQ, IFIX, IPAR, ICEN, INDCL, or INDEF of X.
(Output)

Comments

1. Automatic workspace usage is

CTGLM 7 * NMAX + NCOEF + NCOEF * NMAX units if INFIN = 0 or
NCOEF units if INFIN = 1, or

DCTGLM 11 * NMAX+ 2 * NCOEF+ 2 * NCOEF * NMAX units if INFI = 0,
or 2 * NCOEF units if INFIN = 1. NMAX is defined below.

Workspace may be explicitly provided, if desired, by use of
C2GLM/DC2GLM. The reference is

CALL C2GLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT,
            IFRQ, IFIX, IPAR, ICEN, INFIN, MAXIT,
            EPS, INTCEP, NCLVAR, INDCL, NEF, NVEF,
            INDEF, INIT, IPRINT, MAXCL, NCLVAL,
            CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
            LDCOV, XMEAN, CASE, LDCASE, GR, IADD,
            NRMISS, NMAX, OBS, ADDX, XD, WK, KBASIS)

The additional arguments are as follows.

NMAX — Maximum number of observations that can be handled in the
linear programming.   (Input)
If workspace is not explicitly provided, NMAX is set to NMAX = (n −
8)/(7 + NCOEF) in CTGLM and NMAX = (n − 16)/(11 + 2 * NCOEF) in
DCTGLM where n is the maximum number of units of workspace
available after allocating space for OBS. In the typical problem, no linear
programming is performed so that NMAX = 1 is sufficient. NMAX = NOBS
is always sufficient. Even when extended maximum likelihood estimates
are computed, NMAX = 30 will usually suffice. If INFIN = 1, set NMAX =
0.

OBS — Work vector of length NCOEF + 1.
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ADDX — Logical work vector of length NMAX. ADDX is not needed and
can be a array of length 1 in the calling program if NMAX = 0.

XD — Work vector of length NMAX * NCOEF. XD is not needed and can
be a array of length 1 in the calling program if NMAX = 0.

WK — Work vector of length 4 * NMAX. WK is not needed and can be a
array of length 1 in the calling program if NMAX = 0.

KBASIS — Work vector of length 2 * NMAX. KBASIS is not needed and
can be a array of length 1 in the calling program if NMAX = 0.

2 Informational errors
Type Code
   3    1 There were too many iterations required. Convergence

is assumed.
   3    2 There were too many step halvings. Convergence is

assumed.
   4    3 The number of distinct values of the classification

variables exceeds MAXCL.
   4    4 The number of distinct values of a classification must

be greater than one.
   4    5 LDCOEF or LDCOV must be greater than or equal to

NCOEF.
   4    6 The number of observations to be deleted has

exceeded NMAX. Rerun with a different model or
increase the workspace.

3. Dummy variables are generated for the classification variables as
follows: An ascending list of all distinct values of each classification
variable is obtained and stored in CLVAL. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
is one. See argument IDUMMY for IDUMMY = 2 in routine GRGLM (page
210) in Chapter 2.

4. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Algorithm

Routine CTGLM uses iteratively reweighted least squares to compute (extended)
maximum likelihood estimates in some generalized linear models involving
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categorized data. One of several models, including the probit, logistic, Poisson,
logarithmic, and negative binomial models, may be fit for input point or interval
observations. (In the usual case, only point observations are observed.)

Let

γ β ηi i i
T

i iw x w= + = +
be the linear response where xL is a design column vector obtained from a row of

X, β is the column vector of coefficients to be estimated, and wL is a fixed

parameter that may be input in X. When some of the γL are infinite at the
supremum of the likelihood, then extended maximum likelihood estimates are
computed. Extended maximum likelihood are computed as the finite (but

nonunique) estimates $β  that optimize the likelihood containing only the

observations with finite $γ i . These estimates, when combined with the set of

indices of the observations such that $γ i  is infinite at the supremum of the

likelihood, are called extended maximum estimates. When none of the optimal
$γ i  are infinite, extended maximum likelihood estimates are identical to maximum

likelihood estimates. Extended maximum likelihood estimation is discussed in
more detail by Clarkson and Jennrich (1991). In CTGLM, observations with
potentially infinite

$ $η βi i
Tx=

are detected and removed from the likelihood if INFIN = 0. See below.

The models available in CTGLM are

MODEL Name Parameterization PDF
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Here, Φ denotes the cumulative normal distribution, N and S are known
parameters specified for each observation via column IPAR of X, and w is an
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optional fixed parameter specified for each observation via column IFIX of X. (If
IPAR = 0, then N is taken to be 1 for MODEL = 0, 3, 4 and 5 and S is taken to be 1
for MODEL = 1. If IFIX = 0, then w is taken to be 0.) Since the log-log model
(MODEL = 5) probabilities are not symmetric with respect to 0.5, quantitatively, as
well as qualitatively, different models result when the definitions of “success” and
“failure” are interchanged in this distribution. In this model and all other models
involving θ, θ is taken to be the probability of a “success.”

Note that each row vector in the data matrix can represent a single observation;
or, through the use of column IFRQ of the matrix X, each vector can represent
several observations. Also note that classification variables and their products are
easily incorporated into the models via the usual regression-type specifications.

Computational Details

For interval observations, the probability of the observation is computed by
summing the probability distribution function over the range of values in the
observation interval. For right-interval observations, Pr(Y ≥ y) is computed as a
sum based upon the equality Pr(Y ≥ y) = 1 − Pr(Y < y). Derivatives are computed
similarly. CTGLM allows three types of interval observations. In full interval
observations, both the lower and the upper endpoints of the interval must be
specified. For right-interval observations, only the lower endpoint need be given
while for left-interval observations, only the upper endpoint is given.

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2 Estimates of the means of the “independent” or design variables are
computed. The frequency of the observation in all but binomial
distribution models is taken from column IFRQ of the data matrix X. In
binomial distribution models, the frequency is taken as the product of
n = X(I, IPAR) and X(I, IFRQ). In all cases, if IFRQ = 0, or IPAR = 0,
these values default to 1. Means are computed as

x
f x

f
i i i

i i
=

∑
∑

3. If INIT= 0, initial estimates of the coefficients are obtained (based upon
the observation intervals) as multiple regression estimates relating
transformed observation probabilities to the observation design vector.
For example, in the binomial distribution models, θ for point
observations may be estimated as

$ , / ,θ = X I IRT X I IPAR0 5 0 5
and, when MODEL = 3, the linear relationship is given by
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ln $ / $θ θ β1 − ≈4 94 94 9X

while if MODEL = 4,

Φ− =1 $θ β4 94 9X

For bounded interval observations, the midpoint of the interval is used
for X(I, IRT). Right-interval observations are not used in obtaining
initial estimates when the distribution has unbounded support (since the
midpoint of the interval is not defined). When computing initial
estimates, standard modifications are made to prevent illegal operations
such as division by zero.

Regression estimates are obtained at this point, as well as later, by use of
routine RGIVN (page 107).

4. Newton-Raphson iteration for the maximum likelihood estimates is
implemented via iteratively reweighted least squares. Let

Ψ xi
Tβ3 8

denote the log of the probability of the i-th observation for coefficients β
. In the least-squares model, the weight of the i-th observation is taken as
the absolute value of the second derivative of

Ψ xi
Tβ3 8

with respect to

γ βi i
Tx=

(times the frequency of the observation), and the dependent variable is
taken as the first derivative Ψ with respect to γL, divided by the square
root of the weight times the frequency. The Newton step is given by

∆β Ψ Ψ=
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��∑ ∑

−
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i

i
ix x x1 6 1 6

1

where all derivatives are evaluated at the current estimate of γ, and
βQ+1 = βQ − ∆β. This step is computed as the estimated regression
coefficients in the least-squares model. Step halving is used when
necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than EPS or when
the relative change in the log-likelihood from one iteration to the next is
less than EPS/100. Convergence is also assumed after MAXIT
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iterations or when step halving leads to a step size of less than .0001
with no increase in the log-likelihood.

6. For interval observations, the contribution to the log-likelihood is the log
of the sum of the probabilities of each possible outcome in the interval.
Because the distributions are discrete, the sum may involve many terms.
The user should be aware that data with wide intervals can lead to
expensive (in terms of computer time) computations.

7. If requested (INFIN = 0), then the methods of Clarkson and Jennrich
(1991) are used to check for the existence of infinite estimates in

η βi i
Tx=

As an example of a situation in which infinite estimates can occur,
suppose that observation j is right censored with tM > 15 in a logistic

model. If design matrix X is is such that xMP = 1 and xLP = 0 for all i ≠ j,

then the optimal estimate of βP occurs at

$βm = ∞

leading to an infinite estimate of both βPand ηM. In CTGLM, such
estimates may be “computed.”

In all models fit by CTGLM, infinite estimates can only occur when the
optimal estimated probability associated with the left- or right-censored
observation (or binomial observations with 0 or n successes in n trials) is
1. If INFIN = 0, left- or right- censored observations that have estimated
probability greater than 0.995 at some point during the iterations are
excluded from the log-likelihood, and the iterations proceed with a log-
likelihood based upon the remaining observations. This allows
convergence of the algorithm when the maximum relative change in the
estimated coefficients is small and also allows for the determination of
observations with infinite

η βi i
Tx=

At convergence, linear programming is used to ensure that the
eliminated observations have infinite ηL. If some (or all) of the removed
observations should not have been removed (because their estimated
ηL’s must be finite), then the iterations are restarted with a log-likelihood

based upon the finite ηL observations. See Clarkson and Jennrich (1991)
for more details.

When INFIN = 1, no observations are eliminated during the iterations.
In this case, when infinite estimates occur, some (or all) of the

coefficient estimates $β  will become large, and it is likely that the
Hessian will become (numerically) singular prior to convergence.
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When infinite estimates for the $η j  are detected, routine RGIVN

(page 107) is used at the convergence of the algorithm to obtain unique

estimates $β  This is accomplished by regressing the optimal $η j  or the

observations with finite η against Xβ, yielding a unique $β  (by setting

coefficients $β  that are linearly related to previous coefficients in the

model to zero). All of the final statistics relating to $β  are based upon
these estimates.

8. Residuals are computed according to methods discussed by Pregibon
(1981). Let lL(γL) denote the log-likelihood of the i-th observation

evaluated at γL. Then, the standardized residual is computed as

ri
i i

i i

=
l
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where $γ i  is the value of γL when evaluated at the optimal $β  and the

derivatives here (and only here) are with respect to γ rather than with
respect to β. The denominator of this expression is used as the “standard
error of the residual” while the numerator is the “raw” residual.

Following Cook and Weisberg (1982), we take the influence of the i-th
observation to be

l l li i
T

i
’ $ " $ ’ $γ γ γ1 6 1 6 1 6−1

This quantity is a one-step approximation to the change in the estimates
when the i-th observation is deleted. Here, the partial derivatives are
with respect to β.

Programming Notes

1. Classification variables are specified via arguments NCLVAR and INDCL.
Indicator or dummy variables are created for the classification variables
using routine GRGLM (page 210) with IDUMMY = 2.

2. To enhance precision “centering” of covariates is performed if
INTCEP = 1 and NOBS − NRMISS > 1. In doing so, the sample means of
the design variables are subtracted from each observation prior to its
inclusion in the model. On convergence the intercept, its variance and its
covariance with the remaining estimates are transformed to the
uncentered estimate values.

3 Two methods for specifying a binomial distribution model are possible.
In the first method, X(I, IFRQ) contains the frequency of the observation
while X(I, IRT) is 0 or 1 depending upon whether the observation is a
success or failure. In this case, N = X(I, IPAR) is
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always 1. The model is treated as repeated Bernoulli trials, and interval
observations are not possible.

A second method for specifying binomial models is to use X(I, IRT) to
represent the number of successes in the X(I, IPAR) trials. In this case,
X(I, IFRQ) will usually be 1, but it may be greater than 1, in which case
interval observations are possible.

Example

The first example is from Prentice (1976) and involves the mortality of beetles
after exposure to various concentrations of carbon disulphide. Both a logit and a
probit fit are produced for linear model

µ + βx

The data is given as:

Covariate(x) N y

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

      INTEGER    ICEN, IFIX, IFRQ, ILT, INIT, INTCEP, IPAR, IRT,
     &           LDCASE, LDCOEF, LDCOV, LDX, MAXCL, MAXIT, NCLVAR,
     &           NCOL, NEF, NOBS
      REAL       EPS
      LOGICAL    INFIN
      PARAMETER  (EPS=0.0001, ICEN=0, IFIX=0, IFRQ=0, ILT=0, INIT=0,
     &           INTCEP=1, IPAR=2, IRT=3, LDCASE=8, LDCOEF=2, LDCOV=2,
     &           LDX=8, MAXCL=1, MAXIT=30, NCLVAR=0, NCOL=3, NEF=1,
     &           NOBS=8, INFIN=.TRUE.)
C
      INTEGER    IADD(NOBS), INDCL(MAXCL), INDEF(1), IPRINT, MODEL,
     &           NCLVAL(1), NCOEF, NRMISS, NVEF(1)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(1), COEF(LDCOEF,4),
     &           COV(LDCOV,4), GR(2), X(LDX,NCOL), XMEAN(2)
      EXTERNAL   CTGLM, WRIRL
C
      DATA NVEF/1/, INDEF/1/
      DATA X/1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883,
     &     59, 60, 62, 56, 63, 59, 62, 60, 6, 13, 18, 28, 52, 53, 61,
     &     60/
C
      IPRINT = 2
      DO 10  MODEL=3, 4
         CALL WRIRL (’%/’, 1, 1, MODEL, 1, 0, ’(I1)’, ’Model =’, ’NONE’)
         CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
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     &               IPAR, ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR,
     &               INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL,
     &               NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
     &               LDCOV, XMEAN, CASE, LDCASE, GR, IADD, NRMISS)
         IPRINT = 1
   10 CONTINUE
C
      END

Output
Model =  3

Initial Estimates
     1       2
-63.27   35.84

Method  Iteration  Step size  Maximum scaled         Log
                                coef. update      likelihood
   Q-N        0                                   -20.31
   Q-N        1      1.0000      0.1387           -19.25
   N-R        2      1.0000      0.6112E-01       -18.89
   N-R        3      1.0000      0.7221E-01       -18.78
   N-R        4      1.0000      0.6362E-03       -18.78
   N-R        5      1.0000      0.3044E-06       -18.78

Log-likelihood       -18.77818

                  Coefficient Statistics
                      Standard    Asymptotic    Asymptotic
     Coefficient         Error   Z-statistic       P-value
 1        -60.76          5.21        -11.66          0.00
 2         34.30          2.92         11.76          0.00

 Asymptotic Coefficient Covariance
                 1             2
   1    0.2714E+02   -0.1512E+02
   2                  0.8505E+01

                             Case Analysis
                                   Residual                Standardized
      Predicted      Residual    Std. Error      Leverage      Residual
1         0.058         2.593         1.792         0.267         1.448
2         0.164         3.139         2.871         0.347         1.093
3         0.363        -4.498         3.786         0.311        -1.188
4         0.606        -5.952         3.656         0.232        -1.628
5         0.795         1.890         3.202         0.269         0.590
6         0.902        -0.195         2.288         0.238        -0.085
7         0.956         1.743         1.619         0.198         1.077
8         0.979         1.278         1.119         0.138         1.143

Last Coefficient Update
        1           2
1.104E-07  -2.295E-07

Covariate Means
    1.793
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      Observation Codes
1   2   3   4   5   6   7   8
0   0   0   0   0   0   0   0

Number of Missing Values           0

Model =  4

Log-likelihood       -18.23232

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         Error   Z-statistic       P-value
1        -34.94          2.65        -13.17          0.00
2         19.74          1.49         13.29          0.00

Note that the probit model yields a slightly smaller absolute log-likelihood and,
thus, is preferred. For this data, a model based upon the log-log transformation
function is even better. See Prentice (1976) for details.

As a second example, the following data illustrate the Poisson model when all
types of interval data are present. The example also illustrates the use of
classification variables and the detection of potentially infinite estimates (which
turn out here to be finite). These potential estimates lead to the two iteration
summaries. The input data is

Column
ILT IRT ICEN Class 1 Class 2

0 5 0 1 0

9 4 3 0 0

0 4 1 0 0

9 0 2 1 1

0 1 0 0 1

A linear model

µ + β1x1 +  β2x2

is fit where x1 = 1 if the Class 1 variable is 0, x1 = 0, otherwise, and the x2
variable is similarly defined.

      INTEGER    ICEN, IFIX, IFRQ, ILT, INFIN, INIT, INTCEP, IPAR,
     &           IPRINT, IRT, LDCASE, LDCOEF, LDCOV, LDX, MAXCL,
     &           MAXIT, MODEL, NCLVAR, NCOL, NEF, NOBS
      REAL       EPS
      PARAMETER  (EPS=0.001, ICEN=3, IFIX=0, IFRQ=0, ILT=1, INFIN=0,
     &           INIT=0, INTCEP=1, IPAR=2, IPRINT=2, IRT=2, LDCASE=5,
     &           LDCOEF=4, LDCOV=4, LDX=5, MAXCL=4, MAXIT=30, MODEL=0,
     &           NCLVAR=2, NCOL=5, NEF=2, NOBS=5)
C
      INTEGER    IADD(NOBS), INDCL(NCLVAR), INDEF(2), NCLVAL(MAXCL),
     &           NCOEF, NRMISS, NVEF(NEF)
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      REAL       ALGL, CASE(LDCASE,5), CLVAL(4), COEF(LDCOEF,4),
     &           COV(LDCOV,4), GR(5), X(LDX,NCOL), XMEAN(3)
      EXTERNAL   CTGLM
C
      DATA INDCL/4, 5/, NVEF/1, 1/, INDEF/4, 5/
      DATA X/0, 9, 0, 9, 0, 5, 4, 4, 0, 1, 0, 3, 1, 2, 0, 1, 0, 0, 1,
     &     0, 0, 0, 0, 1, 1/
C
      CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
     &            IPAR, ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR,
     &            INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL,
     &            NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
     &            LDCOV, XMEAN, CASE, LDCASE, GR, IADD, NRMISS)
C
      END

Output
Initial Estimates
     1        2        3
0.2469   0.4463  -0.0645

Method  Iteration  Step size  Maximum scaled        Log
                               coef. update      likelihood
  Q-N        0                                   -3.529
  Q-N        1      0.2500       5.168           -3.262
  N-R        2      0.0625       183.4           -3.134
  N-R        3      1.0000      0.7438           -3.006
  N-R        4      1.0000      0.2108           -3.005
  N-R        5      1.0000      0.5559E-02       -3.005

Method  Iteration  Step size  Maximum scaled        Log
                               coef. update      likelihood
  Q-N        0                                   -3.529
  Q-N        1      0.2500       5.168           -3.262
  N-R        2      0.0625       183.4           -3.217
  N-R        3      1.0000       1.128           -3.116
  N-R        4      1.0000      0.1673           -3.115
  N-R        5      1.0000      0.4418E-02       -3.115

Log-likelihood       -3.114638

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         Error   Z-statistic       P-value
1        -0.549         1.061        -0.517         0.605
2         0.549         0.610         0.900         0.368
3         0.549         1.083         0.507         0.612

     Asymptotic Coefficient Covariance
              1             2             3
1    0.1125E+01   -0.3719E+00   -0.1172E+01
2                  0.3719E+00    0.1719E+00
3                                0.1172E+01
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                             Case Analysis
                                   Residual                Standardized
      Predicted      Residual    Std. Error      Leverage      Residual
1         5.000         0.000         2.236         1.000         0.000
2         6.925        -0.412         2.108         0.764        -0.196
3         6.925         0.412         1.173         0.236         0.351
4         0.000         0.000         0.000         0.000           NaN
5         1.000         0.000         1.000         1.000         0.000

      Last Coefficient Update
         1           2           3
-2.924E-07  -1.131E-08   7.075E-07

Covariate Means
     1        2
0.6000   0.6000

Distinct Values For Each Class Variable
Variable  1:      0.         1.0
Variable  2:      0.         1.0

Observation Codes
1   2   3   4   5
0   0   0   0   0

Number of Missing Values           0

CTWLS/DCTWLS (Single/Double precision)
Perform a generalized linear least-squares analysis of transformed probabilities in
a two-dimensional contingency table.

Usage
CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN,
            ISIZE, AMATS, NCOEF, X, LDX, NUMH, NH, H, LDH,
            IPRINT, CHSQ, LDCHSQ, COEF, LDCOEF, COVCF,
            LDCOVC, F, COVF, LDCOVF, RESID, LDRESI)

Arguments

NRESP — Number of cells in each population.   (Input)

NPOP — Number of populations.   (Input)

TABLE — NRESP by NPOP matrix containing the frequency count in each cell of
each population.   (Input)
The i-th column of TABLE contains the counts for the i-th population.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

NTRAN — Number of transformations to be applied to the cell probabilities.
(Input)
Cell probabilities are computed as the frequency count for the cell divided by the
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population sample size. Set NTRAN = 0 if a linear model predicting the cell
probabilities is to be used.

ITRAN — Vector of length NTRAN containing the transformation code for each of
the NTRAN transformations to be applied.   (Input)
ITRAN is not referenced and can be a vector of length 1 in the calling program if
NTRAN = 0. Let a “response” denote a transformed cell probability. Then,
ITRAN(1) contains the first transformation to be applied to the cell probabilities,
ITRAN(2) contains the second transformation, which is to be applied to the
responses obtained after ITRAN(1) is performed, etc. Note that the k-th
transformation takes the ISIZE(k − 1) responses at step k into ISIZE(k)
responses, where ISIZE(0) is taken to be NPOP * NRESP. Let y denote the vector
result of a transformation, x denote the responses before the transformation is
applied, A denote a matrix of constants, and v denote a vector of constants. Then,
the possible transformations are

ITRAN Transformation
1 Linear, defined over all populations (y = Ax)
2 Logarithmic (y(i, j) = ln(x(i, j))
3 Exponential (y(i, j) = exp(x(i, j)))
4 Additive (y(i, j) = y(i, j) + v(i, j))
5 Linear, defined for one population and, identically, applied over all

populations (y(i) = Ax(i))

where y(i) and x(i) are the subvectors for the i-th population, y(i, j) and x(i, j)
denote the j-th response in the i-th population, and v(i, j) denotes the
corresponding element of the vector “v”. Transformation type 5 is the same as
transformation type 1 when the same linear transformation is applied in each
population (i.e., the type 1 matrix is block diagonal with identical blocks).

Because the size of the type 5 transformation matrix A is NPOP2 times smaller
than the type 1 transformation matrix, the type 5 transformation is usually
preferred where it can be used.

ISIZE — Vector of length NTRAN containing the number of response functions
defined by the k-th transformation.   (Input)
Transformation types 2, 3, and 4 have the same number of output responses as are
input, and elements of ISIZE corresponding to transformations of these types
should reflect this fact. Transformation types 1 and 5 can either increase or, more
commonly, decrease the number of responses. For transformation type 5, if m
linear transformations are defined for each population, the corresponding element
of ISIZE should be m * NPOP.

AMATS — Vector containing the transformation constants.   (Input)
AMATS contains the transformation matrices and vectors needed in the type 1, 4
and 5 transformations. While AMATS is a vector, its elements may be treated as a
number of matrices or vectors where the number of structures depends upon the
transformation types as follows:
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ITRAN Type Dimension Length

1 Matrix m by n m * n

2, 3 Not referenced 0

4 Vector m m

5 Matrix m/NPOP by n/NPOP m * n/(NPOP * NPOP)

Here, m = ISIZE(i) and n = ISIZE(i − 1), and ISIZE(0) is not input (in ISIZE)
but is taken to be NPOP * NRESP. Matrices and vectors are stored consecutively in
AMATS with column elements for matrices stored consecutively as is standard in
FORTRAN. Thus, if ITRAN(1) = 5 and ITRAN(2) = 4, with NREP = 3, NPOP= 2,
and ISIZE(1) = ISIZE(2) = 2, then the vector AMATS would contain in
consecutive positions A(1, 1), A(2, 1), A(1, 2), A(2, 2), A(1, 3), A(2, 3), v(1), v(2),
v(3), v(4) where A is the matrix for transformation type 5 and v is the vector for
transformation type 4.

NCOEF — Number of coefficients in the linear model relating the transformed
probabilities F to the design matrix X.   (Input)
Let F denote the vector result of applying the NTRAN transformations, and assume
that the model gives F = X * COEF. Then, NCOEF is the length of COEF.

X — Design matrix of size ISIZE(NTRAN) by NCOEF.   (Input, if NCOEF > 0)
X contains the design matrix for predicting the transformed cell probabilities F

from the covariates stored in X. If NCOEF = 0, X is not referenced and can be a 1
by 1 matrix in the calling program.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NUMH — Number of multivariate hypotheses to be tested on the coefficients in
COEF.   (Input, if NCOEF > 0)
If NCOEF = 0, NUMH is not referenced.

NH — Vector of length NUMH.   (Input, if NCOEF > 0)
NH(i) contains the number of consecutive rows in H used to specify hypothesis i. If
NCOEF = 0, NH is not referenced and can be a vector of length 1 in the calling
program.

H — Matrix of size m by NCOEF containing the constants to be used in the
multivariate hypothesis tests.   (Input, if NCOEF > 0)
Here, m is the sum of the elements in NH. Each hypothesis is of the form H0 : C *
COEF = 0, where C for the i-th hypothesis is NH(i) rows of H, and COEF is
estimated in the linear model. The first NH(1) rows of H make up the first
hypothesis, the next NH(2) rows make up the second hypothesis, etc. If
NCOEF = 0, His not referenced and can be a 1 by 1 matrix in the calling program.

LDH — Leading dimension of H exactly as specified in the dimension statement
in the calling program.   (Input)
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IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print all output arrays and vectors.
2 Print all output arrays and vectors as well as the matrices and vectors in

AMATS.

CHSQ — NUMH + 1 by 3 matrix containing the results of the hypothesis tests.
(Output, if NCOEF > 0)
The first row of CHSQ contains the results for test 1, the next row contains the
results for test 2, etc. The last row of CHSQ contains a test of the adequacy of the
model. Within each row, the first column contains the chi-squared statistic, the
second column contains its degrees of freedom, and the last column contains the
probability of a larger chi-squared. If NCOEF = 0, CHSQ is not referenced and can
be a 1 by 1 matrix in the calling program.

LDCHSQ — Leading dimension of CHSQ exactly as specified in the dimension
statement in the calling program.   (Input)

COEF — NCOEF by 4 matrix containing the coefficient estimates and related
statistics.   (Output, if NCOEF > 0)
The columns of coefficient are as follows:

Col. Statistic
1 Coefficient estimate
2 Estimated standard error of the coefficient
3 z-statistic for a test that the coefficient equals 0 versus the Two-sided

alternative
4 p-value corresponding to the z-statistic

If NCOEF = 0, COEF is not referenced and can be a 1 by 1 matrix in the calling
program.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COVCF — NCOEF by NCOEF matrix containing the estimated variances and
covariances of COEF.   (Output, if NCOEF > 0)
If NCOEF = 0, COVCF is not referenced and can be a 1 by 1 matrix in the calling
program.

LDCOVC — Leading dimension of COVCF exactly as specified in the dimension
statement in the calling program.   (Input)

F — Vector of length ISIZE(NTRAN) containing the transformed probabilities,
the responses.   (Output)

COVF — Matrix of size ISIZE(NTRAN) by ISIZE(NTRAN) containing the
estimated variances and covariances of F.   (Output)

LDCOVF — Leading dimension of COVF exactly as specified in the dimension
statement in the calling program.   (Input)
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RESID — ISIZE(NTRAN) by 4 matrix containing a case analysis for the
transformed probabilities as estimated by the linear model.   (Output, if
NCOEF > 0)
The linear model gives F = X * BETA. The columns of RESID are as follows:

Col. Description
1 Residual
2 Standard error
3 Leverage
4 Standardized residual

If NCOEF = 0, RESID is not referenced and can be a 1 by 1 matrix in the calling
program.

LDRESI — Leading dimension of RESID exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTWLS t + c + h + NPOP * (NRESP + 1) + NCOEF+ 1 units, or
DCTWLS 2t + 2c + d + 2(NPOP * (NRESP + 1) + NCOEF+ 1) units,

where

t = max(NPOP * NRESP, max(ISIZE(i))) *
(ISIZE(NTRAN) + 3) + ISIZE(1) + … +
ISIZE(NTRAN)
3 * NPOP * NRESP + NCOEF + 1

if NTRAN > 0, or
if NTRAN = 0;

c = ISIZE(NTRAN) * (NCOEF + 1)
0

if NCOEF = 0
if NCOEF = 0;

h = max(NH(J)) * (5 + NCOEF + max(NCOEF,
max(NH(J)))
0

if NUMH > 0, or
if NUMH = 0;

d = max(NH(J)) + 2 * max(NH(J)) *
(max(NCOEF, max(NH(J)) + NCOEF + 5)
0

if NUMH > 0, or
if NUMH = 0

Workspace may be explicitly provided, if desired, by use of
C2WLS/DC2WLS. The reference is

CALL C2WLS (NRESP, NPOP, TABLE, LDTABL, NTRAN,
            ITRAN, ISIZE, AMATS, NCOEF, X, LDX,
            NUMH, NH, H, LDH, IPRINT, CHSQ, LDCHSQ,
            COEF, LDCOEF, COVCF, LDCOVC, F, COVF,
            LDCOVF, RESID, LDRESI, PDER, FRQ, EST,
            XX, WK, IWK, WWK)

The additional arguments are as follows:
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PDER — Work vector of length ISIZE(NTRAN) * max(NPOP * NRESP,
ISIZE(i)) if NTRAN is greater than zero. PDER is not used and can be
dimensioned of length 1 if NTRAN = 0.

FRQ — Work vector of length NPOP.

EST — Work vector of length NPOP * NRESP + ISIZE(1) + … +
ISIZE(NTRAN).

XX — Work vector of length (NCOEF + 1) * ISIZE(NTRAN) if NCOEF is
greater than zero. If NCOEF = 0, XX is not referenced and can be a vector
of length 1 in the calling program.

WK — Work vector of length 3(max(NPOP * NRESP, ISIZE(i))) +
NCOEF + 1.

IWK — Work vector of length max(NH(i)) if NUMH is greater than 0. If
NCOEF = 0, IWK is not referenced and can be a vector of length 1 in the
calling program.

WWK — Work vector of length max(NH(i)) * (4 + NCOEF + max(NCOEF,
max(NH(i))) if NUMH is greater than 0. If NUMH = 0, WWK is not referenced
and can be a vector of length 1 in the calling program.

2. Informational error
Type Code
   4    1 A negative response occurred while performing a

logarithmic transformation. The logarithm of a
negative number is not allowed.

Algorithm

Routine CTWLS performs weighted least-squares analysis of a general p = NPOP
population by r = NRESP response categories per population contingency table.
After division by the sample size, there are n = pr cell probabilities.

Define s = ISIZE(NTRAN) responses fL such that each response is obtained from

the cell probabilities as fL = gL(p1, p2, …, pQ), for i = 1, …, s. Call the functions gL
the response functions”. Then, if

$Σ f

is the asymptotic covariance matrix of the responses, and X is a design matrix for
a linear model predicting f = Xβ with q = NCOEF coefficients β = COEF, then
CTWLS performs a weighted least-squares analysis of the model f = Xβ where the
generalized weights are given by

$Σ f = COVF

Estimates obtained in this way are best asymptotic normal estimates of β.

Let
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$Σ p

denote the estimated variance-covariance matrix of the estimated cell
probabilities, and let (∂gL/∂pM) denote the matrix of partial derivatives of gL�with
respect to pM. Then,

$Σ f

is given by

$ $Σ Σf
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where the (i, j)-th element in

$Σ p

is computed as

pL(δLM − pM)

Here, δLM = 1 if i = j and is zero otherwise.

In CTWLS, the transformations gL are defined by successive application of one of

five types of simpler transformations. Let pL = h0,M for j = 1, …, n denote the n cell
probabilities, and let hL,M denote the ISIZE(i) responses obtained after i simple
transformations have been performed with hL denoting the corresponding vector
of estimates. Then, the simple transformations are defined by:

1. Linear: hL+1 = ALhL where AL is a matrix of coefficients specified via the
vector AMATS in CTWLS.

2. Logarithmic: hL+1,M = ln(hL,M) where j = 1, …, ISIZE(i). That is, take the
logarithm of each of the responses.

3. Exponential: hL+1,M = exp(hL,M) where j = 1, …, ISIZE(i). That is, take the
exponential of each of the responses.

4. Additive: hL+1,M = hL,M + vM , where j = 1, …, ISIZE(i), and vM is specified
via the vector AMATS in CTWLS. Additive transformations are generally
used to adjust for zero cells or to apply a continuity correction to the cell
probabilities.

5. Linear (by population):

h A h hi
j

i i
j

i
j

+ =1  where 

is the vector of responses at stage i in the j-th population, and AL is a
matrix of coefficients specified via AMATS.

Given the responses fL and their covariances
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$Σ f

estimates for β are computed via generalized least squares as

$ $ $β = − − −X X X fT
f

T
fΣ Σ1 1 13 8

Let Σb denote the asymptotic covariance matrix of β. Then, Σb is estimated by

$ $Σ Σβ = − −
X XT

f
1 13 8

Hypothesis tests of the form HR : CLβ = 0 are performed when requested. Here, CL
is a matrix of coefficients specified via a submatrix of the matrix H. Results are
returned in the vector CHSQ. The asymptotic chi-squared test for testing the null
hypothesis is given by

χ β β β2 1
=

−
C C Ci

T
i i1 6 3 8$Σ

This test has qL = rank(CL) degrees of freedom. If zero degrees of freedom are
returned, the hypothesis cannot be tested in the original parameterization.

A test of the model checks that the residuals obtained from the model f = Xβ are
not too large. This test, which has s − q degrees of freedom, is an asymptotic chi-
squared test and is computed as

Q f X f X
T

f= − −
−$ $ $β β4 9 3 8 4 9Σ

1

Residuals from the generalized linear model are easily computed as

r f xi i i= − $β

where xL is the row of the design matrix X corresponding to the i-th observation.
This residual has the asymptotic variance

$ $ $σ i f ii

T
f

T

ii
X X X X2 1

1= − �� ��
�
��

�
��

−
Σ Σ3 8 3 8

where (A)LL denotes the i-th diagonal element of matrix A. A standardized residual
is then computed as

z ri i= / $σ

which has an asymptotic standard normal distribution if the model is correct.

The leverage of observation i, vL, is computed as

v X X X Xi
T

f
T

f
ii

= �� ��− − −$ $Σ Σ1 1 13 8
It is a measure of the importance of the observation in the predicted values.
Values greater than 2q/s are large.
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Because the tests performed by CTWLS are asymptotic ones, the user should treat
the results with caution. The reported asymptotic p-values are most likely to be
exact when the number of counts in each cell is large (say 5 or more), and less
exact for smaller cell counts. Care should also be taken to avoid illegal
operations. For example, the routine returns an error message when the log of a
negative or zero value is attempted. When this occurs, the user should either use a
continuity correction (i.e. modify the transformations used by adding a constant to
all cells or to the cell resulting in the illegal operation) or abandon the model.

Example 1

This example is taken from Landis, Stanish, Freeman, and Koch (1976), pages
213-217. Generalized kappa statistics are computed via vector functions of the
form:

F(p) = exp(A4 ln(A3 exp(A2 ln(A1p))))

where p is the cell probabilities. The raw frequencies are given as two 4 × 4
contingency tables. These tables are reorganized as a single 16 × 2 table for input
into CTWLS. The input tables are

38 5 0 1

33 11 3 0

10 14 5 6

3 7 3 10

5 3 0 0

3 11 4 0

2 13 3 4

1 2 4 14

�

�

����

�

�

����

�

�

����

�

�

����
Two generalized kappa statistics using two different sets of weights are computed
for each population. Hypothesis tests are then performed on the four resulting
generalized kappa statistics. In this example, the matrix of covariates is an
identity matrix so that tests on the responses are performed.

      INTEGER    IPRINT, LDCHSQ, LDCOEF, LDCOVC, LDCOVF, LDH, LDRESI,
     &           LDTABL, LDX, NCOEF, NPOP, NRESP, NTRAN, NUMH
      PARAMETER  (IPRINT=2, LDCHSQ=10, LDCOEF=4, LDCOVC=4, LDCOVF=4,
     &           LDH=10, LDRESI=4, LDTABL=16, LDX=4, NCOEF=4, NPOP=2,
     &           NRESP=16, NTRAN=8, NUMH=9)
C
      INTEGER    ISIZE(NTRAN), ITRAN(NTRAN), NH(9)
      REAL       A1(10,16), A2(18,10), A3(4,18), A4(2,4), AMATS(420),
     &           CHSQ(LDCHSQ,3), COEF(LDCOEF,4), COVCF(LDCOVC,NCOEF),
     &           COVF(LDCOVF,LDCOVF), F(LDX), H(LDH,4),
     &           RESID(LDRESI,4), TABLE(LDTABL,NPOP), X(LDX,NCOEF)
      EXTERNAL   CTWLS
C
      EQUIVALENCE (A1, AMATS(1)), (A2, AMATS(161)), (A3, AMATS(341)),
     &           (A4, AMATS(413))
C
      DATA TABLE/38, 5, 0, 1, 33, 11, 3, 0, 10, 14, 5, 6, 3, 7, 3, 10,
     &     5, 3, 0, 0, 3, 11, 4, 0, 2, 13, 3, 4, 1, 2, 4, 14/
      DATA X/1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/
      DATA NH/1, 1, 1, 1, 1, 1, 2, 1, 1/
      DATA H/1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0,
     &     1, 0, 0, 0, 1, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0,
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     &     -1, 0, -1/
      DATA ITRAN/5, 2, 5, 3, 5, 2, 5, 3/
      DATA ISIZE/20, 20, 36, 36, 8, 8, 4, 4/
      DATA A1/1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
     &     .5, 1, 0, 0, 0, 0, 0, 1, 0, 0, .25, 1, 0, 0, 0, 0, 0, 0, 1,
     &     0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, .5, 0, 1, 0, 0, 0, 1, 0,
     &     0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, .5, 0, 1, 0, 0, 0, 0,
     &     0, 1, 0, .25, 0, 0, 1, 0, 1, 0, 0, 0, 0, .25, 0, 0, 1, 0,
     &     0, 1, 0, 0, 0, .5, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
     &     0, 0, 0, 0, 1, 0, .5, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
     &     0, 1, 0, 1, 0, 0, 0, .25, 0, 0, 0, 1, 0, 0, 1, 0, 0, .5, 0,
     &     0, 0, 1, 0, 0, 0, 1, 1, 1/
      DATA A2/1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
     &     0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
     &     1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
     &     0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
     &     0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     1/
      DATA A3/-1, -1, 0, 0, 0, -.5, 1, .5, 0, -.25, 1, .75, 0, 0, 1,
     &     1, 0, -.5, 1, .5, -1, -1, 0, 0, 0, -.5, 1, .5, 0, -.25, 1,
     &     .75, 0, -.25, 1, .75, 0, -.5, 1, .5, -1, -1, 0, 0, 0, -.5,
     &     1, .5, 0, 0, 1, 1, 0, -.25, 1, .75, 0, -.5, 1, .5, -1, -1,
     &     0, 0, 1, 0, 0, 0, 0, 1, 0, 0/
      DATA A4/1, 0, 0, 1, -1, 0, 0, -1/
C
      CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN, ISIZE,
     &            AMATS, NCOEF, X, LDX, NUMH, NH, H, LDH, IPRINT,
     &            CHSQ, LDCHSQ, COEF, LDCOEF, COVCF, LDCOVC, F, COVF,
     &            LDCOVF, RESID, LDRESI)
C
      END

Output
Hypothesis Tests on Coefficients
H-1
         1           0           0           0
H-2
         0           1           0           0
H-3
         1          -1           0           0
H-4
         0           0           1           0
H-5
         0           0           0           1
H-6
         0           0           1          -1
H-7
         1           0          -1           0
         0           1           0          -1
H-8
         1           0          -1           0
H-9
         0           1           0          -1
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         Hypothesis Chi-Squared Statistics
                          Degrees of
Hypothesis  Chi-Squared     freedom       p-value
         1        16.99           1        0.0000
         2        39.70           1        0.0000
         3        39.54           1        0.0000
         4        14.27           1        0.0002
         5        30.07           1        0.0000
         6        28.76           1        0.0000
         7         1.07           2        0.5850
         8         0.90           1        0.3425
         9         1.06           1        0.3040

                         Degrees of
            Chi-Squared     freedom       p-value
Model Test         0.00           0           NaN

                 Coefficient Statistics
    Coefficient  Standard Error   Statistic       p-value
1        0.2079            0.05        4.12        0.0000
2        0.3150            0.05        6.30        0.0000
3        0.2965            0.08        3.78        0.0002
4        0.4069            0.07        5.48        0.0000

            Asymptotic Coefficient Covariance
              1             2            3             4
1    2.5457E-03    2.3774E-03        0.            0.
2                  2.4988E-03        0.            0.
3                               6.1629E-03    5.6229E-03
4                                             5.5069E-03

                    Residual Analysis
                     Standard                Standardized
       Residual         Error      Leverage      Residual
1        0.0000        0.0000        1.0000           NaN
2        0.0000        0.0000        1.0000           NaN
3        0.0000        0.0000        1.0000           NaN
4        0.0000        0.0000        1.0000           NaN

Transformed Probabilities
       1   0.2079
       2   0.3150
       3   0.2965
       4   0.4069

Asymptotic Covariance of the Transformed Probabilities
              1             2             3             4
1    2.5457E-03    2.3774E-03        0.            0.
2                  2.4988E-03        0.            0.
3                               6.1629E-03    5.6229E-03
4                                             5.5069E-03

     Linear transformation matrix, by population, for transformation 5
         1       2       3       4       5       6       7       8       9
 1   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000
 2   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000
 3   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000
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 4   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 5   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000
 6   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 7   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000
 8   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000
 9   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
10   1.000   0.500   0.250   0.000   0.500   1.000   0.500   0.250   0.250

        10      11      12      13      14      15      16
 1   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 2   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 3   1.000   1.000   1.000   0.000   0.000   0.000   0.000
 4   0.000   0.000   0.000   1.000   1.000   1.000   1.000
 5   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 6   1.000   0.000   0.000   0.000   1.000   0.000   0.000
 7   0.000   1.000   0.000   0.000   0.000   1.000   0.000
 8   0.000   0.000   1.000   0.000   0.000   0.000   1.000
 9   0.000   1.000   0.000   0.000   0.000   0.000   1.000
10   0.500   1.000   0.500   0.000   0.250   0.500   1.000

     Linear transformation matrix, by population, for transformation 5
         1       2       3       4       5       6       7       8       9
 1   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000
 2   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 3   1.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000
 4   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000
 5   0.000   1.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000
 6   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 7   0.000   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000
 8   0.000   1.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000
 9   0.000   0.000   1.000   0.000   1.000   0.000   0.000   0.000   0.000
10   0.000   0.000   1.000   0.000   0.000   1.000   0.000   0.000   0.000
11   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000
12   0.000   0.000   1.000   0.000   0.000   0.000   0.000   1.000   0.000
13   0.000   0.000   0.000   1.000   1.000   0.000   0.000   0.000   0.000
14   0.000   0.000   0.000   1.000   0.000   1.000   0.000   0.000   0.000
15   0.000   0.000   0.000   1.000   0.000   0.000   1.000   0.000   0.000
16   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000
17   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000
18   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

        10
 1   0.000
 2   0.000
 3   0.000
 4   0.000
 5   0.000
 6   0.000
 7   0.000
 8   0.000
 9   0.000
10   0.000
11   0.000
12   0.000
13   0.000
14   0.000
15   0.000
16   0.000
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17   0.000
18   1.000

    Linear transformation matrix, by population, for transformation 5
        1       2       3       4       5       6       7       8       9
1  -1.000   0.000   0.000   0.000   0.000  -1.000   0.000   0.000   0.000
2  -1.000  -0.500  -0.250   0.000  -0.500  -1.000  -0.500  -0.250  -0.250
3   0.000   1.000   1.000   1.000   1.000   0.000   1.000   1.000   1.000
4   0.000   0.500   0.750   1.000   0.500   0.000   0.500   0.750   0.750

       10      11      12      13      14      15      16      17      18
1   0.000  -1.000   0.000   0.000   0.000   0.000  -1.000   1.000   0.000
2  -0.500  -1.000  -0.500   0.000  -0.250  -0.500  -1.000   0.000   1.000
3   1.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000
4   0.500   0.000   0.500   1.000   0.750   0.500   0.000   0.000   0.000

Linear transformation matrix, by population, for transformation 5
                        1       2       3       4
                1   1.000   0.000  -1.000   0.000
                2   0.000   1.000   0.000  -1.000

Example 2

The second example is taken from Prentice (1976) and involves a logistic fit to
the mortality of beetles after exposure to various concentrations of carbon
disulphide. Because one of the cells on input has a count of zero and it is not
possible to take the logarithm of zero, a constant 0.5 is added to each cell prior to
calling CTWLS. The model can be expressed as

ln
p

p
xi

i

1

2
1= +µ β

where i indexes the 8 populations. The data is given as:

x fL1 fL2
1.690 6 53

1.724 13 47

1.755 18 44

1.784 28 28

1.811 52 11

1.836 53 6

1.861 61 1

1.883 60 0

For comparison, a maximum fit yields

$ . $ .µ β= =74 34 3 and 

(see STAT routine CTGLM, page 510).
      INTEGER    IPRINT, LDCHSQ, LDCOEF, LDCOVC, LDCOVF, LDH, LDRESI,
     &           LDTABL, LDX, NCOEF, NPOP, NRESP, NTRAN, NUMH
      PARAMETER  (IPRINT=2, LDCOVF=8, LDH=1, LDX=8, NCOEF=2, NPOP=8,
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     &           NRESP=2, NTRAN=2, NUMH=0, LDCHSQ=NUMH+1,
     &           LDCOEF=NCOEF, LDCOVC=NCOEF, LDRESI=LDX, LDTABL=NRESP)
C
      INTEGER    ISIZE(NTRAN), ITRAN(NTRAN), NH(1)
      REAL       AMATS(2), CHSQ(LDCHSQ,3), COEF(LDCOEF,4),
     &           COVCF(LDCOVC,NCOEF), COVF(LDCOVF,LDCOVF), F(LDX),
     &           H(LDH,4), RESID(LDRESI,4), TABLE(LDTABL,NPOP),
     &           X(LDX,NCOEF)
      EXTERNAL   CTWLS, SADD
C
      DATA TABLE/6, 53, 13, 47, 18, 44, 28, 28, 52, 11, 53, 6, 61, 1,
     &     60, 0/, ITRAN/2, 5/, ISIZE/16, 8/, AMATS/1, -1/
      DATA X/8*1, 1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861,
     &     1.883/
C
      CALL SADD (NPOP*NRESP, 0.5, TABLE, 1)
C
      CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN, ISIZE,
     &            AMATS, NCOEF, X, LDX, NUMH, NH, H, LDH, IPRINT,
     &            CHSQ, LDCHSQ, COEF, LDCOEF, COVCF, LDCOVC, F, COVF,
     &            LDCOVF, RESID, LDRESI)
C
      END

Output
        Test of the Model
              Degrees of
Chi-Squared     freedom       p-value
       8.43           6        0.2081

                  Coefficient Statistics
    Coefficient  Standard Error   Statistic       p-value
1      -55.6590            5.02      -11.10        0.0000
2       31.4177            2.83       11.09        0.0000

 Asymptotic Coefficient Covariance
          1             2
1     25.16        -14.20
2                   8.024

                     Residual Analysis
                      Standard                Standardized
        Residual         Error      Leverage      Residual
 1        0.4552        0.3232        0.6052        1.4086
 2        0.2368        0.2480        0.6468        0.9548
 3       -0.3568        0.2413        0.7608       -1.4787
 4       -0.3902        0.2285        0.7440       -1.7076
 5        0.2800        0.2761        0.7192        1.0141
 6        0.0840        0.3484        0.7036        0.2410
 7        0.9042        0.7749        0.8791        1.1670
 8        1.2953        1.3777        0.9413        0.9402

 Transformed Probabilities
         1  -2.108
         2  -1.258
         3  -0.878
         4   0.000
         5   1.518



540 • Chapter 5: Categorical and Discrete Data Analysis IMSL STAT/LIBRARY

         6   2.108
         7   3.714
         8   4.796

         Asymptotic Covariance of the Transformed Probabilities
          1                 2            3             4             5
1    0.1725            0.            0.            0.            0.
2                  9.5127E-02        0.            0.            0.
3                               7.6526E-02        0.             0.
4                                             7.0175E-02         0.
5                                                           0.1060

             6             7             8
1        0.            0.            0.
2        0.            0.            0.
3        0.            0.            0.
4        0.            0.            0.
5        0.            0.            0.
6    0.1725            0.            0.
7                  0.6829            0.
8                                2.017

Linear transformation matrix, by population, for transformation 5
                               1       2
                           1.000  -1.000
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Chapter 5: Categorical and Discrete
Data Analysis

Routines
5.1. Statistics in the Two-Way Contingency Table

Statistics in a 2 × 2 table .................................................... CTTWO 436
Chi-squared analysis in a r × c table.....................................CTCHI 446
Exact probabilities in a r × c table: total enumeration ..........CTPRB 456
Exact probabilities in a r × c table: network algorithm..........CTEPR 459

5.2. Log-Linear Models
The iterative proportional fitting algorithm............................ PRPFT 463
Statistics for a given model .................................................. CTLLN 467
Parameter estimates for a given model ...............................CTPAR 476
Partial association statistics .................................................CTASC 482
Hierarchical stepping............................................................CTSTP 489

5.3. Randomization Tests
Generalized Mantel-Haenszel statistics.............................. CTRAN 502

5.4. Generalized Categorical Models
Generalized linear models .................................................. CTGLM 510

5.5. Weighted Least Squares Analysis
Analysis by weighted least squares .................................... CTWLS 526

Usage Notes
Routines for modeling and analyzing a two- or higher-dimensional contingency
table are described in this chapter. Also included are routines for modeling
responses from some discrete distributions when discrete or continuous
covariates are measured.
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The Basic Data Structures

The most common of the three data structures used by the routines in this chapter
is a multidimensional (or multi-way) contingency table input as a real vector with
length equal to the product of the number of categories for each dimension. This
structure may be obtained from a data matrix X via the routine FREQ (page 13) in
Chapter 1. Alternatively, multi-way tables may be created and input directly by
the user. The multi-way structure is used by all of the log-linear modeling
routines (PRPFT, page 463; CTLLN, page 467; CTPAR, page 476; CTASC, page
482; and CTSTP, page 489), and is also used in the randomization tests routine,
CTRAN (page 502).

A second data structure used by the categorical generalized linear models routine,
CTGLM (page 510), is the data matrix X. In CTGLM (and elsewhere), if X has many
identical rows, at least on the variables of interest, consider using Chapter 1
routine CSTAT (page 54) to add a frequency variable to a reduced matrix X. The
transposed output from this routine can replace X as input to CTGLM, and CTGLM
will perform its computations faster (with a linear speed up) on the reduced
matrix.

Finally, two-way tables are input into routines CTCHI (page 446), CTTWO
(page 436), CTPRB (page 456), CTEPR (page 459), and CTWLS (page 526) as two-
dimensional real arrays. As with the multidimensional arrays, two-dimensional
arrays may be created via Chapter 1 routine FREQ, in which case the leading
dimension must equal the number of categories for the first dimension in the
table, or they can be created and input directly by the user. Alternatively, the
routine TWFRQ (page 7) from Chapter 1 may be used to obtain the two-way
frequency table.

Types of Analysis

Routines CTCHI (r × c) (page 446) and CTTWO (2 × 2) (page 436) compute many
statistics of interest in a two-way table. Statistics computed by these routines
include the usual chi-squared statistics, measures of association, Kappa, and many
others. Asymptotic statistics for a two-way table that are not computed by either
CTCHI or CTTWO can probably be computed by routines CTRAN (page 502) or
CTWLS (page 526), but note that these latter two routines require more setup since
they require that the user indicate how the statistics are to be computed. Exact
probabilities for two-way tables can be computed by CTPRB (page 456), but this
routine uses the total enumeration algorithm and, thus, often uses orders of
magnitude more computer time that CTEPR (page 459), which computes the same
probabilities by use of the network algorithm (but can still be quite expensive).

The routines in the second section are all concerned with hierarchical log-linear
models (see, e.g., Bishop, Fienberg, and Holland 1975). The routines in Chapter
1 will often be used to obtain the multi-dimensional tables input into these
routines, or the table will be input directly by the user. If the hierarchical is not
known, routine CTASC (page 482) will often be the first routine considered. The
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partial association statistics computed by this routine can be used to obtain a
rough estimate of the model to be used. This rough model can then be refined
through the use of CTSTP (page 489), which does stepwise model building. Of
course, both of these routines are subject to the usual problems associated with
building models once the data have been collected: the resulting models may not
be correct.

Once a model has been selected (provisional or otherwise), routine CTLLN
(page 467) can be used to compute and print many model statistics (parameter
estimates, residuals, goodness of fit tests, etc.). If only the parameter estimates
and associated variance/covariance matrix are needed, CTPAR (page 476) can be
used instead. Both of these routines can compute estimates when sampling and/or
structural zeros (cells in the table with observed or restricted counts of zero,
respectively) are present in the table, as can all routines in this section.

The algorithm underlying all of the routines in the second section is the iterative
proportional fitting algorithm, which is implemented in routine PRPFT
(page 463). When structural or sampling zeros are present in the table, this
algorithm can be quite slow to converge. Also, only the expected cell counts are
returned by PRPFT, it can be quite difficult to determine degrees of freedom when
structural zeros are present in the data. Because a structural zero is a restriction
on the parameter space, 1 degree of freedom must be subtracted for each
structural zero in the multiway table. The difficulty is in determining where the
subtraction should occur. All routines in this section use a Cholesky factorization

of X7 X where X is the “design matrix.” This is used to determine which effects
should lose degrees of freedom because of structural zeros. Sampling zeros,
although they can lead to infinite parameter estimates, do not subtract from the
total degrees of freedom. See Clarkson and Jennrich (1991), or Baker, Clarke,
and Lane (1985) for details.

Routine CTRAN (page 502) computes generalized Mantel-Haenszel statistics in
stratified r × c tables. Generalized Mantel-Haenszel statistics assume that the
“direction” of departure from the null hypothesis is consistent from one table to
the next. Under this assumption, statistics computed for each table are pooled
across all strata yielding a more powerful test than could be obtained otherwise.
The statistics computed include measures of correlation, location, and
independence using user selected row and/or column scores. Details can be found
in (Koch, Amara, and Atkinson 1983) or in the “Algorithm” section for CTRAN.

The routine CTGLM (page 510) in the fourth section is concerned with
generalized linear models (see McCullagh and Nelder 1983) in discrete data.
This routine may be used to compute estimates and associated statistics in
probit, logistic, minimum extreme value, Poisson, negative binomial (with
known number of successes), and logarithmic models. Classification variables as
well as weights, frequencies and additive constants may be used so that quite
general linear models can be fit. Residuals, a measure of influence, the
coefficient estimates, and other statistics are returned for each model fit. When
infinite parameter estimates are required, extended maximum likelihood
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estimation may be used. Log-linear models may be fit in CTGLM through the use
of Poisson regression models. Results from Poisson regression models involving
structural and sampling zeros will be identical to the results obtained from the
log-linear model routines but will be fit by a quasi-Newton algorithm rather than
through iterative proportional fitting.

The weighted least-squares analysis of Grizzle, Starmer, and Koch (1969) is
implemented in routine CTWLS (page 526). In this routine, the user first
transforms the observed probability estimates (in predefined ways) and then fits a
linear model to the transformed estimates using generalized least squares.
Multivariate hypotheses associated with the coefficient estimates for the linear
model fit may then be tested. In this way, many statistics of interest such as
generalized Kappa statistics and parameter estimates in logistic models may be
estimated. Of course, the logistic models fit by CTWLS use a generalized least-
squares criterion rather than the maximum likelihood criterion used to compute
the logistic model estimates in CTGLM. The generalized least-squares estimates
will generally differ somewhat from estimates computed via maximum likelihood.

Other Routines

The routines in Chapter 1, “Basic Statistics,” may be used to create the data
structures discussed above. These routines can also create one-dimensional
frequency tables, which may then be used by routine CHIGF (page 584), to
compute chi-squared goodness-of-fit test statistics or with routines VHSTP (page
1074) or HHSTP (page 1078) to prepare histograms. Routines CTRHO (page 339),
TETCC (page 342), BSCAT (page 348), and BSPBS (page 346) may be used to
compute some measures of correlation in two-way contingency tables.

CTTWO/DCTTWO (Single/Double precision)
Perform a chi-squared analysis of a 2 by 2 contingency table.

Usage
CALL CTTWO (TABLE, LDTABL, ICMPT, IPRINT, EXPECT, LDEXPE,
            CHI, LDCHI, CHISQ, STAT, LDSTAT)

Arguments

TABLE — 2 by 2 matrix containing the observed counts in the contingency table.
(Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement of the calling program.   (Input)

ICMPT — Computing option.   (Input)
If ICMPT = 0, all of the values in CHISQ and STAT are computed. ICMPT = 1
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means compute only the first 11 values of CHISQ, and no values of STAT are
computed.

IPRINT — Printing option.   (Input)
IPRINT = 0 means no printing is performed. If IPRINT = 1, printing is
performed.

EXPECT — 3 by 3 matrix containing the expected values of each cell in TABLE

under the null hypothesis of independence, in the first 2 rows and 2 columns, and
the marginal totals in the last row and column.   (Output)

LDEXPE — Leading dimension of EXPECT exactly as specified in the dimension
statement of the calling program.   (Input)

CHI — 3 by 3 matrix containing the contributions to chi-squared for each cell in
TABLE in the first 2 rows and 2 columns.   (Output)
The last row and column contain the total contribution to chi-squared for that row
or column.

LDCHI — Leading dimension of CHI exactly as specified in the dimension
statement of the calling program.   (Input)

CHISQ — Vector of length 15 containing statistics associated with this
contingency table.   (Output)

I CHISQ(I)
1 Pearson chi-squared statistic
2 Probability of a larger Pearson chi-squared
3 Degrees of freedom for chi-squared

4 Likelihood ratio G2 (chi-squared)

5 Probability of a larger G2
6 Yates corrected chi-squared
7 Probability of a larger corrected chi-squared
8 Fisher’s exact test (one tail)
9 Fisher’s exact test (two tail)
10 Exact mean
11 Exact standard deviation

The following statistics are based upon the chi-squared statistic CHISQ(1).

I CHISQ(I)
12 Phi (Φ)
13 The maximum possible Φ
14 Contingency coefficient P
15 The maximum possible contingency coefficient

STAT — 24 by 5 matrix containing statistics associated with this table.   (Output)
Each row of the matrix corresponds to a statistic.
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Row Statistic
1 Gamma
2 Kendall’s τE
3 Stuart’s τF
4 Somers’ D (row)
5 Somers’ D (column)
6 Product moment correlation
7 Spearman rank correlation
8 Goodman and Kruskal τ (row)
9 Goodman and Kruskal τ (column)
10 Uncertainty coefficient U (normed)
11 Uncertainty UU_F (row)
12 Uncertainty UF_U (column)

13 Optimal prediction λ (symmetric)
14 Optimal prediction λU_F (row)

15 Optimal prediction λF_U(column)
16 Optimal prediction

λ r c|
∗  (row)

17 Optimal prediction

λ c r|
∗  (column)

18 Yule’s Q
19 Yule’s Y
20 Crossproduct ratio
21 Log of crossproduct ratio
22 Test for linear trend
23 Kappa
24 McNemar test of symmetry

If a statistic is not computed, its value is reported as NaN (not a number). The
columns are as follows:

Column Statistic

1 Estimated statistic
2 Its estimated standard error for any parameter value
3 Its estimated standard error under the null hypothesis
4 z-score for testing the null hypothesis
5 p-value for the test in column 4

In the McNemar test, column 1 contains the statistic, column 2 contains the chi-
squared degrees of freedom, column 4 contains the exact p-value, and column 5
contains the chi-squared asymptotic p-value.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement of the calling program.   (Input)
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Comments

Informational errors
Type Code
   4    8 At least one marginal total is zero. The remainder of the

analysis cannot proceed.
   3    9 Some expected table values are less than 1.0. Some asymptotic

p-values may not be good.
   3  10 Some expected table values are less than 2.0. Some asymptotic

p-values may not be good.
   3  11 20% of the table expected values are less than 5.

Algorithm

Routine CTTWO computes statistics associated with 2 × 2 contingency tables.
Always computed are chi-squared tests of independence, expected values based
upon the independence assumption, contributions to chi-squared in a test of
independence, and row and column marginal totals. Optionally, when ICMPT = 0,
CTTWO can compute some measures of association, correlation, prediction,
uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and
the log odds ratio, and the Kappa statistic.

Other IMSL routines that may be of interest include TETCC (page 342) in Chapter
3 (for computing the tetrachoric correlation coefficient) and CTCHI (page 446) in
this chapter (for computing statistics in other than 2 × 2 contingency tables).

Notation

Let xLM denote the observed cell frequency in the ij cell of the table and n denote
the total count in the table. Let pLM = pL�p�M denote the predicted cell probabilities
(under the null hypothesis of independence) where pL� and p�M are the row and
column relative marginal frequencies, respectively. Next, compute the expected
cell counts as eLM = n pLM.

Also required in the following are aXY and bXY, u, v = 1, …, n. Let (rV, cV) denote

the row and column response of observation s. Then, aXY = 1, 0, or −1, depending
upon whether rX < rY, rX = rY, or rX > rY, respectively. The bXY are similarly
defined in terms of the cV’s.

The Chi-squared Statistics

For each cell of the four cells in the table, the contribution to chi-squared is given

as (xLM − eLM)2/eLM. The Pearson chi-squared statistic (denoted is χ2) is computed as
the sum of the cell contributions to chi-squared. It has, of course, 1 degree of
freedom and tests the null hypothesis of independence, i.e., of H0 : pLM = pL�p�M.
Reject the null hypothesis if the computed value of χ2 is too large.

Compute G2, the maximum likelihood equivalent of χ2, as
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− ∑2 0. ln ( / )
,

x x npij ij ij
i j

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi and the Contingency
Coefficient)

Two measures related to chi-squared but which do not depend upon sample size
are phi,

φ χ= 2 / n

and the contingency coefficient,

P n= +χ χ2 2/ ( )

Since these statistics do not depend upon sample size and are large when the
hypothesis of independence is rejected, they may be thought of as measures of
association and may be compared across tables with different sized samples.
While P has a range between 0.0 and 1.0 for any given table, the upper bound of
P is actually somewhat less than 1.0 (see Kendall and Stuart 1979, page 577). In
order to understand association within a table, consider also the maximum
possible P(CHISQ(15)) and the maximum possible φ(CHISQ(13)). The

significance of both statistics is the same as that of the χ2 statistic, CHISQ(1).

The distribution of the χ2 statistic in finite samples approximates a chi-squared

distribution. To compute the expected mean and standard deviation of the χ2
statistic, Haldane (1939) uses the multinomial distribution with fixed table
marginals. The exact mean and standard deviation generally differ little from the
mean and standard deviation of the associated chi-squared distribution.

Fisher’s exact test

Fisher’s exact test is a conservative but uniformly most powerful unbiased test of
equal row (or column) cell probabilities in the 2 × 2 table. In this test, the row and
column marginals are assumed fixed, and the hypergeometric distribution is used
to obtain the significance level of the test. A one- or a two-sided test is possible.
See Kendall and Stuart (1979, page 582) for a discussion.

Standard Errors and p-values for Some Measures of Association

In rows 1 through 7 of STAT, estimated standard errors and asymptotic p-values
are reported. Routine CTTWO computes these standard errors in two ways. The
first estimate, in column 2 of matrix STAT, is asymptotically valid for any value of
the statistic. The second estimate, in column 3 of STAT, is only correct under the
null hypothesis of no association. The z-scores in column 4 are computed using
this second estimate of the standard errors, and the p-values in column 5
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are computed from these z-scores. See Brown and Benedetti (1977) for a
discussion and formulas for the standard errors in column 3.

Measures of Association for Ranked Rows and Columns

The measures of association φ and P do not require any ordering of the row and
column categories. Routine CTTWO also computes several measures of association
for tables in which the rows and column categories correspond to ranked
observations. Two of these measures, the product-moment correlation and the
Spearman correlation, are correlation coefficients that are computed using
assigned scores for the row and column categories. In the product-moment
correlation, this score is the cell index, while in the Spearman rank correlation,
this score is the average of the tied ranks of the row or column marginals. Other
scores are possible.

Other measures of associations, Gamma, Kendall’s τE, Stuart’s τF and Somers’ D,
are also computed similarly to a correlation coefficient in that the numerator in
these statistics in some sense is a “covariance.” In fact, these measures differ only
in their denominators, their numerators being the “covariance” between the aXY’s
and the bXY’s defined earlier. The numerator is computed as

a buv uv
vu
∑∑

Since the product aXYbXY = 1 if both aXY and bXY are 1 or −1, it is easy to show that
the “covariance” is twice the total number of agreements minus the number
disagreements between the row and column variables where a disagreement
occurs when aXYbXY = −1.

Kendall’s τE is computed as the correlation between the aXY’s and the bXY’s (see
Kendall and Stuart 1979, page 583). Stuart suggested a modification to the
denominator of τ in which the denominator becomes the largest possible value of

the “covariance.” This value turns out to be approximately 2n2in 2 × 2 tables, and
this is the value used in the denominator of Stuart’s τF. For large n, τF ≈ 2τE.

Gamma can be motivated in a slightly different manner. Because the “covariance”
of the aXY’s and the bXY’s can be thought of as two times the number of

agreements minus the number of disagreements [2(A − D), where A is the number
of agreements and D is the number of disagreements], gamma is motivated as the
probability of agreement minus the probability of disagreement, given that either
agreement or disagreement occurred. This is just
(A − D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for
columns. Somers’ D for rows can be thought of as the regression coefficient for
predicting aXY from bXY. Moreover, Somers’ D for rows is the probability of
agreement minus the probability of disagreement, given that the column variable,
bXY, is not zero. Somers’ D for columns is defined in a similar manner.
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A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, starting on page 592).

The crossproduct ratio is also sometimes thought of as a measure of association
(see Bishop, Feinberg and Holland 1975, page 14). It is computed as:

p p

p p
11 22

12 21

⋅
⋅

The log of the crossproduct ratio is the log of this quantity.

The Yule’s Q and Yule’s Y are related to the cross product ratio. They are
computed as:

Q
p p p p

p p p p

Y
p p p p

p p p p

=
⋅ − ⋅
⋅ + ⋅

=
⋅ − ⋅
⋅ + ⋅

11 22 12 21

11 22 12 21

11 22 12 21

11 22 12 21

Measures of Prediction and Uncertainty

The Optimal Prediction Coefficients

The measures in this section do not require any ordering of the row or column
variables. They are based entirely upon probabilities. Most are discussed in
Bishop, Feinberg, and Holland (1975, page 385).

Consider predicting or classifying the column variable for a given value of the
row variable. The best classification for each row under the null hypothesis of
independence is the column that has the highest marginal probability (and thus the
highest probability for the row under the independence assumption). The
probability of misclassification is then one minus this marginal probability. On
the other hand, if independence is not assumed so that the row and columns
variables are dependent, then within each row one would classify the column
variables according to the category with the highest row conditional probability.
The probability of misclassification for the row is then one minus this conditional
probability.

Define the optimal prediction coefficient λF_U for predicting columns from rows as
the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by:

λ c r
m i im

m

p p

p
=

− − − ∑
−

•

•

( ) ( )1 1

1

where m is the index of the maximum estimated probability in the row (pLP) or
row margin (p�P). A similar coefficient is defined for predicting the rows from the

columns. The symmetric version of the optimal prediction λ is obtained by
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summing the numerators and denominators of λU_F and λF_U and dividing. Standard
errors for these coefficients are given in Bishop, Feinberg, and Holland (1975,
page 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct for this is to use row conditional

probabilities. The optimal prediction λ* coefficients are defined as the
corresponding λ coefficients in which one first adjusts the row (or column)
marginals to the same number of observations. This yields

λ c r

i j j i j i j i

j i j i

p p

R p
∗ =

∑ − ∑

− ∑

max max ( )

max

where i indexes the rows and j indexes the columns, and pM_L is the (estimated)
probability of column j given row i.

λ r c
∗

is similarly defined.

Goodman and Kruskal τ

A second kind of prediction measure attempts to explain the proportion of the
explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows to be

n x ni
i

/ ( ) / ( )2 22− •∑
This is 1/(2n) times the sums of squares of the aXY’s.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, define the total
variation for the rows within column j as

q x x xj j ij
i

i= −
�
��

�
��• •∑/ /2 22 1 6

Define the total variation for rows within columns as the sum of the qM’s.
Consistent with the usual methods in the analysis of variance, the reduction in the
total variation is the difference between the total variation for rows and the total
variation for rows within the columns.

Goodman and Kruskal’s τ columns is similarly defined. See Bishop, Feinberg,
and Holland (1975, page 391) for the standard errors.
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The Uncertainty Coefficients

The uncertainty coefficient for rows is the increase in the log-likelihood that is
achieved by the most general model over the independence model divided by the
marginal log-likelihood for the rows. This is given by

U
x x x nx

x x nr c
i j ij i j ij

i i i
|

, log /

log /
=

∑
• •

• •

Σ 3 84 9
1 6

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as UU_F and UF_U but averages
the denominators of these two statistics. Standard errors for U are given in Brown
(1983).

Kruskal-Wallis

The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test
that assumes that the column variable is monotonically ordered. It tests the null
hypothesis that the row populations are identical, using average ranks for the
column variable. This amounts to a test of HR : p1� = p2�. The Kruskal-Wallis
statistic for columns is similarly defined. Conover (1980) discusses the Kruskal-
Wallis test.

Test for Linear Trend

The test for a linear trend in the column probabilities assumes that the row
variable is monotonically ordered. In this test, the probability for column 1 is
predicted by the row index using weighted simple linear regression. The slope is
given by

$
/ /

β =
∑ − −

∑ −

• • •

•

j j j j

j j

x x x x n j j

x j j

1 1

2

3 82 7
2 7

where

j x j nj j= ∑ • /

is the average row index. An asymptotic test that the slope is zero may be
obtained as the usual large sample regression test of zero slope.

Kappa

Kappa is a measure of agreement. In the Kappa statistic, the rows and columns
correspond to the responses of two judges. The judges agree along the diagonal
and disagree off the diagonal. Let pR = p11+ p22 denote the probability that the two
judges agree, and let pF= p1�p�1 + p2�p�2 denote the expected probability of
agreement under the independence model. Kappa is then given by
(pR − pF)/(1 − pF).
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McNemar Test

The McNemar test is also a test of symmetry in square contingency tables. It tests
the null hypothesis HR : θLM = θML. The test statistic with 1 degree of freedom is
computed as

x x

x x

ij ji

ij jii j

−

+<
∑

3 8
3 8

2

Its exact probability may be computed via the binomial distribution.

Example

The following example from Kendall and Stuart (1979, pages 582-583) compares
the teeth in breast-fed versus bottle-fed babies.

      INTEGER    ICMPT, IPRINT, LDCHI, LDEXPE, LDSTAT, LDTABL
      PARAMETER  (ICMPT=0, IPRINT=1, LDCHI=3, LDEXPE=3, LDSTAT=24,
     &           LDTABL=2)
C
      REAL       CHI(LDCHI,3), CHISQ(15), EXPECT(LDEXPE,3),
     &           STAT(LDSTAT,5), TABLE(LDTABL,2)
      EXTERNAL   CTTWO
C
      DATA TABLE/4, 1, 16, 21/
C
      CALL CTTWO (TABLE, LDTABL, ICMPT, IPRINT, EXPECT, LDEXPE, CHI,
     &            LDCHI, CHISQ, STAT, LDSTAT)
      END

Output
       TABLE
         1       2
 1    4.00   16.00
 2    1.00   21.00

                Expected values
                Col 1       Col 2    Marginal
 Row 1         2.3810     17.6190     20.0000
 Row 2         2.6190     19.3810     22.0000
 Marginal      5.0000     37.0000     42.0000

       Contributions to chi-squared
             Col 1       Col 2       Total
 Row 1      1.1010      0.1488      1.2497
 Row 2      1.0009      0.1353      1.1361
 Total      2.1018      0.2840      2.3858

              CHISQ
                               1
 Pearson chi-squared      2.3858
 p-value                  0.1224
 Degrees of freedom       1.0000
 Likelihood ratio         2.5099
 p-value                  0.1131
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 Yates chi-squared        1.1398
 p-value                  0.2857
 Fisher (one tail)        0.1435
 Fisher (two tail)        0.1745
 Exact mean               1.0244
 Exact std dev            1.3267
 Phi                      0.2383
 Max possible phi         0.3855
 Contingency coef.        0.2318
 Max possible coef.       0.3597

                                    STAT
                  Statistic    Std err.  Std err. 0     t-value     p-value
Gamma                0.6800      0.3135      0.4395      1.5472      0.1218
Kendall’s tau B      0.2383      0.1347      0.1540      1.5472      0.1218
Stuart’s tau C       0.1542      0.0997         NaN      1.5472      0.1218
Somers’ D row        0.1545      0.0999      0.0999      1.5472      0.1218
Somers’ D col        0.3676      0.1966      0.2376      1.5472      0.1218
Correlation          0.2383      0.1347      0.1540      1.5472      0.1218
Spearman rank        0.2383      0.1347      0.1540      1.5472      0.1218
GK tau row           0.0568      0.0641         NaN         NaN         NaN
GK tau col           0.0568      0.0609         NaN         NaN         NaN
U normed             0.0565      0.0661         NaN         NaN         NaN
U row                0.0819      0.0935         NaN         NaN         NaN
U col                0.0432      0.0516         NaN         NaN         NaN
Lamda sym            0.1200      0.0779         NaN         NaN         NaN
Lamda row            0.0000      0.0000         NaN         NaN         NaN
Lamda col            0.1500      0.1031         NaN         NaN         NaN
Lamda star row       0.0000      0.0000         NaN         NaN         NaN
Lamda star col       0.1761      0.1978         NaN         NaN         NaN
Yule’s Q             0.6800      0.3135      0.4770      1.4255      0.1540
Yule’s Y             0.3923      0.2467      0.2385      1.6450      0.1000
Ratio                5.2500         NaN         NaN         NaN         NaN
Log ratio            1.6582      1.1662      0.9540      1.7381      0.0822
Linear trend        -0.1545      0.1001         NaN     -1.5446      0.1224
Kappa                0.1600      0.1572      0.1600      1.0000      0.3173
McNemar             13.2353      1.0000         NaN      0.0000      0.0003
*** WARNING  ERROR 11 from CTTWO.  Twenty percent of the table expected
***          values are less than 5.0.

CTCHI/DCTCHI (Single/Double precision)
Perform a chi-squared analysis of a two-way contingency table.

Usage
CALL CTCHI (NROW, NCOL, TABLE, LDTABL, ICMPT, IPRINT,
            EXPECT, LDEXPE, CHI, LDCHI, CHISQ, STAT,
            LDSTAT)

Arguments

NROW — Number of rows in the table.   (Input)

NCOL — Number of columns in the table.   (Input)
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TABLE — NROW by NCOL matrix containing the observed counts in the
contingency table.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement of the calling program.   (Input)

ICMPT — Computing option.   (Input)
If ICMPT = 0, all of the values in CHISQ and STAT are computed. ICMPT = 1
means compute only the first 5 values of CHISQ and none of the values in STAT.
(All values not computed are set to NaN (not a number).

IPRINT — Printing option.   (Input)
IPRINT = 0 means no printing is performed. If IPRINT = 1, printing is
performed.

EXPECT — (NROW + 1) by (NCOL + 1) matrix containing the expected values of
each cell in TABLE, under the null hypothesis, in the first NROW rows and NCOL
columns and the marginal totals in the last row and column.   (Output)

LDEXPE — Leading dimension of EXPECT exactly as specified in the dimension
statement in the calling program.   (Input)

CHI — (NROW +1) by (NCOL +1) matrix containing the contributions to chi-
squared for each cell in TABLE in the first NROW rows and NCOL columns.
(Output)
The last row and column contain the total contribution to chi-squared for that row
or column.

LDCHI — Leading dimension of CHI exactly as specified in the dimension
statement in the calling program.   (Input)

CHISQ — Vector of length 10 containing chi-squared statistics associated with
this contingency table.   (Output)

I CHISQ(I)
1 Pearson chi-squared statistic
2 Probability of a larger Pearson chi-squared
3 Degrees of freedom for chi-squared

4 Likelihood ratio G2 (chi-squared)

5 Probability of a larger G2
6 Exact mean
7 Exact standard deviation

The following statistics are based upon the chi-squared statistic CHISQ(1). If
ICMPT = 1, NaN (not a number) is reported.

I CHISQ(I)
8 Phi
9 Contingency coefficient
10 Cramer’s V
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STAT — 23 by 5 matrix containing statistics associated with this table.   (Output)
If ICMPT = 1, STAT is not referenced and may be a vector of length 1. Each row
of the matrix corresponds to a statistic.

Row Statistic
1 Gamma
2 Kendall’s τE
3 Stuart’s τF
4 Somers’ D for rows given columns
5 Somers’ D for columns given rows
6 Product moment correlation
7 Spearman rank correlation
8 Goodman and Kruskal τ for rows given columns
9 Goodman and Kruskal τ for columns given rows
10 Uncertainty coefficient U (symmetric)
11 Uncertainty UU_F (rows)
12 Uncertainty UF_U (columns)

13 Optimal prediction λ (symmetric)
14 Optimal prediction λU_F (rows)

15 Optimal prediction λF_U (columns)
16 Optimal prediction

λ r c
∗  (rows)

17 Optimal prediction

λ c r
∗  (columns)

18 Test for linear trend in row probabilities if NROW= 2. If NROW is not 2, a
test for linear trend in column probabilities if NCOL= 2.

19 Kruskal-Wallis test for no row effect
20 Kruskal-Wallis test for no column effect
21 Kappa (square tables only)
22 McNemar test of symmetry (square tables only)
23 McNemar one degree of freedom test of symmetry (square tables only)

If a statistic cannot be computed, its value is reported as NaN (not a number). The
columns are as follows:

Column Statistic
1 The estimated statistic
2 Its standard error for any parameter value
3 Its standard error under the null hypothesis
4 The t value for testing the null hypothesis
5 p-value of the test in column 4

In the McNemar tests, column 1 contains the statistic, column 2 contains the chi-
squared degrees of freedom, column 4 contains the exact p-value (one degree
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of freedom only), and column 5 contains the chi-squared asymptotic p-value. The
Kruskal-Wallis test is the same except no exact p-value is computed.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

Informational errors
Type Code
   3    1 Twenty percent of the expected values are less than 5.
   3    2 The degrees of freedom for chi-squared are greater than 30.

The exact mean, standard deviation, and normal distribution
function should be used.

   3    3 Some expected values are less than 2. Some asymptotic
p-values may not be good.

   3    4 Some expected values are less than 1. Some asymptotic
p-values may not be good.

Algorithm

Routine CTCHI computes statistics associated with an r × c (NROW × NCOL)
contingency table. The routine CTCHI always computes the chi-squared test of
independence, expected values, contributions to chi-squared, and row and column
marginal totals. Optionally, when ICMPT = 0, CTCHI can compute some measures
of association, correlation, prediction, uncertainty, the McNemar test for
symmetry, a test for linear trend, the odds and the log odds ratio, and the Kappa
statistic.

Other IMSL routines that may be of interest include TETCC (page 342) in Chapter
3, for computing the tetrachoric correlation coefficient, CTTWO (page 436), for
computing statistics in a 2 × 2 contingency table, and CTPRB (page 456), for
computing the exact probability of an r × c contingency table.

Notation

Let xLM denote the observed cell frequency in the LM cell of the table and n denote
the total count in the table. Let pLM = pL�p�M denote the predicted cell probabilities
under the null hypothesis of independence where pL� and p�M are the row and
column marginal relative frequencies, respectively. Next, compute the expected
cell counts as eLM = n pLM.

Also required in the following are aXY and bXY, u, v = 1, …, n. Let (rV, cV) denote

the row and column response of observation s. Then, aXY = 1, 0, or −1, depending
upon whether rX< rY, rX = rY, or rX > rY, respectively. The bXY are similarly defined
in terms of the cV’s.
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The Chi-squared Statistics

For each cell in the table, the contribution to χ2 is given as (xLM − eLM)2/eLM. The

Pearson chi-squared statistic (denoted χ2) is computed as the sum of the cell
contributions to chi-squared. It has
(r − 1)(c − 1) degrees of freedom and tests the null hypothesis of independence,
i.e., that H0 : pLM = pL�p�M. The null hypothesis is rejected if the computed value of 

χ2 is too large.

Compute G2, the maximum likelihood equivalent of χ2, as

G x x npij ij ij
i j

2 2= − ∑ ln( / )
,

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and
Cramer’s V )

Three measures related to chi-squared but that do not depend upon the sample
size are

phi,

φ χ= 2 / n

the contingency coefficient,

P n= +χ χ2 2/ ( )

and Cramer’s V,

V n r c= χ2 / ( min , )0 5
Since these statistics do not depend upon sample size and are large when the
hypothesis of independence is rejected, they may be thought of as measures of
association and may be compared across tables with different sized samples.
While both P and V have a range between 0.0 and 1.0, the upper bound of P is
actually somewhat less than 1.0 for any given table (see Kendall and Stuart 1979,

page 587). The significance of all three statistics is the same as that of the χ2
statistic, CHISQ(1).

The distribution of the χ2 statistic in finite samples approximates a chi-squared

distribution. To compute the exact mean and standard deviation of the χ2 statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The
exact mean and standard deviation generally differ little from the mean and
standard deviation of the associated chi-squared distribution.
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Standard Errors and p-values For Some Measures of Association

In rows 1 through 7 of STAT, estimated standard errors and asymptotic p-values
are reported. Estimates of the standard errors are computed in two ways. The first
estimate, in column 2 of matrix STAT, is asymptotically valid for any value of the
statistic. The second estimate, in column 3 of the matrix, is only correct under the
null hypothesis of no association. The z-scores in column 4 of matrix STAT are
computed using this second estimate of the standard errors. The p-values in
column 5 are computed from this z-score. See Brown and Benedetti (1977) for a
discussion and formulas for the standard errors in column 3.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row
and column categories. Routine CTCHI also computes several measures of
association for tables in which the rows and column categories correspond to
ranked observations. Two of these tests, the product-moment correlation and the
Spearman correlation, are correlation coefficients computed using assigned scores
for the row and column categories. The cell indices are used for the product-
moment correlation while the average of the tied ranks of the row and column
marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τE, Stuart’s τF, and Somers’ D are measures of association that
are computed like a correlation coefficient in the numerator. In all of these
measures, the numerator is computed as the “covariance” between the aXY’s and
bXY’s defined above, i.e., as

a buv uv
vu
∑∑

Recall that aXY and bXY can take values −1, 0, or 1. Since the product aXYbXY = 1

only if aXY and bXY are both 1 or are both −1, it is easy to show that this
“covariance” is twice the total number of agreements minus the number of
disagreements where a disagreement occurs when aXYbXY = −1.

Kendall’s τE is computed as the correlation between the aXY’s and the bXY’s (see

Kendall and Stuart 1979, page 593). In a rectangular table (r  ≠ c), Kendall’s τE
cannot be 1.0 (if all marginal totals are positive). For this reason, Stuart suggested
a modification to the denominator of τ in which the denominator becomes the
largest possible value of the “covariance.” This maximizing value is

approximately n2m/(m − 1), where m = min(r, c). Stuart’s τF uses this approximate

value in its denominator. For large n, τF ≈ mτE/(m − 1).

Gamma can be motivated in a slightly different manner. Because the
“covariance” of the aXY’s and the bXY’s can be thought of as twice the number of

agreements minus the disagreements, (2(A − D), where A is the number of
agreements and D is the number of disagreements), gamma is motivated as the
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probability of agreement minus the probability of disagreement, given that either
agreement or disagreement occurred. This is just γ = (A − D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for
columns. Somers’ D for rows can be thought of as the regression coefficient for
predicting aXY from bXY. Moreover, Somers’ D for rows is the probability of
agreement minus the probability of disagreement, given that the column variable,
bXY, is not zero. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, starting on page 592).

Measures of Prediction and Uncertainty

The Optimal Prediction Coefficients

The measures in this section do not require any ordering of the row or column
variables. They are based entirely upon probabilities. Most are discussed in
Bishop, Feinberg, and Holland (1975, page 385).

Consider predicting (or classifying) the column for a given row in the table.
Under the null hypothesis of independence, one would choose the column with
the highest column marginal probability for all rows. In this case, the probability
of misclassification for any row is one minus this marginal probability. If
independence is not assumed, then within each row one would choose the column
with the highest row conditional probability, and the probability of
misclassification for the row becomes one minus this conditional probability.

Define the optimal prediction coefficient λF_U for predicting columns from rows as
the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by

λ c r
m i im

m

p p

p
=

− − − ∑
−

•

•

( ) ( )1 1

1

where m is the index of the maximum estimated probability in the row (pLP) or
row margin (p�P). A similar coefficient is defined for predicting the rows from the

columns. The symmetric version of the optimal prediction λ is obtained by
summing the numerators and denominators of λU_F and λF_U and by dividing.
Standard errors for these coefficients are given in Bishop, Feinberg, and Holland
(1975, page 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct for this is to use row conditional

probabilities. The optimal prediction λ* coefficients are defined as the
corresponding λ coefficients in which one first adjusts the row (or column)
marginals to the same number of observations. This yields



IMSL STAT/LIBRARY Chapter 5: Categorical and Discrete Data Analysis • 453

λ c r

i j j i j i j i

j i j i

p p

R p
*

max max ( )

max
=

∑ − ∑

− ∑

where i indexes the rows, j indexes the columns, and pM_L is the (estimated)
probability of column j given row i.

λ r c
*

is similarly defined.

Goodman and Kruskal τ
A second kind of prediction measure attempts to explain the proportion of the
explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows to be

n x ni
i

/ ( ) / ( )2 22− •∑
Note that this is 1/(2n) times the sums of squares of the aXY’s.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns, divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, note that the total
variation for the rows within column j is defined as

q x x xj j ij i
i

= −• •∑/ ( ) / ( )2 22

The total variation for rows within columns is the sum of the qM’s. Consistent with
the usual methods in the analysis of variance, the reduction in the total variation is
given as the difference between the total variation for rows and the total variation
for rows within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop, Feinberg,
and Holland (1975, page 391) for the standard errors.

The Uncertainty Coefficients

The uncertainty coefficient for rows is the increase in the log-likelihood that is
achieved by the most general model over the independence model, divided by the
marginal log-likelihood for the rows. This is given by

U
x x x nx

x x nr c
i j ij i j ij

i i i
=

∑
∑

• •

• •

, log( / ( ))

/ )log(

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as UU_F and UF_U but averages
the denominators of these two statistics. Standard errors for U are given in Brown
(1983).
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Kruskal-Wallis

The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test
that assumes the column variable is monotonically ordered. It tests the null
hypothesis that no row populations are identical, using average ranks for the
column variable. The Kruskal-Wallis statistic for columns is similarly defined.
Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend

When there are two rows, it is possible to test for a linear trend in the row
probabilities if one assumes that the column variable is monotonically ordered. In
this test, the probabities for row 1 are predicted by the column index using
weighted simple linear regression. This slope is given by

$ ( / / )( )

( )
β =

∑ − −

∑ −
• • •

•

j j j j

j j

x x x x n j j

x j j

1 1
2

where

j x j nj j= ∑ • /

is the average column index. An asymptotic test that the slope is zero may then be
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.

Kappa

Kappa is a measure of agreement computed on square tables only. In the Kappa
statistic, the rows and columns correspond to the responses of two judges. The
judges agree along the diagonal and disagree off the diagonal. Let

p x no i ii= ∑ /

denote the probability that the two judges agree, and let

p e nc i ii= ∑ /

denote the expected probability of agreement under the independence model.
Kappa is then given by (pR − pF)/(1 − pF).

McNemar Tests

The McNemar test is a test of symmetry in a square contingency table, that is, it is
a test of the null hypothesis HR : θLM = θML. The multiple-degrees-of-freedom

version of the McNemar test with r(r − 1)/2 degrees of freedom is computed as

( )

( )

x x

x x
ij ji

ij jii j

−
+<

∑
2
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The single-degree-of-freedom test assumes that the differences xLM − xML are all in
one direction. The single-degree-of-freedom test will be more powerful than the
multiple-degrees-of-freedom test when this is the case. The test statistic is given
as

( ( ))

( )

∑ −
∑ +

<

<

i j ij ji

i j ij ji

x x

x x

2

Its exact probability may be computed via the binomial distribution.

Example

The following example is taken from Kendall and Stuart (1979). It involves the
distance vision in the right and left eyes, and especially illustrates the use of
Kappa and McNemar tests. Most other test statistics are also computed.

      INTEGER    ICMPT, IPRINT, LDCHI, LDEXPE, LDSTAT, LDTABL, NCOL,
     &           NROW
      PARAMETER  (ICMPT=0, IPRINT=1, LDCHI=5, LDEXPE=5, LDSTAT=23,
     &           LDTABL=4, NCOL=4, NROW=4)
C
      REAL       CHI(NROW+1,NCOL+1), CHISQ(10), EXPECT(NROW+1,NCOL+1),
     &           STAT(LDSTAT,5), TABLE(NROW,NCOL)
      EXTERNAL   CTCHI
C
      DATA TABLE/821, 116, 72, 43, 112, 494, 151, 34, 85, 145, 583,
     &     106, 35, 27, 87, 331/
C
      CALL CTCHI (NROW, NCOL, TABLE, LDTABL, ICMPT, IPRINT, EXPECT,
     &            LDEXPE, CHI, LDCHI, CHISQ, STAT, LDSTAT)
      END

Output
           Table Values
         1       2       3       4
 1   821.0   112.0    85.0    35.0
 2   116.0   494.0   145.0    27.0
 3    72.0   151.0   583.0    87.0
 4    43.0    34.0   106.0   331.0

                        Expected Values
        row totals in column 5, column totals in row 5
             1           2           3           4           5
 1      341.69      256.92      298.49      155.90     1053.00
 2      253.75      190.80      221.67      115.78      782.00
 3      289.77      217.88      253.14      132.21      893.00
 4      166.79      125.41      145.70       76.10      514.00
 5     1052.00      791.00      919.00      480.00     3242.00

                  Contibutions to Chi-squared
        row totals in column 5, column totals in row 5
             1           2           3           4           5
 1      672.36       81.74      152.70       93.76     1000.56
 2       74.78      481.84       26.52       68.08      651.21
 3      163.66       20.53      429.85       15.46      629.50
 4       91.87       66.63       10.82      853.78     1023.10
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 5     1002.68      650.73      619.88     1031.08     3304.37

   Chi-square Statistics
 Pearson        3304.3682
 p-value           0.0000
 DF                9.0000
 G**2           2781.0188
 p-value           0.0000
 Exact mean        9.0028
 Exact std.        4.2402
 Phi               1.0096
 P                 0.7105
 Cramer’s V        0.5829

                             Table Statistics
                             standard  std. error     t-value
                statistic       error    under Ho  testing Ho     p-value
 Gamma             0.7757      0.0123      0.0149       52.19      0.0000
 Tau B             0.6429      0.0122      0.0123       52.19      0.0000
 Tau C             0.6293      0.0121         NaN       52.19      0.0000
 D-Row             0.6418      0.0122      0.0123       52.19      0.0000
 D-Column          0.6439      0.0122      0.0123       52.19      0.0000
 Correlation       0.6926      0.0128      0.0172       40.27      0.0000
 Spearman          0.6939      0.0127      0.0127       54.66      0.0000
 GK tau rows       0.3420      0.0123         NaN         NaN         NaN
 GK tau col.       0.3430      0.0122         NaN         NaN         NaN
 U - Sym.          0.3171      0.0110         NaN         NaN         NaN
 U - rows          0.3178      0.0110         NaN         NaN         NaN
 U - cols.         0.3164      0.0110         NaN         NaN         NaN
 Lambda-sym.       0.5373      0.0124         NaN         NaN         NaN
 Lambda-row        0.5374      0.0126         NaN         NaN         NaN
 Lambda-col.       0.5372      0.0126         NaN         NaN         NaN
 l-star-rows       0.5506      0.0136         NaN         NaN         NaN
 l-star-col.       0.5636      0.0127         NaN         NaN         NaN
 Lin. trend           NaN         NaN         NaN         NaN         NaN
 Kruskal row    1561.4861      3.0000         NaN         NaN      0.0000
 Kruskal col    1563.0300      3.0000         NaN         NaN      0.0000
 Kappa             0.5744      0.0111      0.0106       54.36      0.0000
 McNemar           4.7625      6.0000         NaN         NaN      0.5746
 McNemar df=1      0.9487      1.0000         NaN        0.35      0.3301

CTPRB/DCTPRB (Single/Double precision)
Compute exact probabilities in a two-way contingency table.

Usage
CALL CTPRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE, PCHEK)

Arguments

NROW — Number of rows in the contingency table.   (Input)

NCOL — Number of columns in the contingency table.   (Input)
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TABLE — NROW by NCOL matrix containing the contingency table cell
frequencies.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

PRT — Probability of the observed table assuming fixed row and column
marginal totals.   (Output)

PRE — Probability of a more extreme table where “extreme” is taken in the
Neyman-Pearson sense.   (Output)
A table is more extreme if its probability (for fixed marginals) is less than or
equal to PRT.

PCHEK — Sum of the probabilities of all tables with the same marginal totals.
(Output)
PCHEK should be 1.0. Deviation from 1.0 is numerical error.

Comments
1. Automatic workspace usage is

CTPRB (NROW + 2)(NCOL + 2) units, or

DCTPRB (NROW + 2)(NCOL + 2) units.

Workspace may be explicitly provided, if desired, by use of
C2PRB/DC2PRB. The reference is

CALL C2PRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE,
            PCHCK, IWK)

The additional argument is

IWK — Work vector of length (NROW + 2)(NCOL + 2).

2. Informational error
Type Code
   3    1 There are no observed counts in TABLE. PRE, PRT, and

PCHEK are set to NaN (not a number).

3. Routine CTPRB computes a two-tailed Fisher exact probability in 2 by 2
tables. For one-tailed Fisher exact probabilities, use routine CTTWO (page
436).

Algorithm

Routine CTPRB computes exact probabilities for an r × c contingency table for
fixed row and column marginals where r = NROW and c = NCOL. Let fLM denote the
element in row i and column j of a table, and let fL� and f�M denote the row and
column marginals. Under the independence hypothesis, the (conditional)
probability for fixed marginals of a table is given by
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where f�� is the total number of counts in the table and x! denotes x factorial.
When the fLM are obtained from the input table (fLM = TABLE(i, j)), PI = PRT. PRE is
the sum over all more extreme tables of the probability of each table.

In CTPRB, a more extreme table is defined in the probabilistic sense. Table X is
more extreme than the input table if the conditional probability computed for
table X (for the same marginal sums) is less than the conditional probability
computed for the input table. The user should note that this definition of “more
extreme” can be considered as “two-sided” in the cell counts.

Because CTPRB uses total enumeration in computing the probability of a more
extreme table, the amount of computer time required increases very rapidly with
the size of the table. Tables, with either a large total count f�� or in which the
product rc is not small, should not be analyzed with CTPRB. Rather, either the
approximate methods of Agresti, Wackerly, and Boyett (1979) should be used or
algorithms that do not require total enumeration should be used (see Pagano and
Halvorsen [1981], or Mehta and Patel [1983]).

Example

In this example, CTPRB is used to compute the exact conditional probability for a
2 × 2 contingency table. The input table is given as:

8 12

8 2
�
! 

"
$#

      INTEGER    NCOL, NROW, LDTABL
      PARAMETER  (NCOL=2, NROW=2, LDTABL=2)
C
      INTEGER    NOUT
      REAL       PCHEK, PRE, PRT, TABLE(LDTABL,NCOL)
      EXTERNAL   CTPRB, UMACH
C
      DATA TABLE/8, 8, 12, 2/
C
      CALL UMACH (2, NOUT)
C
      CALL CTPRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE, PCHEK)
C
      WRITE(NOUT,’(’’ PRT = ’’, F12.4, /, ’’ PRE = ’’, F12.4, /,
     &      ’’ PCHEK = ’’, F10.4)’)  PRT, PRE, PCHEK
      END

Output
PRT =       0.0390
PRE =       0.0577
PCHEK =     1.0000
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CTEPR/DCTEPR (Single/Double precision)
Compute Fisher’s exact test probability and a hybrid approximation to the Fisher
exact test probability for a contingency table using the network algorithm.

Usage
CALL CTEPR (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT,
            EMIN, PRT, PRE)

Arguments

NROW — The number of rows in the table.   (Input)

NCOL — The number of columns in the table.   (Input)

TABLE — NROW by NCOL matrix containing the contingency table.   (Input)

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

EXPECT — Expected value used in the hybrid approximation to Fisher’s exact
test algorithm for deciding when to use asymptotic probabilities when computing
path lengths.   (Input)
If EXPECT ≤ 0.0, then asymptotic theory probabilities are not used and Fisher
exact test probabilities are computed. Otherwise, asymptotic probabilities are
used in computing path lengths whenever PERCNT or more of the cells in the table
for which path lengths are to be computed have estimated expected values of
EXPECT or more, with no cell having expected value less than EMIN. See the
“Algorithm” section for details. Use EXPECT = 5.0 to obtain the “Cochran”
condition.

PERCNT — Percentage of remaining cells that must have estimated expected
values greater than EXPECT before asymptotic probabilities can be used in
computing path lengths.   (Input)
See argument EXPECT for details. Use PERCNT = 80.0 to obtain the “Cochran”
condition.

EMIN — Minimum cell estimated expected value allowed for asymptotic chi-
squared probabilities to be used.   (Input)
See argument EXPECT for details. Use EMIN = 1.0 to obtain the “Cochran”
condition.

PRT — Probability of the observed table for fixed marginal totals.   (Output)

PRE — Table p-value.   (Output)
PRE is the probability of a more extreme table, where “extreme” is in a
probabilistic sense. If EXPECT < 0, then the Fisher exact probability is returned.
Otherwise, a hybrid approximation to Fisher’s exact probability is computed.
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Comments

1. Automatic workspace usage is

CTEPR MMM − 50 units, or
DCTEPR MMM − 50 units,

where MMM is the total amount of workspace available. Workspace may
be explicitly provided, if desired, by use of C2EPR/DC2EPR. The
reference is

CALL C2EPR (NROW, NCOL, TABLE, LDTABL, EXPECT,
            PERCNT, EMIN, PRT, PRE, FACT, ICO, IRO,
            KYY, IDIF, IRN, KEY, LDKEY, IPOIN, STP,
            LDSTP, IFRQ, DLP, DSP, TM, KEY2, IWK,
            RWK)

The additional arguments are as follows:

FACT — Work vector of length NTOT + 1 where NTOT is the total count
in the table.

ICO — Work vector of length MX where MX = max(NROW, NCOL).

IRO — Work vector of length MX.

KYY — Work vector of length MX.

IDIF — Work vector of length MN where MN = max(NROW, NCOL).

IRN — Work vector of length MN.

KEY — Work vector of length 2 * LDKEY.

LDKEY — Leading dimension of KEY exactly as specified in the
dimension statement in the calling program.   (Input)

IPOIN — Work vector of length 2 * LDKEY.

STP — Work vector of length 2 * LDSTP.

LDSTP — Leading dimension of STP exactly as specified in the
dimension statement in the calling program.   (Input)

IFRQ — Work vector of length 6 * LDSTP.

DLP — Work vector of length 2 * LDKEY.

DSP — Work vector of length 2 * LDKEY.

TM — Work vector of length 2 * LDKEY.

KEY2 — Work vector of length 2 * LDKEY.

IWK — Work vector of length max((NROW + NCOL + 1)(5 + 2 * MX),
800 + 7 * MX).

RWK — Work vector of length max(400 + MX + 1, NROW + NCOL + 1).
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The exact value of LDKEY and LDSTP required is not known in advance.
Common values to try are LDKEY = 1000 and LDSTP = 30000.

2. Informational errors
Type Code
   3    1 All of the elements of TABLE are zero.
   4    2 The product of the marginal totals is greater than can

be exactly represented in an integer variable so the
hash table key cannot be computed. The computations
cannot proceed.

   4    3 LDKEY is too small. To increase LDKEY when invoking
CTEPR/DCTEPR, increase the total workspace used. A
doubling of the total workspace is a good place to
begin.

   4   4 LDSTP is too small. To increase LDSTP when invoking
CTEPR/DCTEPR, increase the total workspace used. A
doubling of the total workspace is a good place to
begin.

   4   5 The current value for IWKIN is too small. It is not
possible to give the value for IWKIN required, but you
might try doubling the amount. Refer to IWKIN in the
Reference Material section.

3. Routine CTEPR/DCTEPR will use all available workspace. It is not
unusual for CTEPR/DCTEPR to require 200,000 floating-point units of
workspace.

4. When C2EPR/DC2EPR is called by CTEPR/DCTEPR, LDSTP = 30 *
LDKEY.

5. Although not a restriction, it is not generally practical to call this routine
with large tables that are not sparse and in which the hybrid
approximation to Fisher’s exact test (see the “Algorithm” section) has
little effect. For example, although it is feasible to compute exact
probabilities for the table

1 8 5 4 4 2 2

5 3 3 4 3 1 0

10 1 4 0 0 0 0

computing exact probabilities for a similar table that has been enlarged
by the addition of an extra row (or column) may not be feasible.

Algorithm

Routine CTEPR computes Fisher exact probabilities or a hybrid algorithm
approximation to Fisher exact probabilities for a r ×  c contingency tables with
fixed row and column marginals where r = NROW is the number of rows in the
table and c = NCOL is the number of columns in the table. Let fLM denote the
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frequency count in row i and column j of a table, and let fL� and f�M denote the total
row and column frequency count for row i and column j, respectively. Under the
independence hypothesis, the (conditional) probability of the observed table for
fixed row and column marginal totals is given by

P
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f f
f
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where f�� is the total number of counts in the table and x! denotes x factorial.
When the fLM are equal to the input table so that fLM = TABLE (i, j), then let
PR = PRT be the resulting value for PI.

In CTEPR, a more extreme table is defined in the probabilistic sense. Table X is
more extreme than the input table if the conditional probability computed for
table X (for the same marginal sums) is less than the conditional probability
computed for the input table. Let p = PRE be the probability of a more extreme
table. Then

p Pf
P P

=
≤
∑

0

The user should note that this definition of “more extreme” can be considered as
“two-sided” in the cell counts.

Routine CTEPR uses the hybrid network algorithm of Mehta and Patel (1983,
1986a, 1986b) with the Clarkson and Fan (1989) modifications to compute the
probability of a more extreme table. The hybrid algorithm uses asymptotic
probabilities for tables encountered in which PERCNT percent of the table
expected values are greater than or equal to EXPECT, and all expected values are
greater than EMIN. When PERCNT = 80, EXPECT = 5, and EMIN = 1, this is the
“Cochran” rule. Although the hybrid network algorithm can be orders of
magnitude faster than the total enumeration algorithm used in routine CTPRB

(page 456), the amount of computer time required by CTEPR still increases very
rapidly with the size of the table. Caution should be used whenever computer time
is a consideration.

Example

In this example, CTEPR is used to compute the hybrid approximation to the Fisher
exact probability for a 3 × 6 contingency table using the Cochran condition.
Because of the large initial counts and the input arguments EXPECT = 5, PERCNT
= 80, and EMIN = 1, the hybrid algorithm significantly reduces the computation
effort in this example. The input table is given as

20 20 0 0 0

10 10 2 2 1

20 20 0 0 0

�

!
   

"

$
###
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      INTEGER    LDTABL, NCOL, NROW
      REAL       EMIN, EXPECT, PERCNT
      PARAMETER  (EMIN=1.0, EXPECT=5.0, NCOL=5, NROW=3, PERCNT=80.0,
     &           LDTABL=NROW)
C
      INTEGER    NOUT
      REAL       PRE, PRT, TABLE(LDTABL,NCOL)
      EXTERNAL   CTEPR, UMACH
C
      DATA TABLE/20.0, 10.0, 20.0, 20.0, 10.0, 20.0, 0.0, 2.0, 0.0,
     &     0.0, 2.0, 0.0, 0.0, 1.0, 0.0/
C
      CALL UMACH (2, NOUT)
C
      CALL CTEPR (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT, EMIN,
     &            PRT, PRE)
C
      WRITE (NOUT,99999) PRT, PRE
C
99999 FORMAT (’ PRT = ’, E12.4, ’  PRE = ’, F8.4)
C
      END

Output
PRT =   0.1915E-04  PRE =   0.0601

For comparison, the usual asymptotic chi-squared p-value (which may be
computed through the use of routine CTCHI (page 446), do not use CTEPR) is
computed as 0.0323, and the Fisher exact probability (which may be computed
through CTEPR by setting EXPECT = 0.0) is computed as 0.0598 and requires
approximately ten times more computer time than the hybrid method. The Fisher
exact probability and the usual asymptotic chi-squared probability will often be
quite different. When it may be used, the hybrid algorithm can lead to
significantly greater savings in computer time.

PRPFT/DPRPFT (Single/Double precision)
Perform iterative proportional fitting of a contingency table using a loglinear
model.

Usage
CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS,
            MAXIT, FIT)

Arguments

NCLVAR — Number of classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)
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TABLE — Vector of length NCLVAL(1) * NCLVAL (2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.

NEF — Number of effects in the model.   (Input)
A marginal table is implied by each effect in the model. Lower order effects
should not be included since their inclusion is automatic (e.g., do not include
effects A or B if effect AB is in the model).

NVEF — Vector of length NEF that contains the number of classification
variables associated with each effect.   (Input)

INDEF — Vector of length NVEF(1) + …+ NVEF(NEF) that contains, in
consecutive positions, the indices of the variables that are included in each effect.
(Input)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the
indices of the variables in effect 1, the next NVEF(2) elements of INDEF contain
the indices of the variables in effect 2, etc. See Comment 4 for an example.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum deviation between an observed and
a fitted marginal total is less than EPS. EPS = 0.10 is a typical value.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 15 is a typical value.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR).
(Input/Output)
On input, FIT contains the initial estimates of the cell counts. Structural zeros in
the model are specified by setting the corresponding element of FIT to 0.0. All
other elements of FIT must be positive. 1.0 may be used if no other estimate of
the cell counts is available. See Comment 3 for the ordering of the elements of
FIT. On output, FIT contains the fitted table.

Comments

1. Automatic workspace usage is

PRPFT NEF + 2 * NCLVAR + (the sum from J = 1 to NEF of the product
of the nonzero elements of NCLVAL(INDEF(I)) for I = 1 to
NVEF(J)) + (the maximum over J = 1 to NEF of the product of
the elements of NCLVAL(INDEF (I)), for I = 1 to NVEF(J))
units, or

DPRPFT NEF + 2 * NCLVAR + 2 * ((the sum from J = 1 to NEF of the
product of the nonzero elements of NCLVAL(INDEF(I)) for
I = 1 to NVEF(J)) + (the maximum over J = 1 to NEF of the
product of the nonzero elements of NCLVAL(INDEF(I)), for I =
1 to NVEF(J))) units.
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Workspace may be explicitly provided, if desired, by use of
P2PFT/DP2PFT. The reference is

CALL P2PFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF,
            EPS, MAXIT, FIT, AMAR, INDEX, WK, IWK)

The additional arguments are as follows.

AMAR — Work vector with length equal to the sum from J = 1 to NEF
of the product of the nonzero elements of NCLVAL(INDEF(I)) for I = 1
to NVEF(J).

INDEX — Work vector of length NEF.

WK — Work vector with length equal to the maximum over J = 1 to
NEF of the product of the nonzero elements of NCLVAL(INDEF(I)), for I
= 1 to NVEF(J).

IWK — Work vector of length 2 * NCLVAR.

2. Informational errors
Type Code
   3  11 The algorithm did not converge to the desired

accuracy within MAXIT iterations.
   4  12 A marginal total for an effect is zero. Since FIT

indicates this is not a structural zero, the algorithm will
not converge properly. One way to proceed is to add a
constant to all cells in the table.

3. The cells of the vectors TABLE and FIT are sequenced so that the first
variable cycles from 1 to NCLVAL(1), which is the slowest, the second
variable cycles from 1 to NCLVAL(2), which is the next slowest, etc., up
to the NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the
fastest.
Example. For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order.
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

4 INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables 1
and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1.

Since the sum of the NVEF(I) is 3, then INDEF is a vector of length 3
with values. INDEF (1) = 1, INDEF(2) = 3, and INDEF(3) = 2.

5. Typically, MAXIT = 5 is sufficient. If PRPFT does not converge, try using
DPRPFT, increasing EPS, increasing MAXIT, or using the values output in
FIT as input for another call to PRPFT/DPRPFT.
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Algorithm

Routine PRPFT uses the iterative proportional-fitting algorithm to fit a log-linear
hierarchical model to a contingency table. Structural zeros are allowed. A
hierarchical model is a factorial model in which lower-order terms are always
present. Thus, in a three-way table with classification variable names A, B, and C,
the following models are all hierarchical models.

A B C AB

A B C AB BC

A C AC

A B C AB AC BC

Many other hierarchical models exist for the three-way table. Since all
hierarchical models can be completely specified by the higher-order interactions
(the lower-order interactions will always be present), no lower-order effects are
included in model specification.

Corresponding to each hierarchical interaction is a marginal table. Iterations in
PRPFT proceed by fitting marginal tables successively until the desired precision
is achieved.

A structural zero is a cell in the table that, by design or otherwise, can have no
observations, i.e., the count for the cell must be zero. Structural zeros are
specified by setting the corresponding element in FIT to zero on input. Routine
PRPFT is best suited for tables with no structural zeros and in which the initial
estimates input in FIT are all 1. The user should be aware that the algorithm may
take (much) longer to converge when this is not the case.

Sampling zeros are cells that are not structural zeros, but for which no count is
observed. Routine PRPFT requires the absence of sampling zeros in all marginal
tables that are fit. One common way method of achieving this is to add a constant,
often 0.5, to each cell prior to fitting the table.

Example

The following example is taken from Bishop, Feinberg, and Holland (1975,
page 87). The data are originally from Bartlett (1935). This example examines the
survival of plants (factor A = factor 2) at different values for time of planting
(factor C = factor 3) and length of cutting (factor B = factor 1). The sample size
for each level of B and C is fixed at 240.

B

1 2

A A
1 2 1 2

C 1 156 84 C 1 84 156

2 107 133 2 31 209
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The model to be fit is given by:

ln(mijk i j ij k ik jk) = + + + + + +µ α β αβ γ αγ βγ

where mLMN is the cell expected value for levels i, j, and k of factors A, B, and C,
respectively.

      INTEGER    NCLVAR, NEF
      PARAMETER  (NCLVAR=3, NEF=3)
C
      INTEGER    INDEF(6), MAXIT, NCLVAL(NCLVAR), NOUT, NVEF(NEF)
      REAL       EPS, FIT(8), TABLE(8)
      EXTERNAL   PRPFT, UMACH
C
      DATA NCLVAL/2, 2, 2/, NVEF/2, 2, 2/
      DATA INDEF/1, 2, 1, 3, 2, 3/, EPS/0.0001/, MAXIT/15/
      DATA TABLE/156, 107, 84, 31, 84, 133, 156, 209/
      DATA FIT/8*1.0/
C
      CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT,
     &            FIT)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) FIT
99999 FORMAT (’ FIT =’, 8F7.1)
      END

Output
FIT =  161.1  101.9   78.9   36.1   78.9  138.1  161.1  203.9

CTLLN/DCTLLN (Single/Double precision)
Compute model estimates and associated statistics for a hierarchical log-linear
model.

Usage
CALL CTLLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS,
            MAXIT, TOL, IPRINT, FIT, NCOEF, COEF, LDCOEF,
            COV, LDCOV, RESID, LDRESI, STAT)

Arguments

NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.
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NEF — Number of effects in the model.   (Input)
A marginal table is implied by each effect in the model. Lower-order effects
should not be included since their inclusion is automatic in the hierarchical
models fit here (e.g., do not include effects A or B if effect AB is in the model).

NVEF — Vector of length NEF containing the number of classification variables
associated with each effect.   (Input)

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) containing, in
consecutive positions, the indices of the variables that are included in each effect.
(Input)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the
indices of the variables in effect 1, the next NVEF(2) elements of INDEF contain
the indices of the variables in effect 2, etc. See Comment 4 for an example.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum deviation between an observed and
a fitted marginal total is less than EPS. EPS = 0.10 is a typical value.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 15 is a typical value.

TOL — Tolerance used in determining linear dependence in COV.   (Input)
For CTLLN, TOL = 100.0 AMACH(4) is a common choice. For DCTLLN,
TOL = 100.0 DMACH(4) is a common choice. See the documentation for routine
AMACH/DMACH (Reference Material).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 TABLE, FIT, RESID, COEF, COV, and STAT are printed.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the model estimates of the cell frequencies.   (Input/Output)
On input, FIT contains the initial estimates of the cell counts. Structural zeros in
the model are specified by setting the corresponding element of FIT to 0.0. All
other elements of FIT may be set to 1.0 if no other estimate of the expected cell
counts is available. On output, FIT contains the fitted table. See Comment 3 for
the ordering of the elements of FIT. If an element of FIT is positive but the
corresponding element in TABLE is zero, then the element is called a sampling
zero. Sampling zeros may effect the number of parameters that can be estimated,
but they will not effect the degrees of freedom in chi-squared tests. See the
“Algorithm” section.

NCOEF — Number of regression coefficients in the model.   (Output)

COEF — NCOEF by 4 matrix containing the estimated coefficients and associated
statistics.   (Output)
Dummy variables used in fitting the log-linear model are generated using the
IDUMMY = 3 option of routine GRGLM (page 210). For this option, the k-th  dummy
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variable for classification variable I is the (0, 1) indicator variable for the k-th level of
the classification variable minus the (0, 1) indicator variable for the NCLVAL(I)-th
level of the classification variable.

Column Statistic
1 Coefficient estimate
2 Estimated standard error of the estimated coefficient
3 Asymptotic normal score for testing that the coefficient is zero
4 p-value associated with the normal score in column 3 (two-sided

alternative).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NCOEF by NCOEF covariance matrix for the estimated parameters.
(Output)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

RESID — NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) by 4 matrix
containing residual statistics for each cell in the table.   (Output)

Column Statistic
1 Signed square root of the contribution to chi-squared
2 Contribution to the likelihood ratio
3 Freeman-Tukey deviate
4 Residual difference

LDRESI — Leading dimension of RESID exactly as specified in the dimension
statement in the calling program.   (Input)

STAT — Vector of length 4 containing output statistics for the model.   (Output)

I STAT(I)
1 Log-likelihood.
2 Likelihood ratio statistic for testing the fit of the model.
3 Degrees of freedom in the likelihood ratio statistic. This statistic corrects

for parameters that cannot be estimated because of sampling zeros.
4 p-value corresponding to the likelihood ratio statistic.

Comments

1. Automatic workspace usage is

CTLLN NEF+ 4 * NCLVAR + 4 * NCOEF+ 2NCLVAR − 1 + NCLVAR *

2NCLVAR-1 + a + b + c + d + e + f + z + 3 units, or

DCTLLN NEF+ 5 * NCLVAR + 8 * NCOEF+ 2NCLVAR − 1 + NCLVAR *

2NCLVAR-1 + a + b + z + 2 * (c + d + e + f) + 5 units, where



470 • Chapter 5: Categorical and Discrete Data Analysis IMSL STAT/LIBRARY

a = NVEF(1) +…+ NVEF(NEF),
b = NCLVAL(1) +…+ NCLVAL(NCLVAR),
c = NCLVAL(1) 2*…* NCLVAL(NCLVAR),
d = the sum over all effects in the model (J = 1 to NEF) of the length of
the marginal table required for the effect,
e = max (g, NCOEF+ 1) if IPRINT = 0, otherwise e = max(g, 6 * m, n)
where m is the maximal element in NCLVAL and n is the length of
TABLE,

f = NCOEF +NCOEF2 if there exists both structural and sampling zeros in
TABLE, otherwise, f = NCLVAR + 1,
g = the maximum over all effects in the model (J = 1 to NEF) of the
length of the marginal table required for the effect,
z = the number of structural zeros in TABLE.

The length of each marginal table is computed as the product of the
number of class values for each classification variable in the effect (the
product of the nonzero elements of NCLVAL(INDEF(I)) where I ranges
from K(J) through K(J) + NVEF(J) − 1. Here, K(1) = 1 and
K(J + 1) = K(J) + NVEF(J).)

Workspace may be explicitly provided, if desired, by use of
C2LLN/DC2LLN. The reference is

CALL C2LLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF,
            EPS, MAXIT, TOL, IPRINT, FIT, NCOEF,
            COEF, LDCOEF, COV, LDCOV, RESID, LDRESI,
            STAT, AMAR, INDEX, NCVEF, IXEF, IINDEF,
            IA, INDCL, CLVAL, REG, X, D, XMIN, XMAX,
            COVWK, WK, IWK)

The additional arguments are as follows.

AMAR — Vector of length equal to the sum over all effects in the model
(J = 1 to NEF) of the length of the marginal table required for the effect.
The length of each marginal table is computed as the product of the
number of class values for each classification variable in the effect (the
product of the nonzero elements of NCLVAL(INDEF(I)) where I ranges
from K(J) through K(J)+ NVEF(J) − 1. Here, K(1) = 1 and K(J + 1) =
K(J) + NVEF(J).)

INDX — Vector of length NEF.

NCVEF — Vector of length 2NCLVAR − 1.

IXEF — Vector of length NCLVAR * 2NCLVAR-1.

IINDEF — Vector of length NVEF(1) + … + NVEF(NEF).

IA — Vector of length NCLVAR.

INDCL — Vector of length NCLVAR.

CLVAL — Vector of length NCLVAL(1) + … + NCLVAL(NCLVAR).
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REG — Vector of length NCOEF + 1.

X — Vector of length NCOEF if there exists both structural structural and
sampling zeros in TABLE; otherwise, it is of length NCLVAR.

D — Vector of length NCOEF + 1.

XMIN — Vector of length NCOEF.

XMAX — Vector of length NCOEF.

COVWK — Vector of length NCOEF2 if there exists both structural and
sampling zeros in TABLE. Otherwise, COVWK is not referenced and can be
dimensioned of length one.

WK — Vector of length max(g, NCOEF + 1) if IPRINT = 0; otherwise,
WK is of length max(g, 6m, n) where m is the maximal element in
NCLVAL, n is the length of TABLE, and g equals the maximum over all
effects in the model (J = 1, NEF) of the length of the marginal table
required for the effect. The length of the marginal table is computed as
the product of the number of class values for each classification variable
in the effect (the product of the nonzero elements of NCLVAL(INDEF(I))
where I ranges from K(J) through
K(J) + NVEF(J) − 1, where K(1) = 1 and K(J + 1) = K(J) + NVEF(J)).

IWK — Vector of length 2 * NCLVAR + z + 1 where z is the number of
structural zeros in TABLE.

2. Informational errors
Type Code
  3    1 The optimization algorithm did not converge to the

desired accuracy within MAXIT iterations. Some of the
estimated statistics may not be accurate.

   3    5 The label for one or more of the tables exceeds the
buffer limit.

   3  11 The label for one or more effects exceeds the buffer
limit.

   4    2 LDCOEF or LDCOV is less than NCOEF.

3. The cells of the vectors TABLE and ZERO are sequenced so that the first
variable cycles from 1 to NCLVAL(1) the slowest, the second variable
cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order.
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables
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1 and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the
NVEF(I) is 3, then INDEF is a vector of length 3 with values: INDEF(1) =
1, INDEF(2) = 3, and INDEF(3) = 2.

Algorithm

Routine CTLLN computes statistics of interest for a hierarchical model in a log-
linear analysis of a multidimensional contingency table. Among the statistics
computed are the expected cell values, cell residuals, the log-linear parameters
and their estimated variances and covariances, the log-likelihood for the model
(plus a constant), and a likelihood-ratio test of the model (versus the alternative
that the cell probabilities are free to vary, subject only to the marginal
constraints). In addition, CTLLN can print and label all statistics that it computes.

Routine PRPFT (page 463) is used to find the maximum likelihood estimates of
the expected cell counts (FIT). These expected values are then used as input to
routine CTPAR (page 476) in order to compute estimates of the parameters in the
model and their estimated covariances.

The matrix RESID contains various residuals that may be used in analyzing the
model. These residuals are discussed in detail by Bishop, Feinberg, and Holland
(1975, pages 136-137), among others. Each is computed from the cell observed
(oL) and expected (fitted, fL) values according to the following methods:

1. The signed square root of the contributions to χ2 are computed as

( ) /o f fi i i−

2. The contributions to the likelihood ratio (G2) are computed as 2oL
log(oL/fL)

3. Freeman-Tukey deviates are computed as

o o fi i i+ + − +1 4 1

4. The residual differences are computed as oL − fL

The log-likelihood STAT(1) is computed as

−
=
∑ o fi i
i

n

log( )
1

where n is the number of cells in the table. The likelihood ratio statistic for testing
the fit of the model is computed as
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which for large samples follows a chi-squared distribution.
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The number of degrees of freedom in G2 is computed as the number of cells in the
table, excluding structural zeros, minus the number of parameters that could be
estimated if there were no sampling zeros. When there are either structural or
sampling zeros in the model, some parameters may not be estimable because they
are infinite. Parameters that cannot be estimated due to structural zeros are not
counted in the number of parameters estimated when computing the degrees of

freedom for χ2. Parameters that cannot be estimated because of sampling zeros
are counted as estimated parameters when computing the degrees of freedom for 

χ2.

To explain the calculation of degrees of freedom, note that extended maximum
likelihood estimates may be written as

$ $ $β β ρβ= + ∞F

where

$ , $ $β β ρβF and ∞

are coefficient vectors, and ρ → ∞. Routine CTLLN estimates the finite portion of

the estimates, $βF  The infinite portion, $β∞  ensures that the fitted values for zero
marginal cells corresponding to a term in the hierarchical model have estimated
expectation of zero. Thus, CTLLN fits the finite portion of extended maximum
likelihood estimates where the extension is to ±∞. Because the Hessian elements
corresponding to infinite parameters are zero, the Hessian is computed from a
reduced likelihood in which cells leading to infinite estimates have been
eliminated. The user is referred to Clarkson and Jennrich (1991) for details.

Example

The example illustrates the use of CTLLN in a simple four-way table in which the
first three factors have two levels, and the fourth factor has three levels. The data,
taken from Lee (1977), involve brand preference in different situations.

      INTEGER    IPRINT, LDCOEF, LDCOV, LDRESI, LTAB, MAXIT, NCLVAR
      REAL       EPS
      PARAMETER  (EPS=0.01, IPRINT=1, LDCOEF=10, LDCOV=10, LDRESI=24,
     &           LTAB=24, MAXIT=10, NCLVAR=4)
C
      INTEGER    INDEF(6), NCLVAL(NCLVAR), NCOEF, NEF, NVEF(3)
      REAL       AMACH, COEF(LDCOEF,4), COV(LDCOV,LDCOV), FIT(LTAB),
     &           RESID(LDRESI,4), STAT(4), TABLE(LTAB), TOL
      EXTERNAL   AMACH, CTLLN
C
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47,
     &     55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NEF/3/, NVEF/2, 2, 2/, INDEF/2, 4, 1, 4, 2, 3/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
C
      TOL = 100.0*AMACH(4)
      CALL CTLLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT,
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     &            TOL, IPRINT, FIT, NCOEF, COEF, LDCOEF, COV, LDCOV,
     &            RESID, LDRESI, STAT)
C
      END

Output
Fitted Model: (B*D, A*D, B*C)

Variable   Number of Levels
1 A              3
2 B              2
3 C              2
4 D              2

Model Statistics
Log-likelihood            3.7906
Likelihood ratio           11.89
Degrees of freedom          14.0
P-value                   0.6154

                          Coefficient Statistics
                                     Standard   Asymptotic
                    Coefficient          Error  Z-statistic        P-value
  1 intercept            3.6827         0.0333       110.66         0.0000
  2  A(1)               -0.0591         0.0475        -1.24         0.2341
  3  A(2)                0.0278         0.0461         0.60         0.5562
  4  B                  -0.0166         0.0331        -0.50         0.6242
  5  C                  -0.0434         0.0319        -1.36         0.1943
  6  D                  -0.2783         0.0329        -8.45         0.0000
  7  A*D(1)             -0.1016         0.0475        -2.14         0.0506
  8  A*D(2)              0.0034         0.0461         0.07         0.9414
  9  B*C                -0.1438         0.0319        -4.51         0.0005
 10  B*D                -0.0684         0.0328        -2.09         0.0558

           ------------------------------
                Table 1: C = 1 D = 1
                 B = 1 by A (column)
                           1           2           3
 Observed              19.00       23.00       24.00
 Fit                   19.52       23.65       26.09
 Root chi-square       -0.12       -0.13       -0.41
 Likelihood            -1.03       -1.29       -4.02
 Freeman-Tukey         -0.06       -0.08       -0.37
 Residual              -0.52       -0.65       -2.09

                 B = 2 by A (column)
                           1           2           3
 Observed              29.00       47.00       43.00
 Fit                   30.85       37.37       41.23
 Root chi-square       -0.33        1.57        0.28
 Likelihood            -3.58       21.54        3.62
 Freeman-Tukey         -0.29        1.52        0.31
 Residual              -1.85        9.63        1.77
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           ------------------------------
                Table 2: C = 1 D = 2
                 B = 1 by A (column)
                           1           2           3
 Observed              57.00       47.00       37.00
 Fit                   47.85       46.99       42.89
 Root chi-square        1.32        0.00       -0.90
 Likelihood            19.95        0.03      -10.93
 Freeman-Tukey          1.29        0.04       -0.89
 Residual               9.15        0.01       -5.89

                 B = 2 by A (column)
                           1           2           3
 Observed              49.00       55.00       52.00
 Fit                   57.52       56.48       51.56
 Root chi-square       -1.12       -0.20        0.06
 Likelihood           -15.70       -2.92        0.89
 Freeman-Tukey         -1.13       -0.16        0.10
 Residual              -8.52       -1.48        0.44

           ------------------------------
                Table 3: C = 2 D = 1
                 B = 1 by A (column)
                           1           2           3
 Observed              29.00       33.00       42.00
 Fit                   28.39       34.40       37.94
 Root chi-square        0.11       -0.24        0.66
 Likelihood             1.23       -2.73        8.53
 Freeman-Tukey          0.16       -0.20        0.68
 Residual               0.61       -1.40        4.06

                 B = 2 by A (column)
                           1           2           3
 Observed              27.00       23.00       30.00
 Fit                   25.24       30.58       33.73
 Root chi-square        0.35       -1.37       -0.64
 Likelihood             3.64      -13.10       -7.04
 Freeman-Tukey          0.39       -1.41       -0.61
 Residual               1.76       -7.58       -3.73

           ------------------------------
                Table 4: C = 2 D = 2
                 B = 1 by A (column)
                           1           2           3
 Observed              63.00       66.00       68.00
 Fit                   69.58       68.32       62.37
 Root chi-square       -0.79       -0.28        0.71
 Likelihood           -12.51       -4.57       11.75
 Freeman-Tukey         -0.78       -0.25        0.73
 Residual              -6.58       -2.32        5.63

                 B = 2 by A (column)
                           1           2           3
 Observed              53.00       50.00       42.00
 Fit                   47.06       46.21       42.18
 Root chi-square        0.87        0.56       -0.03
 Likelihood            12.61        7.88       -0.36
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 Freeman-Tukey          0.87        0.58        0.01
 Residual               5.94        3.79       -0.18

                     Asymptotic Coefficient Covariance
                1             2             3             4             5
  1    1.1076E-03    9.7132E-05   -3.5887E-05    4.3244E-05    4.3786E-05
  2                  2.2562E-03   -1.1408E-03   -3.4043E-11    2.6829E-11
  3                                2.1232E-03    2.5675E-11   -5.1643E-11
  4                                              1.0968E-03    1.4480E-04
  5                                                            1.0146E-03

                6             7             8             9            10
  1    2.9815E-04    1.3065E-04   -1.6147E-05    1.4480E-04    7.6307E-05
  2    1.3065E-04    7.2117E-04   -4.0976E-04    6.2343E-11   -1.0681E-11
  3   -1.6147E-05   -4.0976E-04    5.7437E-04   -4.9217E-11   -2.3482E-11
  4    7.6307E-05    1.2601E-11   -4.1730E-11    4.3786E-05    2.8917E-04
  5   -1.4272E-11   -5.5301E-11    4.2801E-11    4.5231E-06   -4.6962E-11
  6    1.0851E-03    9.7132E-05   -3.5887E-05   -4.9749E-11    3.0847E-05
  7                  2.2562E-03   -1.1408E-03    5.9300E-11   -1.0361E-10
  8                                2.1232E-03   -2.4481E-11    2.9160E-11
  9                                              1.0146E-03    1.1201E-11
 10                                                            1.0743E-03

CTPAR/DCTPAR (Single/Double precision)
Compute model estimates and covariances in a fitted log-linear model.

Usage
CALL CTPAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT, TOL,
            IPRINT, NCOEF, COEF, LDCOEF, COV, LDCOV)

Arguments

NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

NEF — Number of effects in the model.   (Input)
A marginal table is implied by each effect in the model. Lower-order effects
should not be included since their inclusion is automatic in the hierarchical
models fit here (e.g., do not include effects A or B if effect AB is in the model).

NVEF — Vector of length NEF containing the number of classification variables
associated with each effect.   (Input)

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) containing, in
consecutive positions, the indices of the variables that are included in each effect.
(Input)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain
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the indices of the variables in effect 1, the next NVEF(2) elements of INDEF
contain the indices of the variables in effect 2, etc. See Comment 4 for an
example.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the model estimates of the cell counts.   (Input)
See Comment 3 for the ordering of the elements of FIT. To obtain a first iteration
approximation to the optimal parameter values, the observed counts may be input
in FIT, in which case a least-squares model is fit. In all cases, values of zero in
FIT are assumed to correspond to structural zeros in the table. See the
“Algorithm” section for details.

TOL — Tolerance used in determining linear dependence in COV.   (Input)
For CTPAR, TOL = 100.0 * AMACH(4) is a common choice. For DCTPAR,
TOL = 100.0 * DMACH(4) is a common choice. See the documentation for routine
AMACH/DMACH (Reference Material).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing of COEF and COV is performed.
2 COEF, COV, and FIT are printed.

In the printing, A * B(2) denotes the second variable in the AB interaction effect.

NCOEF — Number of regression coefficients in the model.   (Output)

COEF — NCOEF by 4 matrix containing the estimated coefficients and associated
statistics.   (Output)

Col. Statistic
1 Coefficient estimate
2 Estimated standard error of the estimated coefficient
3 Asymptotic normal score for testing that the coefficient is zero
4 p-value associated with the normal score in column 3 (two-sided

alternative)

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NCOEF by NCOEF covariance matrix of the estimated coefficients.
(Output)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTPAR 2NCLVAR − 1 + NCLVAR * 2NCLVAR-1 + 3 * NCLVAR + 4 *
NCOEF+ m + n + a + 1 units, or
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DCTPAR 2NCLVAR − 1 + NCLVAR * 2NCLVAR-1 + 4 * NCLVAR + 8 *
NCOEF + m + n + 2 * a + 2 units, where

m = NVEF(1) + L + NVEF(NEF),

n = NCLVAL(1) +L+ NCLVAL(NCLVAR), and

a = NCOEF + 1 if IPRINT ≠ 2, and is equal to the maximum of NCOEF +
1 and the product of the the two largest elements of NCLVAL otherwise.

Workspace may be explicitly provided, if desired, by use of
C2PAR/DC2PAR. The reference is

CALL C2PAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT,
            TOL, IPRINT, NCOEF, COEF, LDCOEF, COV,
            LDCOV, IRANK, NCVEF, IXEF, IINDEF, IA,
            INDCL, CLVAL, REG, X, D, XMIN, XMAX, WK)

The additional arguments are as follows:

IRANK — Rank of COV.

NCVEF — Vector of length 2NCLVAR − 1.

IXEF — Vector of length NCLVAR * 2NCLVAR-1.

IINDEF — Vector of length NVEF(1) + L + NVEF(NEF).

IA — Vector of length NCLVAR.

INDCL — Vector of length NCLVAR.

CLVAL — Vector of length NCLVAL(1) + L + NCLVAL(NCLVAR).

REG — Vector of length NCOEF + 1.

X — Vector of length NCLVAR.

D — Vector of length NCOEF.

XMIN — Vector of length NCOEF.

XMAX — Vector of length NCOEF.

WK — Vector of length NCOEF + 1 if IPRINT ≠ 2. Otherwise, its length
is the maximum of NCOEF + 1 and the product of the two largest
elements of NCLVAL.

2. Informational errors
Type Code
   3    5 The label for one or more of the tables exceeds the

buffer limit.
   3  11 The label for one or more effects exceeds the buffer

limit.
   4    1 LDCOEF or LDCOV is less than NCOEF.
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3. The cells of the vector FIT are sequenced so that the first variable cycles
from 1 to NCLVAL(1) the slowest, the second variable cycles from 1 to
NCLVAL(2) the next slowest, etc., up to the NCLVAR-th variable, which
cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into FIT(1)
through FIT(12) in the following order: X(1, 1, 1), X(1, 1, 2), X(1, 2, 1),
X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1),
X(2, 2, 2), X(2, 3, 1), X(2, 3, 2).

4. INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables 1
and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the
NVEF(I) is 3, then INDEF is a vector of length 3 with values: INDEF(1) =
1, INDEF(2) = 3, and INDEF(3) = 2.

Algorithm

Routine CTPAR computes estimates of parameters and associated variances and
covariances in hierarchical loglinear models. A weighted least-squares algorithm
is used.

A hierarchical analysis of variance model is a factorial analysis of variance model
in which a lower-order effect is included in a model whenever a higher-order
effect containing it is in the model. Thus, if the effect ADF is in the model, then
effects A, D, F, AD, AF, and DF are automatically in the model.

Input to CTPAR may be either the expected table values for the given hierarchical
model as output, for example, by routine PRPFT (page 463), or the observed table
values. When the fitted values are input, the estimates computed are the
maximum likelihood estimates. When observed values are input, weighted least-
squares estimates of the parameters in the log-linear model are computed. (Least-
squares estimates and maximum likelihood estimates can also be computed via
routines CTWLS (page 526) and CTGLM (page 510), respectively.)

When an expected count (as input in FIT) is zero, the cell is taken to be a
structural zero. Such cells are not included in the weighted least-squares analysis.
Estimates corresponding to structural zeros are set to the missing value indicator
(NaN). To avoid this (and to determine the total degrees of freedom for each
effect), add a positive constant such as 0.5 to each of the observed cell counts of
zero, the “sampling” zeros. When structural zeros are present in the data the
estimates may be written as

$ $ $β β ρβ= +o I

where

$ , $ , $β β β0 and I
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are vectors, and ρ → ∞ Routine CTPAR estimates the finite portion of the

estimate, $β0  The infinite portion, $β I  ensures that the fitted values for cells

corresponding to structural zeros are zero (sampling zeros are considered to be
structural zeros in CTPAR). If there are no structural zeros

$β I = 0

Let fL denote the i-th element of the vector FIT. The asymptotic variance-
covariance matrix of the cell counts is estimated by a diagonal matrix S = diag(f)
where diag(f) denotes the diagonal matrix in which sLM = 0 for i ≠ j and sLL = fL
along the diagonal. If X denotes the design matrix for the hierarchical model (with
rows in X corresponding to structural zeros omitted), and yL = logfL, then the
weighted least-squares estimates are

$ ( )βo
T TX S X X S y= − − −1 1 1

and the estimated variance-covariance matrix is

(X7 S-1X)-1

(see Grizzle, Starmer, and Koch [1969]).

If main effect A has, for example, four levels, then the design matrix X contains
three dummy variables corresponding to this effect. Main effect dummy variables
are generated as follows: For an observation fL corresponding to level j of the
effect, if j < 3, then the j-th dummy variable is set to 1 with the remaining dummy
variables set to 0. If j = 4, then all three dummy variables are set to −1. Dummy
variables for interactions are generated as the product of the corresponding
dummy variables in the usual manner with the smallest index in the specification
of the interaction varying fastest. The indices of the classification variables for
each effect are always sorted from smallest to largest when computing the
columns of X.

Example

The example illustrates the use of CTPAR in a simple four-way table in which the
first three factors have two levels, and the fourth factor has three levels. The data,
which is taken from Lee (1977), involve the brand preference in different
situations.

      INTEGER    IPRINT, LDCOEF, LDCOV, LTAB, NCLVAR
      PARAMETER  (IPRINT=2, LDCOEF=13, LDCOV=13, LTAB=24, NCLVAR=4)
C
      INTEGER    INDEF(6), NCLVAL(NCLVAR), NCOEF, NEF, NVEF(3)
      REAL       AMACH, COEF(LDCOEF,4), COV(LDCOV,LDCOV), FIT(LTAB),
     &           TABLE(LTAB), TOL
      EXTERNAL   AMACH, CTPAR, PRPFT
C
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47,
     &     55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NEF/3/, NVEF/2, 2, 2/, INDEF/2, 4, 1, 4, 2, 3/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
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C
      TOL = 100.0*AMACH(4)
      CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, 0.1, 20,
     &            FIT)
C
      CALL CTPAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT, TOL, IPRINT,
     &            NCOEF, COEF, LDCOEF, COV, LDCOV)
C
      END

Output
Variable   Number of Levels
1 A              3
2 B              2
3 C              2
4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.52   23.65   26.09
 2   47.85   46.99   42.89

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   28.39   34.40   37.94
 2   69.58   68.32   62.37

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   30.85   37.37   41.23
 2   57.52   56.48   51.56

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   25.24   30.58   33.73
 2   47.06   46.21   42.18

                          Coefficient Statistics
                                     Standard   Asymptotic
                    Coefficient          Error  Z-statistic        P-value
  1 intercept            3.6827         0.0333       110.66         0.0000
  2  A(1)               -0.0591         0.0475        -1.24         0.2341
  3  A(2)                0.0278         0.0461         0.60         0.5562
  4  B                  -0.0166         0.0331        -0.50         0.6242
  5  C                  -0.0434         0.0319        -1.36         0.1943
  6  D                  -0.2783         0.0329        -8.45         0.0000
  7  A*D(1)             -0.1016         0.0475        -2.14         0.0506
  8  A*D(2)              0.0034         0.0461         0.07         0.9414
  9  B*C                -0.1438         0.0319        -4.51         0.0005
 10  B*D                -0.0684         0.0328        -2.09         0.0558
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                     Asymptotic Coefficient Covariance
              1              2              3              4              5
1    1.1076E-03     9.7132E-05    -3.5887E-05     4.3244E-05     4.3786E-05
2                   2.2562E-03    -1.1408E-03    -3.4043E-11     2.6829E-11
3                                  2.1232E-03     2.5675E-11    -5.1643E-11
4                                                 1.0968E-03     1.4480E-04
5                                                                1.0146E-03
              6              7              8              9             10

1    2.9815E-04     1.3065E-04    -1.6147E-05     1.4480E-04     7.6307E-05
2    1.3065E-04     7.2117E-04    -4.0976E-04     6.2343E-11    -1.0681E-11
3   -1.6147E-05    -4.0976E-04     5.7437E-04    -4.9217E-11    -2.3482E-11
4    7.6307E-05     1.2601E-11    -4.1730E-11     4.3786E-05     2.8917E-04
5   -1.4272E-11    -5.5301E-11     4.2801E-11     4.5231E-06    -4.6962E-11
6    1.0851E-03     9.7132E-05    -3.5887E-05    -4.9749E-11     3.0847E-05
7                   2.2562E-03    -1.1408E-03     5.9300E-11    -1.0361E-10
8                                  2.1232E-03    -2.4481E-11     2.9160E-11
9                                                 1.0146E-03     1.1201E-11
10                                                               1.0743E-03

CTASC/DCTASC (Single/Double precision)
Compute partial association statistics for log-linear models in a multidimensional
contingency table.

Usage
CALL CTASC (NCLVAR, NCLVAL, TABLE, ZERO, EPS, MAXIT,
            IPRINT, ASSOC, LDASSO, CHIHI, LDCHIH, CHISIM,
            LDCHIS)

Arguments

NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.

ZERO — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
indicating structural zeros in TABLE.   (Input)
ZERO has the same structure as TABLE. Structural zeros in the TABLE are
specified by setting the corresponding element of ZERO to 0.0. All other elements
of zero must be positive. If structural zeros do not exist in TABLE, TABLE and
ZERO can share the same storage locations. See Comment 3 for the ordering of
the elements of ZERO.
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EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum deviation between an observed and
a fitted marginal total is less than EPS. EPS = 0.10 is a typical value.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 15 is a typical value. When there are structural zeros a larger value, say
MAXIT = 100, should be used.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing of ASSOC, CHIHI, and CHISIM is performed.
2 ASSOC, CHIHI, CHISIM, and TABLE are printed.

ASSOC — 2NCLVAR − 1 by 4 matrix containing the partial association statistics
for each effect in the model.   (Output)

Column Statistic
1 Likelihood ratio partial association chi-squared for testing that all

parameters in the effect are zero against a model containing all
interactions of the same order

2 Degrees of freedom in chi-squared in columns 1 and 4
3 p-value for the chi-squared statistic in column 1
4 Number of zeros (structural and sampling) in the marginal table of the

effect

The rows of ASSOC are ordered with main effects first, followed by two-way
interactions, followed by the three-way interactions, etc., until the last row, which
contains the single NCLVAR-way interaction. Thus, if there are 3 classification
variables, there would be 8 rows in ASSOC and the rows would contain the A, B,
C, AB, AC, BC, and the ABC effects where A represents the first (in INDCL)
classification variable, B represents the second classification variable, etc.

LDASSO — Leading dimension of ASSOC exactly as specified in the dimension
statement in the calling program.   (Input)

CHIHI — NCLVAR by 5 matrix containing chi-squared statistics testing that all k
and higher interactions are zero where k = 1, 2, …, NCLVAR.   (Output)
In the following, k is the row number of the statistic where the row numbers are 1,
2, …, NCLVAR.

Col. Statistic
1 Likelihood ratio chi-squared statistic for testing that all interactions

higher than k are zero against a model including all interactions of order
k

2 p-value for the chi-squared value in column 1
3 Degrees of freedom for chi-squared in columns 1 and 4
4 Pearson chi-squared corresponding to column 1
5 p-value for the chi-squared value in column 4
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LDCHIH — Leading dimension of CHIHI exactly as specified in the dimension
statement in the calling program.   (Input)

CHISIM — NCLVAR by 5 matrix containing chi-squared statistics for testing that
all k-factor interactions are simultaneously zero where k = 1, …, NCLVAR.
(Output)
In the following, k is the row number of the statistic where the row numbers are 1,
2, …, NCLVAR.

Col. Statistic
1 Likelihood ratio chi-squared statistic for testing that all k-factor

interactions are all simultaneously zero given the model in which all
k-way interactions are present

2 p-value for the chi-squared value in column 1
3 Degrees of freedom for chi-squared in columns 1 and 4
4 Pearson chi-squared corresponding to column 1
5 p-value for the chi-squared value in column 4

LDCHIS — Leading dimension of CHISIM exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTASC n + m + 2 * NCLVAL(1) * … * NCLVAL(NCLVAR) + (NCLVAR/2

+ 1) * 2NCLVAR5 + 2 * NCLVAR − 1 units, or

DCTASC 2 * n + m + 4 * NCLVAL(1) * … * NCLVAL(NCLVAR) +
(NCLVAR/2 + 1) * 2NCLVAR + 2 * NCLVAR −1 units, where m is
defined in the description of variable INDX below, and n is
defined in the description of variable AMAR.

Workspace may be explicitly provided, if desired, by use of
C2ASC/DC2ASC. The reference is

CALL C2ASC (NCLVAR, NCLVAL, TABLE, ZERO, EPS, MAXIT,
            IPRINT, ASSOC, LDASSO, CHIHI, LDCHIH,
            CHISIM, LDCHIS, FITWK, NCVEF, IXEF,
            AMAR, INDX, WK, IWK, COVWK)

The additional arguments are as follows:

FITWK — Work vector of length 3 * NCLVAL(1) * … *
NCLVAL(NCLVAR).

NCVEF — Work vector of length 2NCLVAR − 1.

IXEF — Work vector of length NCLVAR * 2(NCLVAR-1)

AMAR — Work vector of length n. In defining n, let q(k) be the sum of
the sizes of all possible marginal tables with k effects. For example, q(2)
is the sum over all possible two-way interactions I and J of
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NCLVAL(I) * NCLVAL(J) and q(NCLVAR) is the product NCLVAL(1) * …
* NCLVAL(NCLVAR). Then, n = max(q(k)), k = 1, …, NCLVAR.

INDX — Work vector of length m where m is the maximum number of
interactions at any level. That is, m = max(BINOM(NCLVAR, I)), I = 1, …
, NCLVAR, where BINOM(NCLVAR, I) is the binomial coefficient (see
routine BINOM (IMSL MATH/LIBRARY Special Functions)).

WK — Work vector of length 3 * NCLVAL(1) * … * NCLVAL(NCLVAR)
if there exists more than one structural zero in TABLE, and of length
NCLVAL(1) * … * NCLVAL(NCLVAR) otherwise.

IWK — Work vector of length 2 * NCLVAR.

COVWK — Work vector of length (NCLVAL(1) * … *

NCLVAL(NCLVAR))2 if there exists more than one structural zero in
TABLE. Otherwise, COVWK is not referenced and can be dimensioned of
length one in the calling program. On output, COVWK contains the upper
triangular matrix containing the R matrix from a QR decomposition of
the matrix of regressors for the full log-linear model.

2. Informational errors
Type Code
   3    1 The optimization algorithm did not converge to the

desired accuracy, EPS, within MAXIT iterations.
   3    5 The label for one or more of the tables exceeds the

buffer limit.
   3  11 The label for one or more effects exceeds the buffer

limit.

3. The cells of the vectors TABLE and ZERO are sequenced so that the first
variable cycles from 1 to NCLVAL(1) the slowest, the second variable
cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order:
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

Algorithm

Routine CTASC computes likelihood-ratio and Pearson χ2 tests of partial-
association for each effect in a hierarchical log-linear model. Also computed are
likelihood ratio and Pearson chi-squared tests that all interactions above a given
level are simultaneously zero. All of these tests are asymptotic in nature. All
models are hierarchical so that all lower order interactions that may be
composed from a higher order effect in the model are automatically included in
the model. All models are fit via the iterative proportional fitting algorithm,
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which is implemented in routine PRPFT (page 463). The algorithm proceeds as
follows:

1. The hierarchical model including all k-factor interactions is fit with
k = 0, …, m and m = NCLVAR. The k = 0 model corresponds to a constant
probability in each cell in the table while the k = m model is the full
model. For each value of k, the likelihood ratio chi-squared statistic for
testing that all interactions not included in the fitted model are all
simultaneously zero (against the alternative that this is not the case) is
computed as

2 ∑ i i io fln(oi / )

where oL is the observed count in the i-th cell, fL is the fitted count for the
given model, and the summation is over all cells in the table. Also
computed (for comparison, the two statistics are asymptotically
equivalent) is the usual Pearson chi-squared statistic,

∑ −i i i io f f( ) /2

2. Let gL = NCLVAL(i), and let

t gi
m

i= =∏ 1

and assume that there are no structural zeros in the table. Then, the
number of degrees of freedom in the chi-squared statistic for testing that
all k-order interactions are simultaneously zero is the sum over all k-th
order interaction effects of the degrees of freedom for the effect. In the
no structural zero case, the degrees of freedom for an effect may be
computed as

j jg( )−∏ 1

where j indexes the factors in the effect. Denote the sum of these degrees
of freedom at level k by sN, and let s0 = 1. Then, the degrees of freedom
in the k-th test is given by sN.

When more than one structural zero is present, the degrees of freedom in
the chi-squared statistics are computed by fitting a least-squares model
for the full full hierarchical model in which all interactions are included.
Routine RGIVN (page 107) is used in fitting the model. Cells with
sampling (as opposed to structural) zeros are included (but only when
degrees of freedom are computed) by using a cell count of 0.5.
Observations corresponding to structural zeros are not included. (Note
that a structural zero is a model restriction that requires that the
estimated count for a cell be zero. A sampling zero occurs by chance.)
The degrees of freedom for each effect are found by summing over the
estimated parameters for the effect. Parameters that are linearly related
to previous parameters in the model (as determined through RGIVN via
input argument TOL where TOL is 100 * AMACH(4) in CTASC and 100 *
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DMACH(4) in DCTASC) are not estimated. When there is only one
structural zero, degrees of freedom are computed as if there were no
structural zeros except for the highest level interaction term, which is
given one fewer degree of freedom.

Chi-squared statistics for testing that all effects at a given level k are
simultaneously zero (given a hierarchical model in which all effects
above level k are absent) are computed as the difference between the chi-
squared statistics testing that all k and higher interactions are zero and
that of k + 1. That is, for J = 1 and 4, and I = 1, 2, …,
NCLVAR − 1, then CHISIM(I, J) = CHIHI(I, J) CHIHI(I + 1, J), and
CHISIM(NCLVAR, J) = CHIHI(NCLVAR, J).

3. For each effect, a “partial association” likelihood ratio chi-squared
statistic may be used to test the hypothesis that all parameters in the
effect are simultaneously zero, given a model in which all interactions at
the same level (or lower) are present, and all higher level interactions are
absent. The degrees of freedom for the effect are computed as in Step 2.

Programming Notes

1. When sampling zeros are present, the likelihood ratio test statistics may
not follow the appropriate chi-squared distribution closely. A common
(but not necessarily the best) practice in this case is to add a small
positive constant, often 0.5, to each cell in the table. This addition is
easily accomplished via routine SADD (IMSL MATH/LIBRARY). The
addition of such a constant should not effect the computed degrees of
freedom.

2. When marginal totals of zero are obtained, the optimization algorithm
may be slow to converge. In this case, increase the value of argument
MAXIT.

Example

The following example illustrates the use of CTASC for model building in a four-
way table involving brand preference. The first three factors each have 2 levels,
while the fourth factor has 3 levels. The data are originally from Lee (1977) and
are printed in the output. A model with two-way interaction effects AD, BC, and
BD looks promising.

      INTEGER    IPRINT, LDASSO, LDCHIH, LDCHIS, LTAB, MAXIT, NCLVAR
      REAL       EPS
      PARAMETER  (EPS=0.01, IPRINT=2, LDASSO=15, LDCHIH=4, LDCHIS=4,
     &           LTAB=24, MAXIT=30, NCLVAR=4)
C
      INTEGER    NCLVAL(4)
      REAL       ASSOC(LDASSO,4), CHIHI(LDCHIH,5), CHISIM(LDCHIS,5),
     &           TABLE(LTAB)
      EXTERNAL   CTASC
C
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      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47,
     &     55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NCLVAL/3, 2, 2, 2/
C
      CALL CTASC (NCLVAR, NCLVAL, TABLE, TABLE, EPS, MAXIT, IPRINT,
     &            ASSOC, LDASSO, CHIHI, LDCHIH, CHISIM, LDCHIS)
C
      END

Output
 Variable   Number of Levels
 1 A              3
 2 B              2
 3 C              2
 4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.00   23.00   24.00
 2   57.00   47.00   37.00

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   29.00   33.00   42.00
 2   63.00   66.00   68.00

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   29.00   47.00   43.00
 2   49.00   55.00   52.00

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   27.00   23.00   30.00
 2   53.00   50.00   42.00

                 Partial Association Statistics
 Omitted                      Degrees of                Marginal
 Effect           Chi-Square     Freedom       P-value     Zeros
 A                      0.50         2.0        0.7782       0.0
 B                      0.06         1.0        0.8010       0.0
 C                      1.92         1.0        0.1657       0.0
 D                     73.21         1.0        0.0000       0.0
 A*B                    0.22         2.0        0.8978       0.0
 A*C                    1.01         2.0        0.6050       0.0
 A*D                    6.10         2.0        0.0475       0.0
 B*C                   19.89         1.0        0.0000       0.0
 B*D                    3.74         1.0        0.0532       0.0
 C*D                    0.74         1.0        0.3898       0.0
 A*B*C                  4.57         2.0        0.1017       0.0
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 A*B*D                  0.16         2.0        0.9223       0.0
 A*C*D                  1.38         2.0        0.5022       0.0
 B*C*D                  2.22         1.0        0.1361       0.0
 A*B*C*D                0.74         2.0        0.6917       0.0

Chi-square statistics for testing that all k and higher interactions are
                                    zero.
           Likelihood                Degrees of
        k       Ratio       P-Value     Freedom     Pearson       P-Value
        1      118.63        0.0000        23.0      115.71        0.0000
        2       42.93        0.0008        18.0       43.90        0.0006
        3        9.85        0.3631         9.0        9.87        0.3611
        4        0.74        0.6917         2.0        0.74        0.6915

Chi-square statistics for testing that all k-factor interactions are
                         simultaneously zero.
      Likelihood                Degrees of
   k       Ratio       P-Value     Freedom     Pearson       P-Value
   1       75.70        0.0000         5.0       71.81        0.0000
   2       33.08        0.0001         9.0       34.03        0.0001
   3        9.11        0.2449         7.0        9.13        0.2433
   4        0.74        0.6917         2.0        0.74        0.6915

CTSTP/DCTSTP (Single/Double precision)
Build hierarchical log-linear models using forward selection, backward selection,
or stepwise selection.

Usage
CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP,
            NSTEP, NFORCE, IPRINT, NEF, NVEF, MAXNVF,
            INDEF, MAXIND, FIT, STAT, IEND)

Arguments

IDO — Processing option.   (Input)

IDO Action

0 This is the only invocation of CTSTP for this table. If there are sampling
zeros, set up for computing the degrees of freedom for each effect.
Perform NSTEP steps (if ISTEP, POUT, and PIN allow it) and then
release all workspace.

1 This is the first invocation, and additional calls to CTSTP will be made.
Set up for computing the degrees of freedom for each effect and then
perform NSTEP steps (if ISTEP, POUT, and PIN allow it).

2 This is an intermediate invocation of CTSTP. Perform NSTEP steps (if
ISTEP, POUT, and PIN allow it).

3 This is the final invocation of this routine. Perform NSTEP steps (if
ISTEP, POUT, and PIN allow it). Release all workspace.
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NCLVAR — Number of classification variables.   (Input)
A variable specifying a margin in the table is a classification variable. The first
classification variable is named A, the second classification variable is named B,
etc.

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels or categories of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements of TABLE.

PIN — Largest p-value for entering variables.   (Input)
Variables with p-values less than PIN may enter the model. The choice 0.05 is
common.

POUT — Smallest p-value for removing variables.   (Input)
Variables with p-values greater than POUT may leave the model. POUT must be
greater than or equal to PIN. The choice 0.10 is common.

ISTEP — Stepping option.   (Input)

ISTEP Action

−1 An attempt is made to remove an effect from the model (a backward
step). An effect is removed if it has the largest p-value among all effects
considered for removal with p-value exceeding POUT.

0 A backward step is attempted. If a variable is not removed, a forward
step is attempted. This is a stepwise step.

1 An attempt is made to add an effect to the model (a forward step). An
effect is added if it has the smallest p-value among all effects with
p-value less than PIN.

NSTEP — Step length option.   (Input)
For nonnegative NSTEP, NSTEP steps are taken. Less than NSTEPS are taken if no
effect that can enter or leave the model meets the PIN or POUT criterion. Use
NSTEP = −1 to indicate that stepping is to continue until no effect meets the PIN

or POUT criterion to enter or leave the model.

NFORCE — The number of initial effects in the model that must be included in
any model considered.   (Input)
For NFORCE = k, the first k effects specified by NEF, NVEF, and INDEF will be
included in all models considered.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing of the initial and final model summary statistics and step

summaries.
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2 Printing of the input table is performed followed by printing of the initial
and final model summary statistics and of the step summaries.

NEF — Number of effects in the model.   (Input/Output)
A marginal table is implied by each effect in the model. Lower order effects
should not be included in the model specification since their inclusion is
automatic (e.g., do not include effects A or B if effect AB is in the model). On
input, NEF gives the number of effects in the initial model. On output, NEF gives
the number of effects in the final model.

NVEF — Vector of length MAXNVF containing the number of classification
variables associated with each effect.   (Input/Output)
On input, NVEF contains the number of classification variables for each effect in
the initial model. The final values are returned on output.

MAXNVF — The maximum length of NVEF as specified in the dimension
statement in the calling program.   (Input)
If the required length of NVEF becomes greater than MAXNVF, a type 4 error
message is issued and the final model chosen is returned in NEF, NVEF, and
INDEF. See Comment 2.

INDEF — Vector of length MAXIND containing, in consecutive positions, the
indices of the variables that are included in each effect.   (Input/Output)
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the
indices of the variables in effect 1, the next NVEF(2) elements of INDEF contain
the indices of the variables in effect 2, etc. Each element of INDEF must be
greater than zero. See Comment 4 for an example.

MAXIND — The maximum possible length of INDEF as specified in the
dimension statement in the calling program.   (Input)
If the required length of INDEF becomes greater than MAXIND, a type 4 error
message is issued and the final model chosen is returned in NEF, NVEF, and
INDEF. See Comment 2.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the model estimates of the cell counts.   (Input/Output)
On input, FIT contains the initial estimates of the cell counts. Structural zeros in
the model are specified by setting the corresponding element of FIT to 0.0. All
other elements of FIT may be set to 1.0 if no other estimate of the expected cell
counts is available. On output, FIT contains the fitted table. See Comment 3 for
the ordering of the elements of FIT. If an element of FIT is positive but the
corresponding element in TABLE is zero, the the element is called a sampling
zero. Sampling zeros may effect the number of parameters that can be estimated,
but they will not effect the degrees of freedom in chi-squared tests. See the
“Algorithm” section of the manual document.

STAT — Vector of length 3 containing some output statistics for the final model
fit during this invocation.   (Output)
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I STAT(I)
1 Asymptotic chi-squared statistic based upon likelihood ratios for testing

that the current model fits the observed data.
2 Degrees of freedom in chi-squared. This is the number of cells in the

table minus the number of structural zeros minus the degrees of freedom
for the model.

3 Probability of a greater chi-squared.

IEND — Completion indicator.   (Output)

IEND Meaning
0 Additional steps may be possible.
1 No additional steps are possible for the values of PIN and POUT.

Comments

1. Automatic workspace usage is

CTSTP MAXMAR + 2 * NCLVAR + v + w + x + y + f
DCTSTP  2 * MAXMAR + 2 * NCLVAR + v + w + 2x + 2y + f

Let z be the number of structural zeros in TABLE and v = 2NCLVAR −1.
Then, the tables below define w, x, y, and f.

ISTEP IPRINT z w x

−1, 0, 1 0, 1 ,2 z > 1 3v + 3d + n +
z

n(n + 2)

0, 1 0, 1, 2 z ≤ 1 3v + 3d 0

−1 0 z ≤ 1 2v + 2d 0

IDO z y

0, 1 z > 1 2n + m

0, 1 z ≤ 1 n

2, 3 z > 1 n

2, 3 z ≤ 1 n

ISTEP NSTEP f

−1, 0 NSTEP = 0 NCLVAR + NEF

−1, 0 NSTEP ≠ 0 NCLVAR + v

1 NSTEP = 0 NEF

1 NSTEP ≠ 0 v
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Here, d = NCLVAR * 2NCLVAR-1, m = NCLVAL(1) + NCLVAL(2) + … +
NCLVAL(NCLVAR), n = NCLVAL(1) * NCLVAL (2) * … *
NCLVAL(NCLVAR), and the variable MAXMAR is defined below.

Workspace may be explicitly provided, if desired, by use of
C2STP/DC2STP. The reference is

CALL C2STP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT,
            ISTEP, NSTEP, NFORCE, NEF, IPRINT, NVEF,
            MAXNVF, INDEF, MAXIND, FIT, STAT, IEND,
            MAXMAR, AMAR, INVEF, IINDEF, IDF, ZWK,
            RWK, IWK)

The additional arguments are as follows.

MAXMAR — The length of AMAR.   (Input)
When workspace is allocated by CTSTP, MAXMAR is equal to the number
of workspace elements remaining after all other workspace is allocated.
MAXMAR should be chosen as the maximum over all models considered
of the sum over all marginal tables tables in the model of the number of
elements in each marginal table.

AMAR — Work vector of length MAXMAR used to store marginal means
in the proportional fitting algorithm.   (Output)

INVEF — Work vector whose length is dependent on ISTEP, IPRINT,
and z = the number of structural zeros in TABLE.

ISTEP IPRINT z Length of INVEF

−1, 0, 1 0, 1, 2 z > 1 3v

0, 1 0, 1, 2 z ≤ 1 3v

−1 0 z ≤ 1 2v

Here, v = 2NCLVAR − 1.

IINDEF — Work vector whose length is dependent on ISTEP, IPRINT,
and z = the number of structural zeros in TABLE.

ISTEP IPRINT z Length of IINDEF

−1, 0, 1 0, 1, 2 z > 1 3d

0, 1 0, 1, 2 z ≤ 1 3d

−1 0 z ≤ 1 2d

Here, d = NCLVAR * 2NCLVAR-�.

IDF — Vector of length n + z.   (Output, for IDO = 0 or 1; input/output
otherwise)
Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR). If there are
no structural zeros in TABLE, IDF is not referenced and may
dimensioned of length 1 in the calling program. When using the
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IDO = 1, 2, …, 2, 3 option, the values stored in IDF should not be
altered between calls to C2STP.

ZWK — Vector of length n(n + 2).   (Output, for IDO = 0 or 1;
input/output otherwise)
Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR). If there are
no structural zeros in TABLE, ZWK is not referenced and may
dimensioned of length 1 in the calling program. When using the IDO = 1,
2, …, 2, 3 option, the values stored in ZWK should not be altered between
calls to C2STP.

RWK — Work vector whose length is dependent on IDO and z, the
number of structural zeros in TABLE.

IDO z Length of RWK

0, 1 z > 1 2n + m

0, 1 z ≤ 1 n

2, 3 z > 1 n

2, 3 z ≤ 1 n

Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) and
m = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR).

IWK — Work vector whose length is dependent on ISTEP and NSTEP.

ISTEP NSTEP Length of IWK

−1, 0 NSTEP = 0 3 * NCLVAR + NEF

−1, 0 NSTEP ≠ 0 3 * NCLVAR + v

1 NSTEP = 0 2 * NCLVAR + NEF

1 NSTEP ≠ 0 2 * NCLVAR + v

Here, v = 2NCLVAR-�.

2. Informational errors
Type Code
   3    1 The proportional fitting algorithm did not converge.
   4    2 There is not enough workspace allocated for storing

the marginal means.
   4    3 The required length of NVEF to store the effects of the

new model exceeds MAXNVF.
   4    4 The required length of INDEF to store the effects of

the new model exceeds MAXIND.

3. The cells of the vectors TABLE, and FIT are sequenced so that the first
variable cycles from 1 to NCLVAL(1) the slowest, the second variable
cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
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Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2, the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order:
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2),
X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if
NCLVAR = 3 and the first effect is to fit the marginal table for variables 1
and 3 and the second effect is to fit the marginal table for variable 2,
then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the
NVEF(I) is 3, then INDEF is a vector of length 3 with values: INDEF(1) =
1, INDEF(2) = 3, and INDEF(3) = 2.

Algorithm

Routine CTSTP performs stepwise model building in hierarchical log-linear
models. CTSTP handles structural and sampling zeros, and allows “downward,”
“upward,” or “stepwise” stepping. For NFORCE > 0, the leading NFORCE effects in
the initial model specified in NEF, NVEF, and INDEF are forced to remain in the
model. A variable number (NSTEP) of steps from the input model are performed
during a single invocation of CTSTP. Printing of the input table and intermediate
results is performed if requested.

In hierarchical models, lower order effects are automatically included whenever a
higher order effect containing the lower order effect is in the model. That is, the
model (AB) automatically includes the mean and the main effects A and B, and
the model (AB, ACD) automatically includes the lower order effects A, B, C, D,
AC, AD, and CD.

The algorithm proceeds through the following steps during a single invocation
when IDO = 0. For IDO > 0, these steps are still followed, but they may require
more than one invocation of the routine.

1. The input model is fit. The current model is set to the input model.

2. If downward stepping is to be performed (ISTEP = −1 or ISTEP = 0),
then each effect in the model is examined to determine if it can be
deleted from the current model. An effect may be deleted from the
current model if it is not a “forced effect” and if it must be included in
the hierarchical specification of the model (in which lower order terms
are not specified). Thus, for example, the effect ABC can be deleted
from the model (ABC, BCD), yielding a model (AB, AC, BCD), but not
from the model (ABCD) since ABC is not included in the hierarchical
specification.

For each effect that can be deleted in a downward step, the usual chi-
squared likelihood-ratio test statistic is computed as twice the difference
of the log-likelihoods between the current model and the model in which
the effect has been deleted. The degrees of freedom for the effect
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are determined (see below), and an asymptotic p-value is computed via
the chi-squared distribution. After the p-values for all deleted models
have been determined, the maximum p-value is selected. If it is greater
than the p-value for deletion, POUT, the effect is deleted from the model,
and the resulting model is fit.

3. If a downward step is not possible, either because all computed p-values
are too small or because downward stepping is not to be performed, an
upward step is attempted if requested (ISTEP = 0 or ISTEP = 1). For
upward stepping, each effect in the full factorial analysis of variance
specification of the table is examined to determine if the effect differs
from the current model by exactly one term. For example, (ABC) differs
by one term from the model (AB, AC, BC) and from the model (ABD,
ACD, BCD), but it differs by more than one term from the model (AB,
BC).

For each effect that may be added to the model, a chi-squared
likelihood-ratio test statistic is computed comparing the current model to
the model with the added effect, its degrees of freedom are determined
(see below), and an asymptotic p-value based upon the chi-squared
distribution is computed. After all p-values for models with additive
effects have been computed, the model with the minimum p-value is
determined. If the minimum p-value is less than the p-value for addition,
PIN, then the effect is added to the model, and the resulting model is fit.

4. If neither a step down, nor a step up can be performed, then CTSTP sets
IEND = 1 and returns the original model to the user. Otherwise, if
additional steps are to be made, execution continues at Step 2 above.

Degrees of Freedom

In CTSTP, structural zeros are considered to be a restriction of the parameter
space. As such, they subtract from the degrees of freedom for an effect.
Alternatively, sampling zeros are a result of sampling, and thus, they do not
subtract for the degrees of freedom or restrict the parameter space. When
computing degrees of freedom, sampling zeros are treated as if they were
positive counts. If there are no structural zeros, then the degrees of freedom are
computed as the product of the degrees of freedom for each variable in the effect
where the degrees of freedom for the variable is the number of levels for the
variable minus one. When structural zeros are present, there are restrictions on
the parameter space, and the degrees of freedom for an effect are computed as the
number of non-zero diagonal elements corresponding to the effect along the

Cholesky factorization of the X7 X matrix where X is the “design matrix” for the
model. That is, each row of X contains the indicator variables for a cell in the
table, with the indicator variables for the current model preceding the indicator
variables for the effect for which degrees of freedom are desired. Because the
degrees of freedom for an effect must be relative to the model, when there are
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structural zeros, it is possible for the degrees of freedom for an effect to change
from one step to the next.

Example 1

The following example is taken from Lee (1977). It involves a simple four-way
table in which the first three factors have 2 levels, and the fourth factor has 3
levels. The data involves brand preference in different situations. In the example,
the three-way interaction is removed, leaving 3 two-way interactions. In the new
model, the three-way interaction is omitted.

      INTEGER    IFIT, IPRINT, LTAB, MAXIND, MAXNVF, NCLVAR
      REAL       PIN, POUT
      PARAMETER  (IFIT=0, IPRINT=2, LTAB=24, MAXIND=20, MAXNVF=10,
     &           NCLVAR=4, PIN=0.05, POUT=0.10)
C
      INTEGER    IDO, IEND, INDEF(MAXIND), ISTEP, ISUM, LIND,
     &           NCLVAL(NCLVAR), NEF, NFORCE, NOUT, NSTEP, NVEF(MAXNVF)
      REAL       FIT(LTAB), STAT(3), TABLE(LTAB)
      EXTERNAL   CTSTP, ISUM, UMACH, WRIRN, WRRRN
C
      DATA TABLE/19.0, 57.0, 29.0, 63.0, 29.0, 49.0, 27.0, 53.0, 23.0,
     &     47.0, 33.0, 66.0, 47.0, 55.0, 23.0, 50.0, 24.0, 37.0, 42.0,
     &     68.0, 43.0, 52.0, 30.0, 42.0/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
      DATA NEF/1/
C
      CALL UMACH (2, NOUT)
C
      IDO      = 0
      ISTEP    = 0
      NSTEP    = 1
      NFORCE   = 0
      NVEF(1)  = 3
      INDEF(1) = 1
      INDEF(2) = 2
      INDEF(3) = 4
C
      CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP, NSTEP,
     &            NFORCE, IPRINT, NEF, NVEF, MAXNVF, INDEF, MAXIND,
     &            FIT, STAT, IEND)
C
      WRITE (NOUT,99999) IEND, NEF
      CALL WRIRN (’NVEF’, 1, NEF, NVEF, 1, 0)
      LIND = ISUM(NEF,NVEF,1)
      CALL WRIRN (’INDEF’, 1, LIND, INDEF, 1, 0)
      CALL WRRRN (’FIT’, 1, LTAB, FIT, 1, 0)
C
99999 FORMAT (/, ’ IEND = ’, I3, ’   NEF = ’, I3)
      END

Output
 Variable   Number of Levels
 1 A              3
 2 B              2
 3 C              2
 4 D              2
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        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.00   23.00   24.00
 2   57.00   47.00   37.00

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   29.00   33.00   42.00
 2   63.00   66.00   68.00

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   29.00   47.00   43.00
 2   49.00   55.00   52.00

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   27.00   23.00   30.00
 2   53.00   50.00   42.00

 ----------------------  Step: 0  ----------------------
 Input Model:  (A*B*D)
 Smallest p-value for removing effects      0.100
 Largest  p-value for entering effects      0.050
 Chi-squared                  33.92
 Degrees of Freedom             12.
 p-value                     0.0007
                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*B*D                     0.12           2      0.9408
 Effect Removed: A*B*D

 ----------------------  Step: 1  ----------------------
 Model:  (A*B, A*D, B*D)
 Chi-squared                  34.05
 Degrees of Freedom             14.
 p-value                     0.0020

 IEND =   0   NEF =   3

    NVEF
  1   2   3
  2   2   2

          INDEF
  1   2   3   4   5   6
  1   2   1   4   2   4
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                                      FIT
    1       2       3       4       5       6       7       8       9      10
24.39   59.61   24.39   59.61   27.61   51.39   27.61   51.39   28.24   56.26

   11      12      13      14      15      16      17      18      19      20
28.24   56.26   34.76   52.74   34.76   52.74   32.38   53.12   32.38   53.12

   21      22      23      24
37.12   46.38   37.12   46.38

Example 2

Example two illustrates the use of CTSTP when sampling zeros are present. In this
example, which is taken from Brown and Fuchs (1983), there are thirteen
sampling zeros so that thirteen parameter estimates are infinite when the full
model is fit. Here, we begin with the model fit by Brown and Fuchs, which, in
CTSTP notation, is given as

(AC, AD, ABE, BCDE)

When this model is fit, there are five parameter estimates that are infinite. Note
that these estimates have no effect on the degrees of freedom used in the tests
computed here.

      INTEGER    IFIT, IPRINT, LTAB, MAXIND, MAXNVF, NCLVAR
      REAL       PIN, POUT
      PARAMETER  (IFIT=0, IPRINT=2, LTAB=32, MAXIND=30, MAXNVF=10,
     &           NCLVAR=5, PIN=0.05, POUT=0.10)
C
      INTEGER    IDO, IEND, INDEF(MAXIND), ISTEP, ISUM, LIND,
     &           NCLVAL(NCLVAR), NEF, NFORCE, NOUT, NSTEP, NVEF(MAXNVF)
      REAL       FIT(LTAB), STAT(3), TABLE(LTAB)
      EXTERNAL   CTSTP, ISUM, UMACH, WRIRN, WRRRN
C
      DATA TABLE/33.0, 32.0, 8.0, 8.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0,
     &     0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 2.0, 10.0, 3.0, 6.0, 1.0,
     &     2.0, 0.0, 2.0, 0.0, 1.0, 0.0, 4.0, 0.0, 1.0, 0.0, 2.0/
      DATA NCLVAL/2, 2, 2, 2, 2/, FIT/32*1.0/, NEF/4/
      DATA (NVEF(I),I=1,4)/2, 2, 3, 4/
      DATA (INDEF(I),I=1,11)/1, 3, 1, 4, 1, 2, 5, 2, 3, 4, 5/
C
      CALL UMACH (2, NOUT)
C
      IDO    = 0
      ISTEP  = -1
      NSTEP  = 2
      NFORCE = 0
C
      CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP, NSTEP,
     &            NFORCE, IPRINT, NEF, NVEF, MAXNVF, INDEF, MAXIND,
     &            FIT, STAT, IEND)
C
      WRITE (NOUT,99999) IEND, NEF
      CALL WRIRN (’NVEF’, 1, NEF, NVEF, 1, 0)
      LIND = ISUM(NEF,NVEF,1)
      CALL WRIRN (’INDEF’, 1, LIND, INDEF, 1, 0)
      CALL WRRRN (’FIT’, 1, LTAB, FIT, 1, 0)
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C
99999 FORMAT (/, ’ IEND = ’, I3, ’   NEF = ’, I3)
      END

Output
 Variable   Number of Levels
 1 A              2
 2 B              2
 3 C              2
 4 D              2
 5 E              2

          ----------
   Table 1: A = 1 B = 1 C = 1
     D (row) by E (column)
               1       2
       1   33.00   32.00
       2    8.00    8.00

          ----------
   Table 2: A = 1 B = 1 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   1.000   0.000

          ----------
   Table 3: A = 1 B = 2 C = 1
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   0.000

          ----------
   Table 4: A = 1 B = 2 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   0.000

          ----------
   Table 5: A = 2 B = 1 C = 1
     D (row) by E (column)
               1       2
       1    2.00   10.00
       2    3.00    6.00

          ----------
   Table 6: A = 2 B = 1 C = 2
     D (row) by E (column)
               1       2
       1   1.000   2.000
       2   0.000   2.000

          ----------
   Table 7: A = 2 B = 2 C = 1
     D (row) by E (column)
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               1       2
       1   0.000   1.000
       2   0.000   4.000

          ----------
   Table 8: A = 2 B = 2 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   2.000

 ----------------------  Step: 0  ----------------------
 Input Model:  (A*C, A*D, A*B*E, B*C*D*E)
 Smallest p-value for removing effects      0.100
 Chi-squared                   9.07
 Degrees of Freedom             10.
 p-value                     0.5251

                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*C                       4.41           1      0.0358
 A*D                       6.56           1      0.0104
 A*B*E                     0.00           1      0.9912
 B*C*D*E                   0.00           1      0.9912
 Effect Removed: B*C*D*E

 ----------------------  Step: 1  ----------------------
 Model:  (A*C, A*D, A*B*E, B*C*D, B*C*E, B*D*E, C*D*E)
 Chi-squared                   9.07
 Degrees of Freedom             11.
 p-value                     0.6151

                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*C                       4.41           1      0.0358
 A*D                       6.56           1      0.0104
 A*B*E                     0.00           1      1.0000
 B*C*D                     0.53           1      0.4673
 B*C*E                     0.00           1      1.0000
 B*D*E                     0.00           1      1.0000
 C*D*E                     0.10           1      0.7522
 Effect Removed: B*C*E

 ----------------------  Step: 2  ----------------------
 Model:  (A*C, A*D, A*B*E, B*C*D, B*D*E, C*D*E)
 Chi-squared                   9.07
 Degrees of Freedom             12.
 p-value                     0.6966
 IEND =   0   NEF =   6

          NVEF
1   2   3   4   5   6
2   2   3   3   3   3

                            INDEF
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
1   3   1   4   1   2   5   2   3   4   2   4   5   3   4   5
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                                      FIT
    1      2       3       4       5      6       7        8       9      10
32.36  32.56    8.53    6.91    0.71    1.21    0.40    0.32    0.00    0.90

  11      12      13      14      15      16      17      18      19      20
0.00    0.75    0.00    0.27    0.00    0.09    2.64    9.44    2.47    7.09

  21      22      23      24      25      26      27      28      29      30
0.29    1.79    0.60    1.68    0.00    1.10    0.00    3.25    0.00    1.73

  31      32
0.00    1.91

CTRAN/DCTRAN (Single/Double precision)
Perform generalized Mantel-Haenszel tests in a stratified contingency table.

Usage
CALL CTRAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL, ITYPE,
            IROWSC, ICOLSC, IPRINT, ROWSCR, COLSCR, STAT,
            LDSTAT)

Arguments

NCLVAR — Number of classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number
of levels (categories) of the i-th classification variable.   (Input)

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR)
containing the entries in the cells of the table to be fit.   (Input)
See Comment 3 for comments on the ordering of the elements in TABLE. For the
classification variables specified in INDROW and INDCOL, a series of two-
dimensional contingency tables are obtained from the elements in TABLE. All
other classification variables are stratification variables.

INDROW — Index of the classification variable to be used for the row variable
in the stratified two-dimensional table.   (Input)

INDCOL — Index of the classification variable to be used for the column
variable in the stratified two-dimensional table.   (Input)

ITYPE — The type of statistic to compute.   (Input)

ITYPE Statistic
1 Generalized Mantel-Haenszel based upon the two-dimensional

contingency tables.
2 Generalized Mantel-Haenszel based upon the row mean score in the

two-dimensional table.
3 Generalized Mantel-Haenszel based upon the correlation score for the

two-dimensional tables.
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IROWSC — Option parameter giving the scores associated with the column
index to be used when computing statistics in each row.   (Input)

IROWSC Weights
0 User specified (or no) weights.
1 The digits 1, 2, …, NCLVAL(INDCOL).
2 Combined (over all tables) ridit-type scores.
3 Rank scores computed separately for each table.
4 Ridit-type scores computed separately for each table.
5 Logrank scores computed separately for each table.

IROWSC is not used if ITYPE = 1.

ICOLSC — Option parameter giving the scores associated with the row index to
be used when computing statistics in each column.   (Input)

ICOLSC Weights
0 User specified (or no) weights.
1 The digits 1, 2, …, NCLVAL(INDROW).
2 Combined (over all tables) ridit-type scores.
3 Rank scores computed separately for each table.
4 Ridit-type scores computed separately for each table.
5 Logrank scores computed separately for each table.

ICOLSC is not used if ITYPE is not 3.

IPRINT — Print option.   (Input)

IPRINT Action
0 No printing.
1 Print the contents of the STAT array.
2 Print each stratified table followed by the contents of the STAT array.

ROWSCR — Vector of length NCLVAL(INDCOL) containing the scores associated
with the column and used in each row.   (Input, if IROWSC = 0; output, otherwise)
ROWSCR is not used and can be dimensioned of length 1 in the calling program if
ITYPE = 1. If IROWSC is 3, 4, or 5, then ROWSCR contains the scores used in the
last contingency table analyzed.

COLSCR — Vector of length NCLVAL(INDROW) containing the scores associated
with each row and used in each column.   (Input, if ICOLSC = 0; output,
otherwise)
COLSCR is not used and can be dimensioned of length 1 in the calling program if
ITYPE is not 3. If ICOLSC is 3, 4, or 5, then COLSCR contains the scores used in
the last contingency table analyzed.

STAT — Table of size m by 3 containing the Mantel-Haenszel statistics.
(Output)
Where m is one plus the number of stratified tables, i.e., m = 1 + NCLVAL(1) *
NCLVAL(2) * … * NCLVAL(NCLVAR)/(NCLVAL(INDROW) * NCLVAL(INDCOL)).
The first column of STAT contains the chi-squared statistic for a test of partial
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association, the second column contains its degrees of freedom, and the third
column contains the probability of a greater chi-squared. The first m − 1 rows of
STAT contain the statistics computed for each of the stratified tables. The first row
corresponds to the classification stratification variable levels (1, 1, …, 1). The
second row corresponds to levels (1, 1, …, 2), etc., so that in row m − 1 all
stratification variables are at their highest levels. The last row of STAT contains
the same statistics pooled over all of the stratified tables.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTRAN NCLVAR + IR * IC + IC + IR + IT units, or
DCTRAN NCLVAR + 2(IR * IC + IC + IR + IT) units.

Here, IR= NCLVAL(INDROW), IC= NCLVAL(INDCOL), and

IT

IR IC IR IC

IR IC

IR IR
=

∗ − ∗ − + − ∗ −
− + − =

∗ + ∗ =
=

%
&
KK

'
KK

2 1 1 2 1 1

1 1 1

3 2 2

2 3

2

2 2

2

0 5 0 5 0 5 0 51 6
0 5 0 5 if ITYPE

if ITYPE

if ITYPE

Workspace may be explicitly provided, if desired, by use of
C2RAN/DC2RAN. The reference is

CALL C2RAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL,
            ITYPE, IROWSC, ICOLSC, IPRINT, ROWSCR,
            COLSCR, STAT, LDSTAT, IX, F, COLSUM,
            ROWSUM, DIFVEC, DIFSUM, COV, COVSUM,
            AWK, BWK)

The additional arguments are as follows:

IX — Work array of length NCLVAR.

F — Work array of length NCLVAL(INDROW) * NCLVAL(INDCOL).

COLSUM — Work array of length NCLVAL(INDCOL).

ROWSUM — Work array of length NCLVAL(INDROW).

DIFVEC — Work array. If ITYPE = 1, the length is (NCLVAL(INDROW) 
− 1) * (NCLVAL(INDCOL) − 1). For ITYPE = 2, the length is
NCLVAL(INDROW). For ITYPE = 3, DIFVEC is not used and may be of
length 1.

DIFSUM — Work array. If ITYPE = 1, the length is
(NCLVAL(INDROW) − 1) * (NCLVAL(INDCOL) − 1). DIFSUM contains
the sum of the tables containing the observed minus expected
frequencies (excluding the last row and column of each table). For
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ITYPE = 2, the length is NCLVAL(INDROW). DIFSUM contains the sum of
the table row mean scores minus their expected value. For ITYPE = 3,
the length is 1. DIFSUM contains the sum of the table correlations
between the row and column mean scores.   (Output)

COV — Work array. If ITYPE = 1, the length is

(NCLVAL(INDROW) − 1)2 * (INCLVA(INDCOL) − 1)2. For ITYPE = 2, the

length is NCLVAL(INDROW)2. For ITYPE = 3, COV is not used and may be
of length 1.

COVSUM — Work array. If ITYPE = 1, the length is (NCLVAL(INDROW) 

− 1)2 * (INCLVA(INDCOL) − 1)2. For ITYPE = 2, the length is

NCLVAL(INDROW)2. For ITYPE = 3, the length is 1.

AWK — Work array. If ITYPE = 1, the length is

(NCLVAL(INDROW) − 1)2. For ITYPE = 2, the length is NCLVAL(INDROW).
For ITYPE = 3, AWK is not used and may be of length 1.

BWK — Work array. If ITYPE = 1, the length is

(NCLVAL(INDCOL) − 1)2. For ITYPE= 2 or 3, BWK is not used and may
be of length 1.

2. Informational errors
Type  Code
   3    1 All frequencies of stratified table K are zero. This table

will be excluded from the Mantel-Haenszel test
statistic.

   3    2 The elements of stratified table K sum to one. This
table will be excluded from the Mantel-Haenszel test
statistic.

   3    3 The variance of the response variable for stratified
table K is zero.

   3    4 The variance of either the sub-population or the
response variable is zero for stratified table K.

   3    5 The label for table K exceeds the buffer limit of 72.

Here, K is an integer that is greater than or equal to one and less than or
equal to the number of stratified contingency tables.

3. The cells of the vectors TABLE are sequenced so that the first variable
cycles from 1 to NCLVAL(1) the slowest, the second variable cycles from
1 to NCLVAL(2) the next most slowly, and so on, up to the NCLVAR-th
variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest.
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and
NCLVAL(3) = 2 the cells of table X(I, J, K) are entered into TABLE(1)
through TABLE(12) in the following order:
X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1,
1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2).
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Algorithm

Routine CTRAN computes tests of partial association (a test of homogeneity, a test
on means, and a test on correlations) in stratified two-dimensional contingency
tables. The type of test computed depends upon parameter ITYPE. All tests are
generalizations of the Mantel-Haenszel stratified 2 × 2 contingency table test
statistic in the sense that information is “pooled” over all tables without
increasing the total degrees of freedom in the test. Like the Mantel-Haenszel test,
if all tables violate the null hypothesis in the same direction, the tests computed
here are more powerful than most other tests of the same null hypothesis.

While CTRAN allows for an arbitrary number of classification variables, only three
are required to describe the test statistics since all stratification variables could be
(if desired) lumped into a single classification variable. Because of this, only
three classification variables are discussed here. Let fLMN denote the frequency in

cell LM�of stratum k where k = 1, …, m, i = 1, …, r, and j = 1, …, c. Then, the input
data can be described as a series of contingency tables. For example, if r = c = 2,
so that 2 × 2 tables are used, then we would have:

f111 f121 f112 f122 … f11P f12P

f211 f221 f212 f222 f21P f22P

All tests are computed as follows: For each table, a test statistic vector xk with
estimated covariance matrix

$∑k

is computed. The test statistic vector xN represents the mean difference (from the
null hypothesis) for the test being computed. Thus, if ITYPE = 1, xN is a vector of
cell frequencies minus their expected value under the hypothesis of homogeneity
while if ITYPE = 2, xN is a vector containing the row means (based upon the row
scores) for the elements in a row of a table minus the estimated mean for the table
(estimated under the assumption that all means are equal). Finally, if ITYPE = 3,
xN is a vector of length 1 containing an estimated correlation coefficient computed
between the row and column scores.

Note that for nominal data in both the rows and columns, one would generally use
ITYPE = 1 while if an ordering (and scores) make sense for each row of a table,
ITYPE = 2 would be used. If an ordering (and scores) make sense for both the
rows and the columns of a table, then a correlation measure (ITYPE = 3) is
appropriate.

Test statistics for each table are computed as

χk k
T

k kx x2 1= ∑−$

which has degrees of freedom (r − 1)(c − 1) when ITYPE = 1, r − 1 when
ITYPE = 2, and 1 for ITYPE = 3. While these test statistics could be combined
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by summing them over all tables (yielding a χ2 test with m times the of degrees of
freedom in a single table), the Mantel-Haenszel test combines the scores in a
different way. Let

x xk k k k= ∑ ∑ = ∑ ∑,  and let $ $

Then, an overall χ2 may be computed as

x xT $∑−1

This test statistic has the same degrees of freedom as the test statistic computed
for a single stratum of the three-way table and is reported in the last row of STAT.
Routine CTRAN uses simplified computational methods. See Landis, Cooper,
Kennedy, and Koch (1979) for details.

Landis, Cooper, Kennedy, and Koch (1979, page 225) give the null hypothesis
for a test of partial association as follows (paraphrased):

H0 : For each of the separate tables, the data in the respective rows of the
table can be regarded as a successive set of simple random samples from
a fixed population corresponding to the column marginal totals for the
table.

All three tests above are tests of partial association.

For ITYPE= 2 and 3, different row and column (ITYPE = 3) scores are used in
computing measures of location and association. The scores used by CTRAN for
the rows are

1. For IROWSC = 0, the user supplies the scores to be used in each row of
the table.

2. For IROWSC = 1, uniform scores are used. These scores consist of the
digits 1, 2, …, c where c is the number of columns in each table.

3 For IROWSC = 2, combined ridit scores are used. A combined ridit score
is computed by summing the column marginals over all tables. The
combined row score for the j-th column is then computed as the sum of
the initial j − 1 column marginals plus half of the j-th column marginal.
The result is divided by the number of observations in all tables to yield
the ridit score.

4. For IROWSC = 3, marginal rank scores are used. The j-th marginal rank
score is computed for each table from the column marginals for that
table as the sum of the initial j − 1 column marginals plus half the j-th
column marginal.

5. For IROWSC = 4, marginal ridit scores are used. These are computed as
the marginal rank scores divided by the total frequency in the table.

6. For IROWSC = 5, logrank scores are used. These are computed as
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c
f

f
jk

lk

i l
c

ikl

j

= −
∑

+

= +=
∑1

1

where f+ON is the column marginal for column l in table k.

Column scores are computed in a similar manner.

Example

In the following example, all three values of ITYPE are used in computing the
partial association statistics. This is accomplished via three calls to CTRAN. The
value of ITYPE changes on each call. The example is taken from Landis, Cooper,
Kennedy, and Koch (1979, page 241). Uniform scores are used in both the rows
and column as required by the tests type. The results indicate the presence of
association between the row and column variables.

      INTEGER    ICOLSC, INDCOL, INDROW, IROWSC, LDSTAT, NCLVAR
      PARAMETER  (ICOLSC=1, INDCOL=1, INDROW=3, IROWSC=1, LDSTAT=5,
     &           NCLVAR=3)
C
      INTEGER    IPRINT, ITYPE, NCLVAL(NCLVAR), NOUT
      REAL       COLSCR(4), ROWSCR(3), STAT(LDSTAT,3), TABLE(48)
      EXTERNAL   CTRAN, UMACH
C
      DATA TABLE/23, 23, 20, 24, 18, 18, 13, 9, 8, 12, 11, 7, 12, 15,
     &     14, 13, 7, 10, 13, 10, 6, 6, 13, 15, 6, 4, 6, 7, 9, 3, 8,
     &     6, 2, 5, 5, 6, 1, 2, 2, 2, 3, 4, 2, 4, 1, 2, 3, 4/
      DATA NCLVAL/3, 4, 4/
C
      IPRINT = 2
      CALL UMACH (2, NOUT)
      DO 10  ITYPE=1, 3
         CALL CTRAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL, ITYPE,
     &               IROWSC, ICOLSC, IPRINT, ROWSCR, COLSCR, STAT,
     &               LDSTAT)
         IPRINT = 1
C
   10 CONTINUE
      END

Output
 Values for the class variables are defined to be:
 Variable   Number of Levels
 1 A              3
 2 B              4
 3 C              4

        ----------
     Strata 1: B = 1
   C (row) by A (column)
         1       2       3
 1   23.00    7.00    2.00
 2   23.00   10.00    5.00
 3   20.00   13.00    5.00
 4   24.00   10.00    6.00
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        ----------
     Strata 2: B = 2
   C (row) by A (column)
         1       2       3
 1   18.00    6.00    1.00
 2   18.00    6.00    2.00
 3   13.00   13.00    2.00
 4    9.00   15.00    2.00

        ----------
     Strata 3: B = 3
   C (row) by A (column)
         1       2       3
 1    8.00    6.00    3.00
 2   12.00    4.00    4.00
 3   11.00    6.00    2.00
 4    7.00    7.00    4.00

        ----------
     Strata 4: B = 4
   C (row) by A (column)
         1       2       3
 1   12.00    9.00    1.00
 2   15.00    3.00    2.00
 3   14.00    8.00    3.00
 4   13.00    6.00    4.00
 Test of independence between row and column variables

                          Degrees of
     Strata  Chi-Squared     Freedom  Probability
          1          3.4           6       0.7575
          2         10.8           6       0.0942
          3          3.1           6       0.7987
          4          5.2           6       0.5177

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         10.6           6       0.1016
 Test of equality of location for rows given column scores

                            Degrees of
       Strata  Chi-Squared     Freedom  Probability
            1         2.62           3       0.4536
            2         7.34           3       0.0617
            3         1.69           3       0.6381
            4         1.68           3       0.6420

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         6.59           3      0.08618
       Row Scores
      1       2       3
  1.000   2.000   3.000
 Test of correlation given row and column scores

                       Degrees of
  Strata  Chi-Squared     Freedom  Probability
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       1         1.57           1       0.2105
       2         7.06           1       0.0079
       3         0.16           1       0.6927
       4         0.66           1       0.4161

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         6.34           1       0.0118
       Row Scores
      1       2       3
  1.000   2.000   3.000

          Column Scores
      1       2       3       4
  1.000   2.000   3.000   4.000

CTGLM/DCTGLM (Single/Double precision)
Analyze categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Usage
CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ,
            IFIX, IPAR, ICEN, INFIN, MAXIT, EPS, INTCEP,
            NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, IPRINT,
            MAXCL, NCLVAL, CLVAL, NCOEF, COEF, LDCOEF,
            ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR,
            IADD, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

MODEL — Model option parameter.   (Input)
MODEL specifies the distribution of the response variable and the function used to
model the distribution parameter. The lower-bound given in the following table is
the minimum possible value of the response variable.

MODEL Distribution Function Lower-bound
0 Poisson     Exponential 0
1 Neg. Binomial Logistic    0
2 Logarithmic Logistic    1
3 Binomial Logistic    0
4 Binomial Probit     0
5 Binomial Log-log     0
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Let γ be the dot product of a row in the design matrix with the parameters (plus
the fixed parameter, if used). Then, the functions used to model the distribution
parameter are given by:

Name      Function
Exponential  exp(γ)
Logistic     exp(γ)/(1 + exp(γ))
Probit      Normal(γ) (normal cdf)
Log-log     1 − exp(−γ)

ILT — For full-interval and left-interval observations, the column number in X

that contains the upper endpoint of the observation interval.   (Input)
See argument ICEN. If ILT = 0, left-interval and full-interval observations cannot
be input.

IRT — For full-interval and right-interval observations, the column number in X

that contains the lower endpoint of the interval.   (Input)
For point observations, X(i, IRT) contains the observation point. IRT must not be
zero. See argument ICEN. In the usual case, all observations are “point”
observations (see argument ICEN).

IFRQ — Column number in X containing the frequency of response for each
observation.   (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed.

IFIX — Column number in X containing a fixed parameter for each observation
that is added to the linear response prior to computing the model parameter.
(Input)
The “fixed” parameter allows one to test hypothesis about the parameters via the
log-likelihoods. If IFIX = 0, the fixed parameter is assumed to be 0.

IPAR — Column number in X containing an optional distribution parameter for
each observation.   (Input)
If IPAR = 0, the distribution parameter is assumed to be 1. The meaning of the
distributional parameter depends upon MODEL as follows:

MODEL Meaning of X(i, IPAR)
0 The Poisson parameter is given by X(i, IPAR) * exp(γ).
1 The number of successes required in the negative binomial is given by

X(i, IPAR).
2 X(i, IPAR) is not used.
3−5 The number of trials in the binomial distribution is given by X(i, IPAR).

ICEN — Column number in X containing the interval-type for each observation.
(Input)
If ICEN = 0, a code of 0 is assumed. Valid codes are

X(i, ICEN) Censoring
0 Point observation. The response is unique and is given by

X(i, IRT).
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1 Right-interval. The response is greater than or equal to
X(i, IRT) and less than or equal to the upper bound, if any, of
the distribution.

2 Left-interval. The response is less than or equal to X(i, ILT) and
greater than or equal to the lower bound of the distribution.

3 Full-interval. The response is greater than or equal to X(i, IRT),
but less than or equal to X(i, ILT).

INFIN — Method to be used for handling infinite estimates.   (Input)

INFIN Method

0 Remove a right or left-censored observation from the log-likelihood
whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have an estimated linear response that is infinite.
Set IADD(i) for observation i to 2 if the linear response is infinite. If not
all removed observations have infinite linear response, recompute the
estimates based upon the observations with estimated linear response
that is finite.

1 Iterate without checking for infinite estimates.

See the “Algorithm” section for more discussion.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is usually sufficient. Use MAXIT = 0 to compute the Hessian, stored
in COV, and the Newton step, stored in GR, at the initial estimates.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum relative change in any coefficient
estimate is less than EPS from one iteration to the next or when the relative
change in the log-likelihood, ALGL, from one iteration to the next is less than
EPS/100. If EPS is negative, EPS = 0.001 is assumed.

INTCEP — Intercept option.   (Input)

INTCEP Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 Intercept is automatically included in the model.

NCLVAR — Number of classification variables.   (Input)
Dummy or indicator variables are generated for classification variables using the
IDUMMY = 2 option of IMSL routine GRGLM (page 210). See Comment 3.

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are classification variables.   (Input, if NCLVAR is positive; not used
otherwise)
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in
the calling program.
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NEF — Number of effects in the model.   (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input, if NEF is positive; not used otherwise)
If NEF is zero, NVEF is not used and can be dimensioned of length 1 in the calling
program.

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF)
containing the column numbers in X associated with each effect.(Input, if NEF is
positive, not used otherwise) The first NVEF(1) elements of INDEF give the
column numbers of the variables in the first effect. The next NVEF(2) elements
give the column numbers for the second effect, etc. If NEF is zero, INDEF is not
used and can be dimensioned of length 1 in the calling program.

INIT — Initialization option.   (Input)

INIT Action
0 Unweighted linear regression is used to obtain initial estimates.
1 The NCOEF elements in the first column of COEF contain initial estimates

of the parameters on input to SVGLM (requiring that the user know
NCOEF prior to calling SVGLM).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed, but observational statistics are not printed.
2 All output statistics are printed.

MAXCL — An upper bound on the sum of the number distinct values taken on by
each classification variable.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken by
each classification variable.(Output, if NCLVAR is positive; not used otherwise)
NCLVAL(i) is the number of distinct values for the i-th classification variable. If
NCLVAR is zero, NCLVAL is not used and can be dimensioned of length 1 in the
calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the distinct values of the classification variables in ascending order.
(Output, if NCLVAR is positive; not used otherwise)
Since in general the length of CLVAL will not be known in advance, MAXCL (an
upper bound for this length) should be used for purposes of dimensioning CLVAL.
The first NCLVAL(1) elements of CLVAL contain the values for the first
classification variables, the next NCLVAL(2) elements contain the values for the
second classification variable, etc. If NCLVAR is zero, then CLVAL is not
referenced and can be dimensioned of length 1 in the calling program.

NCOEF — Number of estimated coefficients in the model.   (Output)
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COEF — NCOEF by 4 matrix containing the parameter estimates and associated
statistics.   (Output, if INIT = 0; input, if INIT = 1 and MAXIT = 0; input/output,
if INIT = 1 and MAXIT > 0)

Col. Statistic
1 Coefficient estimate.
2 Estimated standard deviation of the estimated coefficient.
3 Asymptotic normal score for testing that the coefficient is zero.
4 p-value associated with the normal score in column 3.

When INIT = 1, only the first column needs to be specified on input.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

ALGL — Optimized criterion.   (Output)
The criterion to be maximized is a constant plus the log-likelihood.

COV — NCOEF by NCOEF matrix containing the estimated asymptotic covariance
matrix of the coefficients.   (Output)
For MAXIT = 0, this is the Hessian computed at the initial parameter estimates.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

XMEAN — Vector of length NCOEF containing the means of the design variables.
(Output)

CASE — NOBS by 5 vector containing the case analysis.   (Output)

Col. Statistic
1 Predicted parameter.
2 The residual.
3 The estimated standard error of the residual.
4 The estimated influence of the observation.
5 The standardized residual.

Case statistics are computed for all observations except where missing values
prevent their computation.

The predicted parameter in column 1 depends upon MODEL as follows.

MODEL Parameter
0 The predicted mean for the observation
1−5 The probability of a success on a single trial

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

GR — Vector of length NCOEF containing the last parameter updates (excluding
step halvings).   (Output)
For MAXIT = 0, GR contains the inverse of the Hessian times the gradient vector,
all computed at the initial parameter estimates.
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IADD — Vector of length NOBS indicating which observations are included in the
extended likelihood.   (Output, if MAXIT > 0; input/output, if MAXIT = 0)

Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the likelihood because it contains at least one

missing value in X.
2 Observation i is not in the likelihood. Its estimated parameter is infinite.

For MAXIT = 0, the IADD array must be initialized prior to calling
CTGLM.

In this case, some elements of IADD may be set to 1, by CTGLM, but no check for
infinite estimates performed.

NRMISS — Number of rows of data in X that contain missing values in one or
more columns ILT, IRT, IFRQ, IFIX, IPAR, ICEN, INDCL, or INDEF of X.
(Output)

Comments

1. Automatic workspace usage is

CTGLM 7 * NMAX + NCOEF + NCOEF * NMAX units if INFIN = 0 or
NCOEF units if INFIN = 1, or

DCTGLM 11 * NMAX+ 2 * NCOEF+ 2 * NCOEF * NMAX units if INFI = 0,
or 2 * NCOEF units if INFIN = 1. NMAX is defined below.

Workspace may be explicitly provided, if desired, by use of
C2GLM/DC2GLM. The reference is

CALL C2GLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT,
            IFRQ, IFIX, IPAR, ICEN, INFIN, MAXIT,
            EPS, INTCEP, NCLVAR, INDCL, NEF, NVEF,
            INDEF, INIT, IPRINT, MAXCL, NCLVAL,
            CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
            LDCOV, XMEAN, CASE, LDCASE, GR, IADD,
            NRMISS, NMAX, OBS, ADDX, XD, WK, KBASIS)

The additional arguments are as follows.

NMAX — Maximum number of observations that can be handled in the
linear programming.   (Input)
If workspace is not explicitly provided, NMAX is set to NMAX = (n −
8)/(7 + NCOEF) in CTGLM and NMAX = (n − 16)/(11 + 2 * NCOEF) in
DCTGLM where n is the maximum number of units of workspace
available after allocating space for OBS. In the typical problem, no linear
programming is performed so that NMAX = 1 is sufficient. NMAX = NOBS
is always sufficient. Even when extended maximum likelihood estimates
are computed, NMAX = 30 will usually suffice. If INFIN = 1, set NMAX =
0.

OBS — Work vector of length NCOEF + 1.
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ADDX — Logical work vector of length NMAX. ADDX is not needed and
can be a array of length 1 in the calling program if NMAX = 0.

XD — Work vector of length NMAX * NCOEF. XD is not needed and can
be a array of length 1 in the calling program if NMAX = 0.

WK — Work vector of length 4 * NMAX. WK is not needed and can be a
array of length 1 in the calling program if NMAX = 0.

KBASIS — Work vector of length 2 * NMAX. KBASIS is not needed and
can be a array of length 1 in the calling program if NMAX = 0.

2 Informational errors
Type Code
   3    1 There were too many iterations required. Convergence

is assumed.
   3    2 There were too many step halvings. Convergence is

assumed.
   4    3 The number of distinct values of the classification

variables exceeds MAXCL.
   4    4 The number of distinct values of a classification must

be greater than one.
   4    5 LDCOEF or LDCOV must be greater than or equal to

NCOEF.
   4    6 The number of observations to be deleted has

exceeded NMAX. Rerun with a different model or
increase the workspace.

3. Dummy variables are generated for the classification variables as
follows: An ascending list of all distinct values of each classification
variable is obtained and stored in CLVAL. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
is one. See argument IDUMMY for IDUMMY = 2 in routine GRGLM (page
210) in Chapter 2.

4. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Algorithm

Routine CTGLM uses iteratively reweighted least squares to compute (extended)
maximum likelihood estimates in some generalized linear models involving
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categorized data. One of several models, including the probit, logistic, Poisson,
logarithmic, and negative binomial models, may be fit for input point or interval
observations. (In the usual case, only point observations are observed.)

Let

γ β ηi i i
T

i iw x w= + = +
be the linear response where xL is a design column vector obtained from a row of

X, β is the column vector of coefficients to be estimated, and wL is a fixed

parameter that may be input in X. When some of the γL are infinite at the
supremum of the likelihood, then extended maximum likelihood estimates are
computed. Extended maximum likelihood are computed as the finite (but

nonunique) estimates $β  that optimize the likelihood containing only the

observations with finite $γ i . These estimates, when combined with the set of

indices of the observations such that $γ i  is infinite at the supremum of the

likelihood, are called extended maximum estimates. When none of the optimal
$γ i  are infinite, extended maximum likelihood estimates are identical to maximum

likelihood estimates. Extended maximum likelihood estimation is discussed in
more detail by Clarkson and Jennrich (1991). In CTGLM, observations with
potentially infinite

$ $η βi i
Tx=

are detected and removed from the likelihood if INFIN = 0. See below.

The models available in CTGLM are

MODEL Name Parameterization PDF

0 Poisson λ η= ∗ +N wexp0 5 f y yy0 5 0 5= −λ λexp / !

1 Neg. Bin.
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Here, Φ denotes the cumulative normal distribution, N and S are known
parameters specified for each observation via column IPAR of X, and w is an
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optional fixed parameter specified for each observation via column IFIX of X. (If
IPAR = 0, then N is taken to be 1 for MODEL = 0, 3, 4 and 5 and S is taken to be 1
for MODEL = 1. If IFIX = 0, then w is taken to be 0.) Since the log-log model
(MODEL = 5) probabilities are not symmetric with respect to 0.5, quantitatively, as
well as qualitatively, different models result when the definitions of “success” and
“failure” are interchanged in this distribution. In this model and all other models
involving θ, θ is taken to be the probability of a “success.”

Note that each row vector in the data matrix can represent a single observation;
or, through the use of column IFRQ of the matrix X, each vector can represent
several observations. Also note that classification variables and their products are
easily incorporated into the models via the usual regression-type specifications.

Computational Details

For interval observations, the probability of the observation is computed by
summing the probability distribution function over the range of values in the
observation interval. For right-interval observations, Pr(Y ≥ y) is computed as a
sum based upon the equality Pr(Y ≥ y) = 1 − Pr(Y < y). Derivatives are computed
similarly. CTGLM allows three types of interval observations. In full interval
observations, both the lower and the upper endpoints of the interval must be
specified. For right-interval observations, only the lower endpoint need be given
while for left-interval observations, only the upper endpoint is given.

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2 Estimates of the means of the “independent” or design variables are
computed. The frequency of the observation in all but binomial
distribution models is taken from column IFRQ of the data matrix X. In
binomial distribution models, the frequency is taken as the product of
n = X(I, IPAR) and X(I, IFRQ). In all cases, if IFRQ = 0, or IPAR = 0,
these values default to 1. Means are computed as

x
f x

f
i i i

i i
=

∑
∑

3. If INIT= 0, initial estimates of the coefficients are obtained (based upon
the observation intervals) as multiple regression estimates relating
transformed observation probabilities to the observation design vector.
For example, in the binomial distribution models, θ for point
observations may be estimated as

$ , / ,θ = X I IRT X I IPAR0 5 0 5
and, when MODEL = 3, the linear relationship is given by
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ln $ / $θ θ β1 − ≈4 94 94 9X

while if MODEL = 4,

Φ− =1 $θ β4 94 9X

For bounded interval observations, the midpoint of the interval is used
for X(I, IRT). Right-interval observations are not used in obtaining
initial estimates when the distribution has unbounded support (since the
midpoint of the interval is not defined). When computing initial
estimates, standard modifications are made to prevent illegal operations
such as division by zero.

Regression estimates are obtained at this point, as well as later, by use of
routine RGIVN (page 107).

4. Newton-Raphson iteration for the maximum likelihood estimates is
implemented via iteratively reweighted least squares. Let

Ψ xi
Tβ3 8

denote the log of the probability of the i-th observation for coefficients β
. In the least-squares model, the weight of the i-th observation is taken as
the absolute value of the second derivative of

Ψ xi
Tβ3 8

with respect to

γ βi i
Tx=

(times the frequency of the observation), and the dependent variable is
taken as the first derivative Ψ with respect to γL, divided by the square
root of the weight times the frequency. The Newton step is given by

∆β Ψ Ψ=
�
��

�
��∑ ∑

−
" ’γ γi i i

T

i
i

i
ix x x1 6 1 6

1

where all derivatives are evaluated at the current estimate of γ, and
βQ+1 = βQ − ∆β. This step is computed as the estimated regression
coefficients in the least-squares model. Step halving is used when
necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than EPS or when
the relative change in the log-likelihood from one iteration to the next is
less than EPS/100. Convergence is also assumed after MAXIT
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iterations or when step halving leads to a step size of less than .0001
with no increase in the log-likelihood.

6. For interval observations, the contribution to the log-likelihood is the log
of the sum of the probabilities of each possible outcome in the interval.
Because the distributions are discrete, the sum may involve many terms.
The user should be aware that data with wide intervals can lead to
expensive (in terms of computer time) computations.

7. If requested (INFIN = 0), then the methods of Clarkson and Jennrich
(1991) are used to check for the existence of infinite estimates in

η βi i
Tx=

As an example of a situation in which infinite estimates can occur,
suppose that observation j is right censored with tM > 15 in a logistic

model. If design matrix X is is such that xMP = 1 and xLP = 0 for all i ≠ j,

then the optimal estimate of βP occurs at

$βm = ∞

leading to an infinite estimate of both βPand ηM. In CTGLM, such
estimates may be “computed.”

In all models fit by CTGLM, infinite estimates can only occur when the
optimal estimated probability associated with the left- or right-censored
observation (or binomial observations with 0 or n successes in n trials) is
1. If INFIN = 0, left- or right- censored observations that have estimated
probability greater than 0.995 at some point during the iterations are
excluded from the log-likelihood, and the iterations proceed with a log-
likelihood based upon the remaining observations. This allows
convergence of the algorithm when the maximum relative change in the
estimated coefficients is small and also allows for the determination of
observations with infinite

η βi i
Tx=

At convergence, linear programming is used to ensure that the
eliminated observations have infinite ηL. If some (or all) of the removed
observations should not have been removed (because their estimated
ηL’s must be finite), then the iterations are restarted with a log-likelihood

based upon the finite ηL observations. See Clarkson and Jennrich (1991)
for more details.

When INFIN = 1, no observations are eliminated during the iterations.
In this case, when infinite estimates occur, some (or all) of the

coefficient estimates $β  will become large, and it is likely that the
Hessian will become (numerically) singular prior to convergence.
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When infinite estimates for the $η j  are detected, routine RGIVN

(page 107) is used at the convergence of the algorithm to obtain unique

estimates $β  This is accomplished by regressing the optimal $η j  or the

observations with finite η against Xβ, yielding a unique $β  (by setting

coefficients $β  that are linearly related to previous coefficients in the

model to zero). All of the final statistics relating to $β  are based upon
these estimates.

8. Residuals are computed according to methods discussed by Pregibon
(1981). Let lL(γL) denote the log-likelihood of the i-th observation

evaluated at γL. Then, the standardized residual is computed as

ri
i i

i i

=
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where $γ i  is the value of γL when evaluated at the optimal $β  and the

derivatives here (and only here) are with respect to γ rather than with
respect to β. The denominator of this expression is used as the “standard
error of the residual” while the numerator is the “raw” residual.

Following Cook and Weisberg (1982), we take the influence of the i-th
observation to be

l l li i
T

i
’ $ " $ ’ $γ γ γ1 6 1 6 1 6−1

This quantity is a one-step approximation to the change in the estimates
when the i-th observation is deleted. Here, the partial derivatives are
with respect to β.

Programming Notes

1. Classification variables are specified via arguments NCLVAR and INDCL.
Indicator or dummy variables are created for the classification variables
using routine GRGLM (page 210) with IDUMMY = 2.

2. To enhance precision “centering” of covariates is performed if
INTCEP = 1 and NOBS − NRMISS > 1. In doing so, the sample means of
the design variables are subtracted from each observation prior to its
inclusion in the model. On convergence the intercept, its variance and its
covariance with the remaining estimates are transformed to the
uncentered estimate values.

3 Two methods for specifying a binomial distribution model are possible.
In the first method, X(I, IFRQ) contains the frequency of the observation
while X(I, IRT) is 0 or 1 depending upon whether the observation is a
success or failure. In this case, N = X(I, IPAR) is
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always 1. The model is treated as repeated Bernoulli trials, and interval
observations are not possible.

A second method for specifying binomial models is to use X(I, IRT) to
represent the number of successes in the X(I, IPAR) trials. In this case,
X(I, IFRQ) will usually be 1, but it may be greater than 1, in which case
interval observations are possible.

Example

The first example is from Prentice (1976) and involves the mortality of beetles
after exposure to various concentrations of carbon disulphide. Both a logit and a
probit fit are produced for linear model

µ + βx

The data is given as:

Covariate(x) N y

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

      INTEGER    ICEN, IFIX, IFRQ, ILT, INIT, INTCEP, IPAR, IRT,
     &           LDCASE, LDCOEF, LDCOV, LDX, MAXCL, MAXIT, NCLVAR,
     &           NCOL, NEF, NOBS
      REAL       EPS
      LOGICAL    INFIN
      PARAMETER  (EPS=0.0001, ICEN=0, IFIX=0, IFRQ=0, ILT=0, INIT=0,
     &           INTCEP=1, IPAR=2, IRT=3, LDCASE=8, LDCOEF=2, LDCOV=2,
     &           LDX=8, MAXCL=1, MAXIT=30, NCLVAR=0, NCOL=3, NEF=1,
     &           NOBS=8, INFIN=.TRUE.)
C
      INTEGER    IADD(NOBS), INDCL(MAXCL), INDEF(1), IPRINT, MODEL,
     &           NCLVAL(1), NCOEF, NRMISS, NVEF(1)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(1), COEF(LDCOEF,4),
     &           COV(LDCOV,4), GR(2), X(LDX,NCOL), XMEAN(2)
      EXTERNAL   CTGLM, WRIRL
C
      DATA NVEF/1/, INDEF/1/
      DATA X/1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883,
     &     59, 60, 62, 56, 63, 59, 62, 60, 6, 13, 18, 28, 52, 53, 61,
     &     60/
C
      IPRINT = 2
      DO 10  MODEL=3, 4
         CALL WRIRL (’%/’, 1, 1, MODEL, 1, 0, ’(I1)’, ’Model =’, ’NONE’)
         CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
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     &               IPAR, ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR,
     &               INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL,
     &               NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
     &               LDCOV, XMEAN, CASE, LDCASE, GR, IADD, NRMISS)
         IPRINT = 1
   10 CONTINUE
C
      END

Output
Model =  3

Initial Estimates
     1       2
-63.27   35.84

Method  Iteration  Step size  Maximum scaled         Log
                                coef. update      likelihood
   Q-N        0                                   -20.31
   Q-N        1      1.0000      0.1387           -19.25
   N-R        2      1.0000      0.6112E-01       -18.89
   N-R        3      1.0000      0.7221E-01       -18.78
   N-R        4      1.0000      0.6362E-03       -18.78
   N-R        5      1.0000      0.3044E-06       -18.78

Log-likelihood       -18.77818

                  Coefficient Statistics
                      Standard    Asymptotic    Asymptotic
     Coefficient         Error   Z-statistic       P-value
 1        -60.76          5.21        -11.66          0.00
 2         34.30          2.92         11.76          0.00

 Asymptotic Coefficient Covariance
                 1             2
   1    0.2714E+02   -0.1512E+02
   2                  0.8505E+01

                             Case Analysis
                                   Residual                Standardized
      Predicted      Residual    Std. Error      Leverage      Residual
1         0.058         2.593         1.792         0.267         1.448
2         0.164         3.139         2.871         0.347         1.093
3         0.363        -4.498         3.786         0.311        -1.188
4         0.606        -5.952         3.656         0.232        -1.628
5         0.795         1.890         3.202         0.269         0.590
6         0.902        -0.195         2.288         0.238        -0.085
7         0.956         1.743         1.619         0.198         1.077
8         0.979         1.278         1.119         0.138         1.143

Last Coefficient Update
        1           2
1.104E-07  -2.295E-07

Covariate Means
    1.793
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      Observation Codes
1   2   3   4   5   6   7   8
0   0   0   0   0   0   0   0

Number of Missing Values           0

Model =  4

Log-likelihood       -18.23232

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         Error   Z-statistic       P-value
1        -34.94          2.65        -13.17          0.00
2         19.74          1.49         13.29          0.00

Note that the probit model yields a slightly smaller absolute log-likelihood and,
thus, is preferred. For this data, a model based upon the log-log transformation
function is even better. See Prentice (1976) for details.

As a second example, the following data illustrate the Poisson model when all
types of interval data are present. The example also illustrates the use of
classification variables and the detection of potentially infinite estimates (which
turn out here to be finite). These potential estimates lead to the two iteration
summaries. The input data is

Column
ILT IRT ICEN Class 1 Class 2

0 5 0 1 0

9 4 3 0 0

0 4 1 0 0

9 0 2 1 1

0 1 0 0 1

A linear model

µ + β1x1 +  β2x2

is fit where x1 = 1 if the Class 1 variable is 0, x1 = 0, otherwise, and the x2
variable is similarly defined.

      INTEGER    ICEN, IFIX, IFRQ, ILT, INFIN, INIT, INTCEP, IPAR,
     &           IPRINT, IRT, LDCASE, LDCOEF, LDCOV, LDX, MAXCL,
     &           MAXIT, MODEL, NCLVAR, NCOL, NEF, NOBS
      REAL       EPS
      PARAMETER  (EPS=0.001, ICEN=3, IFIX=0, IFRQ=0, ILT=1, INFIN=0,
     &           INIT=0, INTCEP=1, IPAR=2, IPRINT=2, IRT=2, LDCASE=5,
     &           LDCOEF=4, LDCOV=4, LDX=5, MAXCL=4, MAXIT=30, MODEL=0,
     &           NCLVAR=2, NCOL=5, NEF=2, NOBS=5)
C
      INTEGER    IADD(NOBS), INDCL(NCLVAR), INDEF(2), NCLVAL(MAXCL),
     &           NCOEF, NRMISS, NVEF(NEF)



IMSL STAT/LIBRARY Chapter 5: Categorical and Discrete Data Analysis • 525

      REAL       ALGL, CASE(LDCASE,5), CLVAL(4), COEF(LDCOEF,4),
     &           COV(LDCOV,4), GR(5), X(LDX,NCOL), XMEAN(3)
      EXTERNAL   CTGLM
C
      DATA INDCL/4, 5/, NVEF/1, 1/, INDEF/4, 5/
      DATA X/0, 9, 0, 9, 0, 5, 4, 4, 0, 1, 0, 3, 1, 2, 0, 1, 0, 0, 1,
     &     0, 0, 0, 0, 1, 1/
C
      CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
     &            IPAR, ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR,
     &            INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL,
     &            NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
     &            LDCOV, XMEAN, CASE, LDCASE, GR, IADD, NRMISS)
C
      END

Output
Initial Estimates
     1        2        3
0.2469   0.4463  -0.0645

Method  Iteration  Step size  Maximum scaled        Log
                               coef. update      likelihood
  Q-N        0                                   -3.529
  Q-N        1      0.2500       5.168           -3.262
  N-R        2      0.0625       183.4           -3.134
  N-R        3      1.0000      0.7438           -3.006
  N-R        4      1.0000      0.2108           -3.005
  N-R        5      1.0000      0.5559E-02       -3.005

Method  Iteration  Step size  Maximum scaled        Log
                               coef. update      likelihood
  Q-N        0                                   -3.529
  Q-N        1      0.2500       5.168           -3.262
  N-R        2      0.0625       183.4           -3.217
  N-R        3      1.0000       1.128           -3.116
  N-R        4      1.0000      0.1673           -3.115
  N-R        5      1.0000      0.4418E-02       -3.115

Log-likelihood       -3.114638

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         Error   Z-statistic       P-value
1        -0.549         1.061        -0.517         0.605
2         0.549         0.610         0.900         0.368
3         0.549         1.083         0.507         0.612

     Asymptotic Coefficient Covariance
              1             2             3
1    0.1125E+01   -0.3719E+00   -0.1172E+01
2                  0.3719E+00    0.1719E+00
3                                0.1172E+01
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                             Case Analysis
                                   Residual                Standardized
      Predicted      Residual    Std. Error      Leverage      Residual
1         5.000         0.000         2.236         1.000         0.000
2         6.925        -0.412         2.108         0.764        -0.196
3         6.925         0.412         1.173         0.236         0.351
4         0.000         0.000         0.000         0.000           NaN
5         1.000         0.000         1.000         1.000         0.000

      Last Coefficient Update
         1           2           3
-2.924E-07  -1.131E-08   7.075E-07

Covariate Means
     1        2
0.6000   0.6000

Distinct Values For Each Class Variable
Variable  1:      0.         1.0
Variable  2:      0.         1.0

Observation Codes
1   2   3   4   5
0   0   0   0   0

Number of Missing Values           0

CTWLS/DCTWLS (Single/Double precision)
Perform a generalized linear least-squares analysis of transformed probabilities in
a two-dimensional contingency table.

Usage
CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN,
            ISIZE, AMATS, NCOEF, X, LDX, NUMH, NH, H, LDH,
            IPRINT, CHSQ, LDCHSQ, COEF, LDCOEF, COVCF,
            LDCOVC, F, COVF, LDCOVF, RESID, LDRESI)

Arguments

NRESP — Number of cells in each population.   (Input)

NPOP — Number of populations.   (Input)

TABLE — NRESP by NPOP matrix containing the frequency count in each cell of
each population.   (Input)
The i-th column of TABLE contains the counts for the i-th population.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

NTRAN — Number of transformations to be applied to the cell probabilities.
(Input)
Cell probabilities are computed as the frequency count for the cell divided by the
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population sample size. Set NTRAN = 0 if a linear model predicting the cell
probabilities is to be used.

ITRAN — Vector of length NTRAN containing the transformation code for each of
the NTRAN transformations to be applied.   (Input)
ITRAN is not referenced and can be a vector of length 1 in the calling program if
NTRAN = 0. Let a “response” denote a transformed cell probability. Then,
ITRAN(1) contains the first transformation to be applied to the cell probabilities,
ITRAN(2) contains the second transformation, which is to be applied to the
responses obtained after ITRAN(1) is performed, etc. Note that the k-th
transformation takes the ISIZE(k − 1) responses at step k into ISIZE(k)
responses, where ISIZE(0) is taken to be NPOP * NRESP. Let y denote the vector
result of a transformation, x denote the responses before the transformation is
applied, A denote a matrix of constants, and v denote a vector of constants. Then,
the possible transformations are

ITRAN Transformation
1 Linear, defined over all populations (y = Ax)
2 Logarithmic (y(i, j) = ln(x(i, j))
3 Exponential (y(i, j) = exp(x(i, j)))
4 Additive (y(i, j) = y(i, j) + v(i, j))
5 Linear, defined for one population and, identically, applied over all

populations (y(i) = Ax(i))

where y(i) and x(i) are the subvectors for the i-th population, y(i, j) and x(i, j)
denote the j-th response in the i-th population, and v(i, j) denotes the
corresponding element of the vector “v”. Transformation type 5 is the same as
transformation type 1 when the same linear transformation is applied in each
population (i.e., the type 1 matrix is block diagonal with identical blocks).

Because the size of the type 5 transformation matrix A is NPOP2 times smaller
than the type 1 transformation matrix, the type 5 transformation is usually
preferred where it can be used.

ISIZE — Vector of length NTRAN containing the number of response functions
defined by the k-th transformation.   (Input)
Transformation types 2, 3, and 4 have the same number of output responses as are
input, and elements of ISIZE corresponding to transformations of these types
should reflect this fact. Transformation types 1 and 5 can either increase or, more
commonly, decrease the number of responses. For transformation type 5, if m
linear transformations are defined for each population, the corresponding element
of ISIZE should be m * NPOP.

AMATS — Vector containing the transformation constants.   (Input)
AMATS contains the transformation matrices and vectors needed in the type 1, 4
and 5 transformations. While AMATS is a vector, its elements may be treated as a
number of matrices or vectors where the number of structures depends upon the
transformation types as follows:
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ITRAN Type Dimension Length

1 Matrix m by n m * n

2, 3 Not referenced 0

4 Vector m m

5 Matrix m/NPOP by n/NPOP m * n/(NPOP * NPOP)

Here, m = ISIZE(i) and n = ISIZE(i − 1), and ISIZE(0) is not input (in ISIZE)
but is taken to be NPOP * NRESP. Matrices and vectors are stored consecutively in
AMATS with column elements for matrices stored consecutively as is standard in
FORTRAN. Thus, if ITRAN(1) = 5 and ITRAN(2) = 4, with NREP = 3, NPOP= 2,
and ISIZE(1) = ISIZE(2) = 2, then the vector AMATS would contain in
consecutive positions A(1, 1), A(2, 1), A(1, 2), A(2, 2), A(1, 3), A(2, 3), v(1), v(2),
v(3), v(4) where A is the matrix for transformation type 5 and v is the vector for
transformation type 4.

NCOEF — Number of coefficients in the linear model relating the transformed
probabilities F to the design matrix X.   (Input)
Let F denote the vector result of applying the NTRAN transformations, and assume
that the model gives F = X * COEF. Then, NCOEF is the length of COEF.

X — Design matrix of size ISIZE(NTRAN) by NCOEF.   (Input, if NCOEF > 0)
X contains the design matrix for predicting the transformed cell probabilities F

from the covariates stored in X. If NCOEF = 0, X is not referenced and can be a 1
by 1 matrix in the calling program.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NUMH — Number of multivariate hypotheses to be tested on the coefficients in
COEF.   (Input, if NCOEF > 0)
If NCOEF = 0, NUMH is not referenced.

NH — Vector of length NUMH.   (Input, if NCOEF > 0)
NH(i) contains the number of consecutive rows in H used to specify hypothesis i. If
NCOEF = 0, NH is not referenced and can be a vector of length 1 in the calling
program.

H — Matrix of size m by NCOEF containing the constants to be used in the
multivariate hypothesis tests.   (Input, if NCOEF > 0)
Here, m is the sum of the elements in NH. Each hypothesis is of the form H0 : C *
COEF = 0, where C for the i-th hypothesis is NH(i) rows of H, and COEF is
estimated in the linear model. The first NH(1) rows of H make up the first
hypothesis, the next NH(2) rows make up the second hypothesis, etc. If
NCOEF = 0, His not referenced and can be a 1 by 1 matrix in the calling program.

LDH — Leading dimension of H exactly as specified in the dimension statement
in the calling program.   (Input)
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IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print all output arrays and vectors.
2 Print all output arrays and vectors as well as the matrices and vectors in

AMATS.

CHSQ — NUMH + 1 by 3 matrix containing the results of the hypothesis tests.
(Output, if NCOEF > 0)
The first row of CHSQ contains the results for test 1, the next row contains the
results for test 2, etc. The last row of CHSQ contains a test of the adequacy of the
model. Within each row, the first column contains the chi-squared statistic, the
second column contains its degrees of freedom, and the last column contains the
probability of a larger chi-squared. If NCOEF = 0, CHSQ is not referenced and can
be a 1 by 1 matrix in the calling program.

LDCHSQ — Leading dimension of CHSQ exactly as specified in the dimension
statement in the calling program.   (Input)

COEF — NCOEF by 4 matrix containing the coefficient estimates and related
statistics.   (Output, if NCOEF > 0)
The columns of coefficient are as follows:

Col. Statistic
1 Coefficient estimate
2 Estimated standard error of the coefficient
3 z-statistic for a test that the coefficient equals 0 versus the Two-sided

alternative
4 p-value corresponding to the z-statistic

If NCOEF = 0, COEF is not referenced and can be a 1 by 1 matrix in the calling
program.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

COVCF — NCOEF by NCOEF matrix containing the estimated variances and
covariances of COEF.   (Output, if NCOEF > 0)
If NCOEF = 0, COVCF is not referenced and can be a 1 by 1 matrix in the calling
program.

LDCOVC — Leading dimension of COVCF exactly as specified in the dimension
statement in the calling program.   (Input)

F — Vector of length ISIZE(NTRAN) containing the transformed probabilities,
the responses.   (Output)

COVF — Matrix of size ISIZE(NTRAN) by ISIZE(NTRAN) containing the
estimated variances and covariances of F.   (Output)

LDCOVF — Leading dimension of COVF exactly as specified in the dimension
statement in the calling program.   (Input)
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RESID — ISIZE(NTRAN) by 4 matrix containing a case analysis for the
transformed probabilities as estimated by the linear model.   (Output, if
NCOEF > 0)
The linear model gives F = X * BETA. The columns of RESID are as follows:

Col. Description
1 Residual
2 Standard error
3 Leverage
4 Standardized residual

If NCOEF = 0, RESID is not referenced and can be a 1 by 1 matrix in the calling
program.

LDRESI — Leading dimension of RESID exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CTWLS t + c + h + NPOP * (NRESP + 1) + NCOEF+ 1 units, or
DCTWLS 2t + 2c + d + 2(NPOP * (NRESP + 1) + NCOEF+ 1) units,

where

t = max(NPOP * NRESP, max(ISIZE(i))) *
(ISIZE(NTRAN) + 3) + ISIZE(1) + … +
ISIZE(NTRAN)
3 * NPOP * NRESP + NCOEF + 1

if NTRAN > 0, or
if NTRAN = 0;

c = ISIZE(NTRAN) * (NCOEF + 1)
0

if NCOEF = 0
if NCOEF = 0;

h = max(NH(J)) * (5 + NCOEF + max(NCOEF,
max(NH(J)))
0

if NUMH > 0, or
if NUMH = 0;

d = max(NH(J)) + 2 * max(NH(J)) *
(max(NCOEF, max(NH(J)) + NCOEF + 5)
0

if NUMH > 0, or
if NUMH = 0

Workspace may be explicitly provided, if desired, by use of
C2WLS/DC2WLS. The reference is

CALL C2WLS (NRESP, NPOP, TABLE, LDTABL, NTRAN,
            ITRAN, ISIZE, AMATS, NCOEF, X, LDX,
            NUMH, NH, H, LDH, IPRINT, CHSQ, LDCHSQ,
            COEF, LDCOEF, COVCF, LDCOVC, F, COVF,
            LDCOVF, RESID, LDRESI, PDER, FRQ, EST,
            XX, WK, IWK, WWK)

The additional arguments are as follows:
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PDER — Work vector of length ISIZE(NTRAN) * max(NPOP * NRESP,
ISIZE(i)) if NTRAN is greater than zero. PDER is not used and can be
dimensioned of length 1 if NTRAN = 0.

FRQ — Work vector of length NPOP.

EST — Work vector of length NPOP * NRESP + ISIZE(1) + … +
ISIZE(NTRAN).

XX — Work vector of length (NCOEF + 1) * ISIZE(NTRAN) if NCOEF is
greater than zero. If NCOEF = 0, XX is not referenced and can be a vector
of length 1 in the calling program.

WK — Work vector of length 3(max(NPOP * NRESP, ISIZE(i))) +
NCOEF + 1.

IWK — Work vector of length max(NH(i)) if NUMH is greater than 0. If
NCOEF = 0, IWK is not referenced and can be a vector of length 1 in the
calling program.

WWK — Work vector of length max(NH(i)) * (4 + NCOEF + max(NCOEF,
max(NH(i))) if NUMH is greater than 0. If NUMH = 0, WWK is not referenced
and can be a vector of length 1 in the calling program.

2. Informational error
Type Code
   4    1 A negative response occurred while performing a

logarithmic transformation. The logarithm of a
negative number is not allowed.

Algorithm

Routine CTWLS performs weighted least-squares analysis of a general p = NPOP
population by r = NRESP response categories per population contingency table.
After division by the sample size, there are n = pr cell probabilities.

Define s = ISIZE(NTRAN) responses fL such that each response is obtained from

the cell probabilities as fL = gL(p1, p2, …, pQ), for i = 1, …, s. Call the functions gL
the response functions”. Then, if

$Σ f

is the asymptotic covariance matrix of the responses, and X is a design matrix for
a linear model predicting f = Xβ with q = NCOEF coefficients β = COEF, then
CTWLS performs a weighted least-squares analysis of the model f = Xβ where the
generalized weights are given by

$Σ f = COVF

Estimates obtained in this way are best asymptotic normal estimates of β.

Let
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$Σ p

denote the estimated variance-covariance matrix of the estimated cell
probabilities, and let (∂gL/∂pM) denote the matrix of partial derivatives of gL�with
respect to pM. Then,

$Σ f

is given by

$ $Σ Σf
i

j
p

i

j

T
g

p

g

p
=

�
��

�
��

�
��

�
��

∂
∂

∂
∂

where the (i, j)-th element in

$Σ p

is computed as

pL(δLM − pM)

Here, δLM = 1 if i = j and is zero otherwise.

In CTWLS, the transformations gL are defined by successive application of one of

five types of simpler transformations. Let pL = h0,M for j = 1, …, n denote the n cell
probabilities, and let hL,M denote the ISIZE(i) responses obtained after i simple
transformations have been performed with hL denoting the corresponding vector
of estimates. Then, the simple transformations are defined by:

1. Linear: hL+1 = ALhL where AL is a matrix of coefficients specified via the
vector AMATS in CTWLS.

2. Logarithmic: hL+1,M = ln(hL,M) where j = 1, …, ISIZE(i). That is, take the
logarithm of each of the responses.

3. Exponential: hL+1,M = exp(hL,M) where j = 1, …, ISIZE(i). That is, take the
exponential of each of the responses.

4. Additive: hL+1,M = hL,M + vM , where j = 1, …, ISIZE(i), and vM is specified
via the vector AMATS in CTWLS. Additive transformations are generally
used to adjust for zero cells or to apply a continuity correction to the cell
probabilities.

5. Linear (by population):

h A h hi
j

i i
j

i
j

+ =1  where 

is the vector of responses at stage i in the j-th population, and AL is a
matrix of coefficients specified via AMATS.

Given the responses fL and their covariances
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$Σ f

estimates for β are computed via generalized least squares as

$ $ $β = − − −X X X fT
f

T
fΣ Σ1 1 13 8

Let Σb denote the asymptotic covariance matrix of β. Then, Σb is estimated by

$ $Σ Σβ = − −
X XT

f
1 13 8

Hypothesis tests of the form HR : CLβ = 0 are performed when requested. Here, CL
is a matrix of coefficients specified via a submatrix of the matrix H. Results are
returned in the vector CHSQ. The asymptotic chi-squared test for testing the null
hypothesis is given by

χ β β β2 1
=

−
C C Ci

T
i i1 6 3 8$Σ

This test has qL = rank(CL) degrees of freedom. If zero degrees of freedom are
returned, the hypothesis cannot be tested in the original parameterization.

A test of the model checks that the residuals obtained from the model f = Xβ are
not too large. This test, which has s − q degrees of freedom, is an asymptotic chi-
squared test and is computed as

Q f X f X
T

f= − −
−$ $ $β β4 9 3 8 4 9Σ

1

Residuals from the generalized linear model are easily computed as

r f xi i i= − $β

where xL is the row of the design matrix X corresponding to the i-th observation.
This residual has the asymptotic variance

$ $ $σ i f ii

T
f

T

ii
X X X X2 1

1= − �� ��
�
��

�
��

−
Σ Σ3 8 3 8

where (A)LL denotes the i-th diagonal element of matrix A. A standardized residual
is then computed as

z ri i= / $σ

which has an asymptotic standard normal distribution if the model is correct.

The leverage of observation i, vL, is computed as

v X X X Xi
T

f
T

f
ii

= �� ��− − −$ $Σ Σ1 1 13 8
It is a measure of the importance of the observation in the predicted values.
Values greater than 2q/s are large.
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Because the tests performed by CTWLS are asymptotic ones, the user should treat
the results with caution. The reported asymptotic p-values are most likely to be
exact when the number of counts in each cell is large (say 5 or more), and less
exact for smaller cell counts. Care should also be taken to avoid illegal
operations. For example, the routine returns an error message when the log of a
negative or zero value is attempted. When this occurs, the user should either use a
continuity correction (i.e. modify the transformations used by adding a constant to
all cells or to the cell resulting in the illegal operation) or abandon the model.

Example 1

This example is taken from Landis, Stanish, Freeman, and Koch (1976), pages
213-217. Generalized kappa statistics are computed via vector functions of the
form:

F(p) = exp(A4 ln(A3 exp(A2 ln(A1p))))

where p is the cell probabilities. The raw frequencies are given as two 4 × 4
contingency tables. These tables are reorganized as a single 16 × 2 table for input
into CTWLS. The input tables are

38 5 0 1

33 11 3 0

10 14 5 6

3 7 3 10

5 3 0 0

3 11 4 0

2 13 3 4

1 2 4 14

�

�

����

�

�

����

�

�

����

�

�

����
Two generalized kappa statistics using two different sets of weights are computed
for each population. Hypothesis tests are then performed on the four resulting
generalized kappa statistics. In this example, the matrix of covariates is an
identity matrix so that tests on the responses are performed.

      INTEGER    IPRINT, LDCHSQ, LDCOEF, LDCOVC, LDCOVF, LDH, LDRESI,
     &           LDTABL, LDX, NCOEF, NPOP, NRESP, NTRAN, NUMH
      PARAMETER  (IPRINT=2, LDCHSQ=10, LDCOEF=4, LDCOVC=4, LDCOVF=4,
     &           LDH=10, LDRESI=4, LDTABL=16, LDX=4, NCOEF=4, NPOP=2,
     &           NRESP=16, NTRAN=8, NUMH=9)
C
      INTEGER    ISIZE(NTRAN), ITRAN(NTRAN), NH(9)
      REAL       A1(10,16), A2(18,10), A3(4,18), A4(2,4), AMATS(420),
     &           CHSQ(LDCHSQ,3), COEF(LDCOEF,4), COVCF(LDCOVC,NCOEF),
     &           COVF(LDCOVF,LDCOVF), F(LDX), H(LDH,4),
     &           RESID(LDRESI,4), TABLE(LDTABL,NPOP), X(LDX,NCOEF)
      EXTERNAL   CTWLS
C
      EQUIVALENCE (A1, AMATS(1)), (A2, AMATS(161)), (A3, AMATS(341)),
     &           (A4, AMATS(413))
C
      DATA TABLE/38, 5, 0, 1, 33, 11, 3, 0, 10, 14, 5, 6, 3, 7, 3, 10,
     &     5, 3, 0, 0, 3, 11, 4, 0, 2, 13, 3, 4, 1, 2, 4, 14/
      DATA X/1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/
      DATA NH/1, 1, 1, 1, 1, 1, 2, 1, 1/
      DATA H/1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0,
     &     1, 0, 0, 0, 1, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0,
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     &     -1, 0, -1/
      DATA ITRAN/5, 2, 5, 3, 5, 2, 5, 3/
      DATA ISIZE/20, 20, 36, 36, 8, 8, 4, 4/
      DATA A1/1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
     &     .5, 1, 0, 0, 0, 0, 0, 1, 0, 0, .25, 1, 0, 0, 0, 0, 0, 0, 1,
     &     0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, .5, 0, 1, 0, 0, 0, 1, 0,
     &     0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, .5, 0, 1, 0, 0, 0, 0,
     &     0, 1, 0, .25, 0, 0, 1, 0, 1, 0, 0, 0, 0, .25, 0, 0, 1, 0,
     &     0, 1, 0, 0, 0, .5, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
     &     0, 0, 0, 0, 1, 0, .5, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
     &     0, 1, 0, 1, 0, 0, 0, .25, 0, 0, 0, 1, 0, 0, 1, 0, 0, .5, 0,
     &     0, 0, 1, 0, 0, 0, 1, 1, 1/
      DATA A2/1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
     &     0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
     &     1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
     &     0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
     &     0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     &     1/
      DATA A3/-1, -1, 0, 0, 0, -.5, 1, .5, 0, -.25, 1, .75, 0, 0, 1,
     &     1, 0, -.5, 1, .5, -1, -1, 0, 0, 0, -.5, 1, .5, 0, -.25, 1,
     &     .75, 0, -.25, 1, .75, 0, -.5, 1, .5, -1, -1, 0, 0, 0, -.5,
     &     1, .5, 0, 0, 1, 1, 0, -.25, 1, .75, 0, -.5, 1, .5, -1, -1,
     &     0, 0, 1, 0, 0, 0, 0, 1, 0, 0/
      DATA A4/1, 0, 0, 1, -1, 0, 0, -1/
C
      CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN, ISIZE,
     &            AMATS, NCOEF, X, LDX, NUMH, NH, H, LDH, IPRINT,
     &            CHSQ, LDCHSQ, COEF, LDCOEF, COVCF, LDCOVC, F, COVF,
     &            LDCOVF, RESID, LDRESI)
C
      END

Output
Hypothesis Tests on Coefficients
H-1
         1           0           0           0
H-2
         0           1           0           0
H-3
         1          -1           0           0
H-4
         0           0           1           0
H-5
         0           0           0           1
H-6
         0           0           1          -1
H-7
         1           0          -1           0
         0           1           0          -1
H-8
         1           0          -1           0
H-9
         0           1           0          -1
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         Hypothesis Chi-Squared Statistics
                          Degrees of
Hypothesis  Chi-Squared     freedom       p-value
         1        16.99           1        0.0000
         2        39.70           1        0.0000
         3        39.54           1        0.0000
         4        14.27           1        0.0002
         5        30.07           1        0.0000
         6        28.76           1        0.0000
         7         1.07           2        0.5850
         8         0.90           1        0.3425
         9         1.06           1        0.3040

                         Degrees of
            Chi-Squared     freedom       p-value
Model Test         0.00           0           NaN

                 Coefficient Statistics
    Coefficient  Standard Error   Statistic       p-value
1        0.2079            0.05        4.12        0.0000
2        0.3150            0.05        6.30        0.0000
3        0.2965            0.08        3.78        0.0002
4        0.4069            0.07        5.48        0.0000

            Asymptotic Coefficient Covariance
              1             2            3             4
1    2.5457E-03    2.3774E-03        0.            0.
2                  2.4988E-03        0.            0.
3                               6.1629E-03    5.6229E-03
4                                             5.5069E-03

                    Residual Analysis
                     Standard                Standardized
       Residual         Error      Leverage      Residual
1        0.0000        0.0000        1.0000           NaN
2        0.0000        0.0000        1.0000           NaN
3        0.0000        0.0000        1.0000           NaN
4        0.0000        0.0000        1.0000           NaN

Transformed Probabilities
       1   0.2079
       2   0.3150
       3   0.2965
       4   0.4069

Asymptotic Covariance of the Transformed Probabilities
              1             2             3             4
1    2.5457E-03    2.3774E-03        0.            0.
2                  2.4988E-03        0.            0.
3                               6.1629E-03    5.6229E-03
4                                             5.5069E-03

     Linear transformation matrix, by population, for transformation 5
         1       2       3       4       5       6       7       8       9
 1   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000
 2   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000
 3   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000
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 4   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 5   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000
 6   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 7   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000
 8   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000
 9   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
10   1.000   0.500   0.250   0.000   0.500   1.000   0.500   0.250   0.250

        10      11      12      13      14      15      16
 1   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 2   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 3   1.000   1.000   1.000   0.000   0.000   0.000   0.000
 4   0.000   0.000   0.000   1.000   1.000   1.000   1.000
 5   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 6   1.000   0.000   0.000   0.000   1.000   0.000   0.000
 7   0.000   1.000   0.000   0.000   0.000   1.000   0.000
 8   0.000   0.000   1.000   0.000   0.000   0.000   1.000
 9   0.000   1.000   0.000   0.000   0.000   0.000   1.000
10   0.500   1.000   0.500   0.000   0.250   0.500   1.000

     Linear transformation matrix, by population, for transformation 5
         1       2       3       4       5       6       7       8       9
 1   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000
 2   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 3   1.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000
 4   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000
 5   0.000   1.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000
 6   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 7   0.000   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000
 8   0.000   1.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000
 9   0.000   0.000   1.000   0.000   1.000   0.000   0.000   0.000   0.000
10   0.000   0.000   1.000   0.000   0.000   1.000   0.000   0.000   0.000
11   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000
12   0.000   0.000   1.000   0.000   0.000   0.000   0.000   1.000   0.000
13   0.000   0.000   0.000   1.000   1.000   0.000   0.000   0.000   0.000
14   0.000   0.000   0.000   1.000   0.000   1.000   0.000   0.000   0.000
15   0.000   0.000   0.000   1.000   0.000   0.000   1.000   0.000   0.000
16   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000
17   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000
18   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

        10
 1   0.000
 2   0.000
 3   0.000
 4   0.000
 5   0.000
 6   0.000
 7   0.000
 8   0.000
 9   0.000
10   0.000
11   0.000
12   0.000
13   0.000
14   0.000
15   0.000
16   0.000
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17   0.000
18   1.000

    Linear transformation matrix, by population, for transformation 5
        1       2       3       4       5       6       7       8       9
1  -1.000   0.000   0.000   0.000   0.000  -1.000   0.000   0.000   0.000
2  -1.000  -0.500  -0.250   0.000  -0.500  -1.000  -0.500  -0.250  -0.250
3   0.000   1.000   1.000   1.000   1.000   0.000   1.000   1.000   1.000
4   0.000   0.500   0.750   1.000   0.500   0.000   0.500   0.750   0.750

       10      11      12      13      14      15      16      17      18
1   0.000  -1.000   0.000   0.000   0.000   0.000  -1.000   1.000   0.000
2  -0.500  -1.000  -0.500   0.000  -0.250  -0.500  -1.000   0.000   1.000
3   1.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000
4   0.500   0.000   0.500   1.000   0.750   0.500   0.000   0.000   0.000

Linear transformation matrix, by population, for transformation 5
                        1       2       3       4
                1   1.000   0.000  -1.000   0.000
                2   0.000   1.000   0.000  -1.000

Example 2

The second example is taken from Prentice (1976) and involves a logistic fit to
the mortality of beetles after exposure to various concentrations of carbon
disulphide. Because one of the cells on input has a count of zero and it is not
possible to take the logarithm of zero, a constant 0.5 is added to each cell prior to
calling CTWLS. The model can be expressed as

ln
p

p
xi

i

1

2
1= +µ β

where i indexes the 8 populations. The data is given as:

x fL1 fL2
1.690 6 53

1.724 13 47

1.755 18 44

1.784 28 28

1.811 52 11

1.836 53 6

1.861 61 1

1.883 60 0

For comparison, a maximum fit yields

$ . $ .µ β= =74 34 3 and 

(see STAT routine CTGLM, page 510).
      INTEGER    IPRINT, LDCHSQ, LDCOEF, LDCOVC, LDCOVF, LDH, LDRESI,
     &           LDTABL, LDX, NCOEF, NPOP, NRESP, NTRAN, NUMH
      PARAMETER  (IPRINT=2, LDCOVF=8, LDH=1, LDX=8, NCOEF=2, NPOP=8,
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     &           NRESP=2, NTRAN=2, NUMH=0, LDCHSQ=NUMH+1,
     &           LDCOEF=NCOEF, LDCOVC=NCOEF, LDRESI=LDX, LDTABL=NRESP)
C
      INTEGER    ISIZE(NTRAN), ITRAN(NTRAN), NH(1)
      REAL       AMATS(2), CHSQ(LDCHSQ,3), COEF(LDCOEF,4),
     &           COVCF(LDCOVC,NCOEF), COVF(LDCOVF,LDCOVF), F(LDX),
     &           H(LDH,4), RESID(LDRESI,4), TABLE(LDTABL,NPOP),
     &           X(LDX,NCOEF)
      EXTERNAL   CTWLS, SADD
C
      DATA TABLE/6, 53, 13, 47, 18, 44, 28, 28, 52, 11, 53, 6, 61, 1,
     &     60, 0/, ITRAN/2, 5/, ISIZE/16, 8/, AMATS/1, -1/
      DATA X/8*1, 1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861,
     &     1.883/
C
      CALL SADD (NPOP*NRESP, 0.5, TABLE, 1)
C
      CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN, ISIZE,
     &            AMATS, NCOEF, X, LDX, NUMH, NH, H, LDH, IPRINT,
     &            CHSQ, LDCHSQ, COEF, LDCOEF, COVCF, LDCOVC, F, COVF,
     &            LDCOVF, RESID, LDRESI)
C
      END

Output
        Test of the Model
              Degrees of
Chi-Squared     freedom       p-value
       8.43           6        0.2081

                  Coefficient Statistics
    Coefficient  Standard Error   Statistic       p-value
1      -55.6590            5.02      -11.10        0.0000
2       31.4177            2.83       11.09        0.0000

 Asymptotic Coefficient Covariance
          1             2
1     25.16        -14.20
2                   8.024

                     Residual Analysis
                      Standard                Standardized
        Residual         Error      Leverage      Residual
 1        0.4552        0.3232        0.6052        1.4086
 2        0.2368        0.2480        0.6468        0.9548
 3       -0.3568        0.2413        0.7608       -1.4787
 4       -0.3902        0.2285        0.7440       -1.7076
 5        0.2800        0.2761        0.7192        1.0141
 6        0.0840        0.3484        0.7036        0.2410
 7        0.9042        0.7749        0.8791        1.1670
 8        1.2953        1.3777        0.9413        0.9402

 Transformed Probabilities
         1  -2.108
         2  -1.258
         3  -0.878
         4   0.000
         5   1.518
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         6   2.108
         7   3.714
         8   4.796

         Asymptotic Covariance of the Transformed Probabilities
          1                 2            3             4             5
1    0.1725            0.            0.            0.            0.
2                  9.5127E-02        0.            0.            0.
3                               7.6526E-02        0.             0.
4                                             7.0175E-02         0.
5                                                           0.1060

             6             7             8
1        0.            0.            0.
2        0.            0.            0.
3        0.            0.            0.
4        0.            0.            0.
5        0.            0.            0.
6    0.1725            0.            0.
7                  0.6829            0.
8                                2.017

Linear transformation matrix, by population, for transformation 5
                               1       2
                           1.000  -1.000
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Chapter 6: Nonparametric Statistics

Routines
6.1. One Sample or Matched Samples

‘
Sign test for percentiles ........................................................SIGNT 542
Wilcoxon signed rank test ................................................... SNRNK 544

6.1.2 Tests for Trend
Noether test for cyclical trend.............................................. NCTRD 548
Cox and Stuart trends test in dispersion and location..........SDPLC 551

6.1.3 Ties
Tie statistics .......................................................................... NTIES 555
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6.3. More than Two Samples

6.3.1 One-way Tests of Location
Kruskal-Wallis test for identical medians ............................. KRSKL 564
Bhapkar V test for identical medians ...................................BHAKV 566

6.3.2 Two-way Tests of Location
Friedmans test for randomized complete block designs.....FRDMN 568
Cochran Q test for related observations ..............................QTEST 572

6.3.3 Tests for Trends
Trends test against ordered alternatives............................. KTRND 574

Usage Notes

Other Chapters

Much of what is considered nonparametric statistics is included in other
chapters. Topics of possible interest in other chapters are: nonparametric
measures of location and scale (Chapter 1, “Basic Statistics”) , quantile
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estimation (Chapter 1, “Basic Statistics”), nonparametric measures in a
contingency table (Chapter 5, “Categorical and Discrete Data Analysis”),
measures of correlation in a contingency table (Chapter 3, “Correlation”), tests of
goodness of fit and randomness (Chapter 7, “Tests of Goodness of Fit and
Randomness”), and nonparametric routines for density and hazard estimation
(Chapter 15, “Density and Hazard Estimation”).

Other Methods

Many of the tests described in this chapter may be computed using the routines
described in other chapters after first substituting ranks (or some other score) for
the observed values. (Routine RANKS (page 24) may be used to compute ranks.)
This method for computing nonparametric test statistics is recommended for
cases such as unbalanced one-way ANOVA designs for which no nonparametric
subroutine is provided.

Missing Values

Most routines described in this chapter automatically handle missing values
(NaN, “not a number”; see the Reference Material section of this manual). In
these routines, observations that are missing are ignored; the variable NMISS is
incremented by one for each missing observation. The user should be aware,
however, that some routines described in this chapter do not handle missing
values. Missing values input to such routines may result in erroneous results.

Tied Observations

Many of the routines described in this chapter contain an argument FUZZ in the
input. Observations that are within FUZZ of each other in absolute value are said
to be tied. Moreover, in some routines, an observation within FUZZ of some value
is said to be equal to that value. In routine SNRNK (page 544), for example, such
observations are eliminated from the analysis. If FUZZ = 0.0, observations must
be identically equal before they are considered to be tied. Other positive values of
FUZZ allow for numerical imprecision or roundoff error.

SIGNT/DSIGNT (Single/Double precision)
Perform a sign test of the hypothesis that a given value is a specified quantile of a
distribution.

Usage
CALL SIGNT (NOBS, X, Q, P, NPOS, NTIE, PROB, NMISS)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the input data.   (Input)
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Q — Hypothesized percentile of the population from which X was drawn.
(Input)

P — Value in the range (0, 1).   (Input)
Q is the 100 * P percentile of the population.

NPOS — Number of positive differences X(j) − Q, for j = 1, 2, …, NOBS.
(Output)

NTIE — Number of zero differences (ties) X(j) − Q, for j = 1, 2, …, NOBS.
(Output)

PROB — Binomial probability of NPOS or more positive differences in
NOBS − NTIE − NMISS trials.   (Output)

NMISS — Number of missing values in X.   (Output)

Comments

Other probabilities that may be of interest can be computed via routine BINDF

(page 1108).

Algorithm

Routine SIGNT tests hypotheses about the proportion P of a population that lies
below a value Q. In continuous distributions, this can be a test that Q is the
100P-th percentile of the population from which X was obtained. To carry out
testing, SIGNT tallies the number of values above Q in NPOS. The binomial
probability of NPOS or more values above Q is then computed using the
proportion P and the sample size NOBS (adjusted for the missing observations
[NMISS] and ties [NTIE]).

Hypothesis testing is performed as follows for the usual null and alternative
hypotheses.

• H0 : Pr(X ≤ Q) ≤ P (the P-th quantile is at least Q)
H1 : Pr(X ≤ Q) > P
Reject H0 if PROB is less than or equal to the significance level.

• H0 : Pr(X ≤ Q) ≥ P (the P-th quantile is no greater than Q)
H1 : Pr(X ≤ Q) < P
Reject H0 if PROB is greater than or equal to one minus the significance level.

• H0 : Pr(X = Q) = P(the P-th quantile is Q)
H1 : Pr(X ≤ Q) < P or Pr(X ≤ Q) > P
Reject H0 if PROB is less than or equal to half the significance level or greater
than or equal to one minus half the significance level.

The assumptions are as follows:

1. The XL are a random sample; i.e., they are independent and identically
distributed.
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2. The measurement scale is at least ordinal; i.e, an ordering less than,
greater than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of P and Q. For
example, to perform a matched sample test that the difference of the medians of Y
and Z is 0.0, let P = 0.5, q = 0.0, and XL = YL − ZL in matched observations Y and
Z. To test that the median difference is C, let Q = C.

Example

We wish to test the hypothesis that at least 75% of a population is negative.
Because 0.923 < 0.95, we fail to reject the null hypothesis at the 5 percent level
of significance.

      INTEGER    NOBS
      REAL       P, Q
      PARAMETER  (NOBS=19, P=0.75, Q=0.0)
C
      INTEGER    NMISS, NOUT, NPOS, NTIE
      REAL       PROB, X(NOBS)
      EXTERNAL   SIGNT, UMACH
C
      DATA X/92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,
     &     22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0/
C                                 Perform sign test
      CALL SIGNT (NOBS, X, Q, P, NPOS, NTIE, PROB, NMISS)
C                                 Print output
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99996) NPOS
      WRITE (NOUT,99997) NTIE
      WRITE (NOUT,99998) PROB
      WRITE (NOUT,99999) NMISS
C
99996 FORMAT (’ Number of positive  differences = ’, I2)
99997 FORMAT (’ Number of ties                  = ’, I2)
99998 FORMAT (’ PROB                            = ’, F6.3)
99999 FORMAT (’ Number of missing values        = ’, I2)
      END

Output
Number of positive  differences = 12
Number of ties                  =  0
PROB                            =  0.923
Number of missing values        =  0

SNRNK/DSNRNK (Single/Double precision)
Perform a Wilcoxon signed rank test.

Usage
CALL SNRNK (NOBS, Y, FUZZ, STAT, NMISS)



IMSL STAT/LIBRARY Chapter 6: Nonparametric Statistics • 545

Arguments

NOBS — Number of observations.   (Input)

Y — Vector of length NOBS containing the data.   (Input)

FUZZ — Constant used to determine when a value is 0.0 or when two values are
tied.   (Input)
When |Y(i)| or |Y(i) − Y(j)| is less than or equal to FUZZ, then the i-th observation
is taken to be zero, or the i-th and j-th observations are said to be tied,
respectively.

STAT — Vector of length 10 containing the computed statistics.   (Output)
Statistics are computed in two ways. In method 1, the average rank of tied
observations is used, and observations equal to zero are not counted. In method 2,
ties are randomly broken, and observations equal to zero are randomly assigned
to the positive or negative half line.

I STAT(I)
1 The positive rank sum, W+, using method 1.
2 The absolute value of the negative rank sum, W−, using method 1.
3 The standardized (to an asymptotic variance of 1.0) minimum of (W+, W

−) using method 1.
4 The asymptotic probability of not exceeding STAT(3) under the null

hypothesis that the distribution is symmetric about 0.0.
5 The positive rank sum, W+, using method 2.
6 The absolute value of the negative rank sum, W−, using method 2.
7 The standardized (to an asymptotic variance of 1.0) minimum of (W+, W

−) using method 2.
8 The asymptotic probability of not exceeding STAT(7) under the null

hypothesis that the distribution is symmetric about 0.0.
9 The number of zero observations.
10 The total number of observations that are tied, and that are not within

FUZZ of zero.

NMISS — Number of missing values in Y.   (Output)

Comments

1. Automatic workspace usage is

SNRNK 2 * NOBS units, or
DSNRNK 3 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
S2RNK/DS2RNK. The reference is

CALL S2RNK (NOBS, Y, FUZZ, ISEED, STAT, NMISS, IR,
            YRANK)

The additional arguments are as follows:

IR — Work vector of length NOBS.
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YRANK — Work vector of length NOBS.

If Y is not needed, Y and YRANK can share the same storage locations.

2. Informational errors
Type Code
   3    4 NOBS is less than 50 and exact tables should be

referenced for probabilities.
   3    5 Each element of Y is within FUZZ of 0. STAT(1)

through STAT(8) are set to NaN (not a number).

3. The signed rank statistic provides a test of the hypothesis that the
population median is equal to zero. To test that the median is equal to
some other value, say, 10.0, use the routine SADD

(IMSL MATH/LIBRARY) to subtract 10.0 from each observation prior
to calling SNRNK.

4. The signed rank test can be used to test that the medians of two matched
random variables are equal. This is the nonparametric equivalent of the
paired t-test. To use SNRNK to perform this test, use the routine SAXPY

(IMSL MATH/LIBRARY) prior to calling SNRNK to compute the
differences, Y(i) − X(i). Then, call SNRNK with these differences.

5. The routine RNUN (page 1171) is used to randomly break ties. The
routine RNSET (page 1166) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine SNRNK performs a Wilcoxon signed rank test of symmetry about zero. In
one sample, this test can be viewed as a test that the population median is zero. In
matched samples, a test that the medians of the two populations are equal can be
computed by first computing difference scores. These difference scores would
then be used as input to SNRNK. A general reference for the methods used is
Conover (1980).

Routine SNRNK computes statistics for two methods for handling zero and tied
observations. In the first method, observations within FUZZ of zero are not
counted, and the average rank of tied observations is used. (Observations within
FUZZ of each other are said to be tied.) In the second method, observations within
FUZZ of zero are randomly assigned a positive or negative sign, and the ranks of
tied observations are randomly permuted.

The W+ and W− statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g.,
Conover 1980, page 282).
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The W+ and W− statistics may be used to test the following hypotheses about the
median, M. In deciding whether to reject the null hypothesis, use the bracketed
statistic if method 2 for handling ties is preferred. Possible null hypotheses and
alternatives are given as follows:

• H0 : M ≤ 0        H1 : M > 0
Reject if STAT(1) [or STAT(5)] is too large.

• H0 : M ≥ 0        H1 : M < 0
Reject if STAT(2) [or STAT(6)] is too large.

• H0 : M = 0        H1 : M ≠ 0
Reject if STAT(3) [or STAT(7)] is too small. Alternatively, if an asymptotic test is
desired, reject if 2 * STAT(4) [or 2 * STAT(8)] is less than the significance level.

Tabled values of the test statistic can be found in the references. If possible,
tabled values should be used. If the number of nonzero observations is too large,
then the asymptotic probabilities computed by SNRNK can be used.

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each XL is symmetric.

2. The XL are mutually independent.

3. All XL’s have the same median.

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies
that X1 > X3).

If other assumptions are made, related hypotheses that are more (or less)
restrictive can be tested.

Example

This example illustrates the application of the Wilcoxon signed rank test to a test
on two matched samples (matched pairs). A test that the median difference is 10.0
(rather than 0.0) is performed by subtracting 10.0 from each of the differences
prior to calling SNRNK. The routine RNSET (page 1166) is used to set the seed. As
can be seen from the output, the null hypothesis is rejected. The warning error
will always be printed when the number of observations is 50 or less unless
printing is turned off for warning errors. See routine ERSET (Reference Material).

      INTEGER    NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, NOBS=7)
C
      INTEGER    I, NMISS, NOUT
      REAL       STAT(10), W(NOBS), X(NOBS), Y(NOBS)
      EXTERNAL   RNSET, SNRNK, UMACH, WRRRN
C
      DATA W/223, 216, 211, 212, 209, 205, 201/
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      DATA X/208, 205, 202, 207, 206, 204, 203/
C
      DO 10  I=1, NOBS
         Y(I) = X(I) - W(I) - 10.0
   10 CONTINUE
C                                 Print Y prior to calling SNRNK
      CALL WRRRN (’Y’, 1, NOBS, Y, 1, 0)
C                                 Initialize the seed
      CALL RNSET (123457)
C
      CALL SNRNK (NOBS, Y, FUZZ, STAT, NMISS)
C                                 Print output
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT(1), STAT(5), STAT(2), STAT(6), STAT(3),
     &                  STAT(7), STAT(4), STAT(8), STAT(9), STAT(10),
     &                  NMISS
C
99999 FORMAT (’ Statistic                    Method 1     Method 2’,
     &       /, ’ W+.......................’, F9.0, 4X, F9.0, /,
     &       ’ W-.......................’, F9.0, 4X, F9.0, /,
     &       ’ Standardized Minimum.....’, F9.4, 4X, F9.4, /,
     &       ’ p-value..................’, F9.4, 4X, F9.4, //,
     &       ’ Number of zeros..........’, F9.0, /, ’ Number of ’,
     &       ’ties...........’, F9.0, /, ’ Number of missing........’,
     &       I5)
C
      END

Output
                         Y
   1       2       3       4       5       6       7
-25.00  -21.00  -19.00  -15.00  -13.00  -11.00   -8.00

*** WARNING  ERROR 4 from SNRNK.  NOBS = 7.  The number of
***          observations, NOBS, is less than 50, and exact
***          tables should be referenced for probabilities.

Statistic                    Method 1     Method 2
W+.......................       0.           0.
W-.......................      28.          28.
Standardized Minimum.....  -2.3664      -2.3664
p-value..................   0.0090       0.0090

Number of zeros..........       0.
Number of ties...........       0.
Number of missing........    0

NCTRD/DNCTRD (Single/Double precision)
Perform the Noether test for cyclical trend.

Usage
CALL NCTRD (NOBS, X, FUZZ, NSTAT, P, NMISS)
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Arguments

NOBS — Number of observations.   (Input)
NOBS must be greater than or equal to 3.

X — Vector of length NOBS containing the observations in chronological order.
(Input)

FUZZ — Value to be used in determining when consecutive observations in X are
tied.   (Input)
If |X(i + 1) − X(i)| is less than or equal to FUZZ, then X(i + 1) and X(i) are said to
be tied.

NSTAT — Vector of length 6 containing output statistics.   (Output)

I NSTAT(I)
1 The number of consecutive sequences of length three used to detect

cyclical trend when tying middle elements are eliminated from the
sequence, and the next consecutive observation is used.

2 The number of monotonic sequences of length three in the set defined by
NSTAT(1).

3 The number of monotonic sequences where tied threesomes are counted
as nonmonotonic.

4 The number of monotonic sequences where tied threesomes are counted
as monotonic.

5 The number of middle observations eliminated because they were tied in
forming the NSTAT(1) sequences.

6 The number of tied sequences found in forming the NSTAT(3) and
NSTAT(4) sequences. A sequence is called a tied sequence if the middle
element is tied with either of the two other elements.

P — Vector of length 3 containing the probabilities of NSTAT(2) or more,
NSTAT(3) or more, or NSTAT(4) or more monotonic sequences.   (Output)
If NSTAT(1) is less than 1, P(1) is set to NaN (not a number).

NMISS — Number of missing (NaN, not a number) values in X.   (Output)

Comments

1. Informational errors
Type Code
   3     3 NSTAT(1), which is used to determine NSTAT(3) and

NSTAT(4), is less than 8. The asymptotic probabilities
will not be exact.

   3     4 At least one tie was detected in X.

2. If NOBS is greater than or equal to 3 but NSTAT(1) is less than one, P(1)
will be set to NaN. The remaining statistics and associated probabilities
will be determined and returned as described.
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Algorithm

Routine NCTRD performs the Noether test for cyclical trend (Noether 1956) for a
sequence of measurements. In this test, the observations are first divided into sets
of three consecutive observations. Each set is then inspected, and if the set is
monotonically increasing or decreasing, the count variable is incremented.

The count variables, NSTAT(2), NSTAT(3), and NSTAT(4), differ in the manner in
which ties are handled. A tie can occur in a set (of size three) only if the middle
element is tied with either of the two ending elements. Tied ending elements are
not considered. In NSTAT(2), tied middle observations are eliminated, and a new
set of size 3 is obtained by using the next observation in the sample. In NSTAT(3),
the original set of size three is used, and tied middle observations are counted as
nonmonotonic. In NSTAT(4), tied middle observations are counted as monotonic.

The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of size
three from a continuous distribution is monotonic. The binomial sample size is, of
course, the number of sequences of size three found (adjusted for ties).

Hypothesis test:

H0 : q = Pr(XL > XL���� > XL����) + Pr(XL < XL���� < XL���� ) ≤ 1/3      H1 : q > 1/3
Reject if P(1) (or P(2) or P(3) depending on the method used for handling ties) is
less than the significance level of the test.

Assumption: The observations are independent and are from a continuous
distribution.

Example

A test for cyclical trend in a sequence of 1000 randomly generated observations is
performed. Because of the sample used, there are no ties and all three test
statistics yield the same result.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0, NOBS=1000)
C
      INTEGER    ISEED, NMISS, NSTAT(6)
      REAL       P(3), X(NOBS)
      EXTERNAL   NCTRD, RNSET, RNUN, WRIRN, WRRRN
C
      DATA ISEED/123457/
C
      CALL RNSET (ISEED)
      CALL RNUN (NOBS, X)
C                                 Noether test
      CALL NCTRD (NOBS, X, FUZZ, NSTAT, P, NMISS)
C                                 Print results
      CALL WRIRN (’NSTAT’, 1, 6, NSTAT, 1, 0)
      CALL WRRRN (’P’, 1, 3, P, 1, 0)
C
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      END

Output
             NSTAT
 1     2     3     4     5     6
333   107   107   107     0     0

           P
 1        2        3
0.6979   0.6979   0.6979

SDPLC/DSDPLC (Single/Double precision)
Perform the Cox and Stuart sign test for trends in dispersion and location.

Usage
CALL SDPLC (NOBS, X, IOPT, K, IDS, FUZZ, NSTAT, PSTAT,
            NMISS)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the observations in chronological order.
(Input)

IOPT — Statistic option parameter.   (Input)
If IOPT = 0, the Cox and Stuart tests for trends in dispersion are computed.
Otherwise, the Cox and Stuart tests for trends in location are computed.

K — Number of consecutive X elements to be used to measure dispersion.
(Input)
Not required if IOPT is different from zero.

IDS — Dispersion measure option.   (Input)
If IDS is zero, the range is used as a measure of dispersion. Otherwise, the
centered sum of squares is used. Not required if IOPT is different from zero.

FUZZ — Value used to determine when elements in X are tied.   (Input)
If |X(i) − X(j)| is less than or equal to FUZZ, X(i) and X(j) are said to be tied. FUZZ
must be nonnegative.

NSTAT — Vector of length 8.   (Output)
The first 4 elements of NSTAT are the output statistics when the observations are
divided into two groups. The last 4 elements are the output statistics when the
observations are divided into three groups.

I NSTAT(I)
1 Number of negative differences (two groups)
2 Number of positive differences (two groups)
3 Number of zero differences (two groups)
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4 Number of differences used to calculate PSTAT(1) through PSTAT(4)
(two groups).

5 Number of negative differences (three groups)
6 Number of positive differences (three groups)
7 Number of zero differences (three groups)
8 Number of differences used to calculate PSTAT(5) through PSTAT(8)

(three groups).

PSTAT — Vector of length 8 containing probabilities.   (Output)
The first four elements of PSTAT are computed from two groups of observations.

I PSTAT(I)
1 Probability of NSTAT(1) + NSTAT(3) or more negative signs (ties are

considered negative).
2 Probability of obtaining NSTAT(2) or more positive signs (ties are

considered negative).
3 Probability of NSTAT(1) + NSTAT(3) or more negative signs (ties are

considered positive).
4 Probability of obtaining NSTAT(2) or more positive signs (ties are

considered positive).

The last four elements of PSTAT are computed from three groups of observations.

I PSTAT(I)
5 Probability of NSTAT(1) + NSTAT(3) or more negative signs (ties are

considered negative).
6 Probability of obtaining NSTAT(2) or more positive signs (ties are

considered negative).
7 Probability of NSTAT(1) + NSTAT(3) or more negative signs (ties are

considered positive).
8 Probability of obtaining NSTAT(2) or more positive signs (ties are

considered positive).

NMISS — Number of missing values in X.   (Output)

Comments

1. Automatic workspace usage is

SDPLC NOBS units, or
DSDPLC 2 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
S2PLC/DS2PLC. The reference is

CALL S2PLC (NOBS, X, IOPT, K, IDS, FUZZ, NSTAT,
            PSTAT, NMISS, XWK)

The additional argument is

XWK — Work vector of length NOBS.
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If X is not needed, X and XWK can share the same storage location.

2. Informational errors
Type Code
   4    4 NSTAT(4) is too small to continue with a dispersion

test.
   3    5 At least one tie is detected in X.

Algorithm

Routine SDPLC tests for trends in dispersion or location in a sequence of random
variables depending upon the value of the input variable IOPT. A derivative of
the sign test is used (see Cox and Stuart 1955).

Location Test

For the location test (IOPT = 1) with two groups, the observations are first
divided into two groups with the middle observation thrown out if there are an
odd number of observations. Each observation in group one is then compared
with the observation in group two that has the same lexicographical order. A
count is made of the number of times a group-one observation is less than
(NSTAT(1)), greater than (NSTAT(2)), or equal to (NSTAT(3)), its counterpart in
group two. Two observations are counted as equal if they are within FUZZ of one
another.

In the three-group test, the observations are divided into three groups, with the
center group losing observations if the division is not exact. The first and third
groups are then compared as in the two-group case, and the counts are stored in
NSTAT(5) through NSTAT(7).

Probabilities in PSTAT are computed using the binomial distribution with sample
size equal to the number of observations in the first group (NSTAT(4) or
NSTAT(8)), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests proceed exactly as with the tests for location, but using one
of two derived dispersion measures. The input value K is used to define NOBS/K
groups of consecutive observations starting with observation 1. The first K
observations define the first group, the next K observations define the second
group, etc., with the last observations omitted if NOBS is not evenly divisible by K.
A dispersion score is then computed for each group as either the range (IDS = 0),
or a multiple of the variance (IDS ≠ 0) of the observations in the group. The
dispersion scores form a derived sample. The tests proceed on the derived sample
as above.

Ties

Ties are defined as occurring when a group one observation is within FUZZ of its
last group counterpart. Ties imply that the probability distribution of X is not
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strictly continuous, which means that Pr(X1 > X2) ≠ 0.5 under the null hypothesis
of no trend (and the assumption of independent identically distributed
observations). When ties are present, the computed binomial probabilities are not
exact, and the hypothesis tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the
corresponding observation in group 2 (two groups) or group 3 (three groups).

• H0 : Pr(XL > XM) = Pr(XL < XM) = 0.5
H1 : Pr(XL > XM) < Pr(XL < XM)
Hypothesis of upward trend. Reject if PSTAT(3) (or PSTAT(7)) is less than the
significance level.

• H0 : Pr(XL > XM) = Pr(XL < XM) = 0.5
H1 : Pr(XL > XM) > Pr(XL < XM)
Hypothesis of downward trend. Reject if PSTAT(2) (or PSTAT(6)) is less than
the significance level.

• H0 : Pr(XL > XM) = Pr(XL < XM) = 0.5

H1 : Pr(XL > XM) ≠ Pr(XL < XM)
Two tailed test. Reject if 2 max(PSTAT (2), PSTAT(3)) (or 2 max(PSTAT (6),
PSTAT(7)) is less than the significance level.

Assumptions

1. The observations are a random sample; i.e., the observations are
independently and identically distributed.

2. The distribution is continuous.

Example

This example illustrates both the location and dispersion tests. The data, which
are taken from Bradley (1968), page 176, give the closing price of AT&T on the
New York stock exchange for 36 days in 1965. Tests for trends in location (IOPT
= 1), and for trends in dispersion (IOPT = 0) are performed. Trends in location
are found.

      INTEGER    IDS, K, NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, IDS=0, K=2, NOBS=36)
C
      INTEGER    IOPT, NMISS, NSTAT(8)
      REAL       PSTAT(8), X(NOBS)
      EXTERNAL   SDPLC, WRIRN, WROPT, WRRRN
C
      DATA X/9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0,
     &     8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,
     &     7.75, 7.75, 8.0, 7.5, 7.5, 7.125, 7.25, 7.25, 7.125, 6.75,
     &     6.5, 7.0, 7.0, 6.75, 6.625, 6.625, 7.125, 7.75/
C                                 Tests for trends in location
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      IOPT = 1
      CALL SDPLC (NOBS, X, IOPT, K, IDS, FUZZ, NSTAT, PSTAT, NMISS)
C                                 Print results
      CALL WROPT (-6, 1, 1)
      CALL WRIRN (’NSTAT’, 1, 8, NSTAT, 1, 0)
      CALL WRRRN (’PSTAT’, 1, 8, PSTAT, 1, 0)
C                                 Tests for trends in dispersion
      IOPT = 0
      CALL SDPLC (NOBS, X, IOPT, K, IDS, FUZZ, NSTAT, PSTAT, NMISS)
C                                 Print results
      CALL WRIRN (’NSTAT’, 1, 8, NSTAT, 1, 0)
      CALL WRRRN (’PSTAT’, 1, 8, PSTAT, 1, 0)
C
      END

Output
*** WARNING  ERROR 5 from SDPLC.  At least one tie is detected in X.

            NSTAT
1    2    3    4    5    6    7    8
0   17    1   18    0   12    0   12

            PSTAT
      1             2             3             4             5
1.00000       0.00007       1.00000       0.00000       1.00000

      6             7             8
0.00024       1.00000       0.00024

*** WARNING  ERROR 5 from SDPLC.  At least one tie is detected in X.

            NSTAT
1   2   3   4   5   6   7   8
4   3   2   9   4   2   0   6

                      PSTAT
       1             2             3             4             5
0.253906      0.910156      0.746094      0.500000      0.343750

       6             7             8
0.890625      0.343750      0.890625

NTIES/DNTIES (Single/Double precision)
Compute tie statistics for a sample of observations.

Usage
CALL NTIES (NOBS, X, FUZZ, TIES)

Arguments

NOBS — The number of observations.   (Input)
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X — Vector of length NOBS containing the observations.   (Input)
X must be ordered monotonically increasing with all missing values removed.

FUZZ — Value used to determine ties.   (Input)
Observations i and j are tied if the successive differences X(k + 1) − X(k) between
observations i and j, inclusive, are all less than FUZZ. FUZZ must be nonnegative.

TIES — Vector of length 4 containing the tie statistics.   (Output)
The tie statistics are returned in TIES and are computed as follows:

TIES
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TIES

TIES

1 1 2

2 1 1 12

3 1 2 5

4 1 2

1

1

1

1

0 5 3 8

0 5 3 83 8
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= − +
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=
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=
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∑
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j

τ

τ

τ

τ

/

/

where tM is the number of ties in the j-th group (rank) of ties, and τ is the number
of tie groups in the sample.

Algorithm

Routine NTIES computes tie statistics for a monotonically increasing sample of
observations. “Tie statistics” are statistics that may be used to correct a
continuous distribution theory nonparametric test for tied observations in the data.
Observations i and j are tied if the successive differences X(k + 1) − X(k),
inclusive, are all less than FUZZ. Note that if each of the monotonically increasing
observations is equal to its predecessor plus a constant, if that constant is less than
FUZZ, then all observations are contained in one tie group. For example, if FUZZ

= 0.11, then the following observations are all in one tie group.
0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example

We want to compute tie statistics for a sample of length 7.
      INTEGER    NOBS
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      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, NOBS=7)
C
      REAL       TIES(4), X(NOBS)
      EXTERNAL   NTIES, WRRRN
C
      DATA X/1.0, 1.0001, 1.0002, 2.0, 3.0, 3.0, 4.0/
C                                 Compute tie statistics
      CALL NTIES (NOBS, X, FUZZ, TIES)
C                                 Print results
      CALL WRRRN (’TIES’, 1, 4, TIES, 1, 0)
C
      END

Output
           TIES
   1       2       3       4
4.00    2.50   84.00    6.00

RNKSM/DRNKSM (Single/Double precision)
Perform the Wilcoxon rank sum test.

Usage
CALL RNKSM (NOBSX, X, NOBSY, Y, FUZZ, STAT, NMISSX, NMISSY)

Arguments

NOBSX — Number of observations in X.   (Input)

X — Vector of length NOBSX containing the first sample.   (Input)

NOBSY — Number of observations in Y.   (Input)

Y — Vector of length NOBSY containing the second sample.   (Input)

FUZZ — Constant used to determine ties in X and Y.   (Input)
If |zL − zM| ≤ FUZZ, then zL and zM are said to be tied, where zL is the i-th element of X
or Y. FUZZ must be nonnegative.

STAT — Vector of length 10 containing the output statistics.   (Output)

I STAT(I)
1 Wilcoxon W statistic (the sum of the ranks of the X observations)

adjusted for ties in such a manner that W is as small as possible.
2 2 * E(W) − W, where E(W) is the expected value of W.
3 Probability of obtaining a statistic less than or equal to the minimum of

(W, 2E(W) − W ).
4 W statistic adjusted for ties in such a manner that W is as large as is

possible.
5 STAT(2); but adjusted for ties as in 4.
6 STAT(3); but adjusted for ties as in 4.
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7 W statistic with average ranks used in place of tied ranks.
8 Estimated standard error of STAT(7) under the null hypothesis of no

difference.
9 Standard normal score associated with STAT(7).
10 Two-sided p-value associated with STAT(9).

NMISSX — Number of missing (NaN, not a number) observations in X.
(Output)

NMISSY — Number of missing (NaN, not a number) observations in Y.
(Output)

Comments

1. Automatic workspace usage is

RNKSM 2 * (NOBSX + NOBSY) units, or
DRNKSM 3 * (NOBSX + NOBSY) units.

Workspace may be explicitly provided, if desired, by use of
R2KSM/DR2KSM. The reference is

CALL R2KSM (NOBSX, X, NOBSY, Y, FUZZ, STAT, NMISSX,
            NMISSY, IWK, YWK)

The additional arguments are as follows:

IWK — Integer work vector of length NOBSX + NOBSY

YWK — Work vector of length NOBSX + NOBSY.

2. Informational errors
Type Code
   3     4 Both NOBSX and NOBSY are less than 25. Tabled

critical values for W should be used.
   3     5 Tied observations occurred between the samples.
   4     6 Each element of X and/or Y is a missing (NaN, not a

number) value.

3. The Mann-Whitney U statistic is given in terms of W as U = W − K * (K
+ 1)/2, where K = NOBSX, and W = STAT(1) (or STAT(4)). Tables of
critical values for W are available in the references given in the manual
document.

4. For greatest efficiency in computing W, the X sample should be the
smallest sample.

Algorithm

Routine RNKSM performs the Wilcoxon rank sum test for identical population
distribution functions. The Wilcoxon test is a linear transformation of the Mann-
Whitney U test. If the difference between the two populations can be attributed
solely to a difference in location, then the Wilcoxon test becomes a test of
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equality of the population means (or medians) and is the nonparametric
equivalent of the two-sample t-test.

Routine RNKSM obtains ranks in the combined sample after first eliminating
missing values from the data. The rank sum statistic is then computed as the sum
of the ranks in the X sample. Three methods for handling ties are used. (A tie is
counted when two observations are within FUZZ of each other.) The first method
uses the largest possible rank for tied observations in the smallest sample, while
the second method uses the smallest possible rank for these observations. Thus,
the range of possible rank sums is obtained. The third, method for handling tied
observations between samples uses the average rank of the tied observations.

Asymptotic standard normal scores are computed for the W score (based upon a
variance that has been adjusted for ties) when average ranks are used (see
Conover 1980, page 217), and the probability associated with the two-sided
alternative is computed.

Hypothesis Tests

In each test following, the first line gives the hypothesis (and its alternative) under
the assumptions 1 to 3 below, while the second line gives the hypothesis when
assumption 4 is also true. The rejection region is the same for both hypotheses
and is given in terms of method 3 for handling ties. Another output statistic
should be used (STAT(1) or STAT(4)) if another method for handling ties is
desired.

• H0 : Pr(X < Y) = 0.5 H1 : Pr(X < Y) ≠ 0.5
H0 : E(X) = E(Y) H1 : E(X) ≠ E(Y)
Reject if STAT(10) is less than the significance level of the test. Alternatively,
reject H0 if STAT(7) is too large or too small.

• H0 : Pr(X < Y) ≤ 0.5 H1 : Pr(X < Y) > 0.5
H0 : E(X) ≥ E(Y) H1 : E(X) < E(Y)
Reject if STAT(7) is too small.

• H0 : Pr(X < Y) ≥ 0.5 H1 : Pr(X < Y) < 0.5
H0 : E(X) ≤ E(Y) H1 : E(X) > E(Y)
Reject if STAT(7) is too large.

Assumptions

1. X and Y are a random sample from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than,
greater than, or equal to exists among the observations).
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4. If F(X) and G(Y) are the distribution functions of X and Y, respectively,
then G(Y) = F(X + c) for some constant c (i.e., the distribution of Y is at
worst a translation of the distribution of X).

Tables of critical values of the W statistic are given in the references for small
samples.

Example

The following example is taken from Conover (1980, page 224). It involves the
mixing time of 2 mixing machines using a total of 10 batches of a certain kind of
batter, 5 batches for each machine. The null hypothesis is not rejected at the 5
percent level of significance. The warning error is always printed when one or
more ties are detected unless printing for warning errors is turned off. See routine
ERSET (Reference Material).

      INTEGER    NOBSX, NOBSY
      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, NOBSX=5, NOBSY=5)
C
      INTEGER    I, NMISSX, NMISSY, NOUT
      REAL       STAT(10), X(NOBSX), Y(NOBSY)
      EXTERNAL   RNKSM, UMACH
C
      DATA X/7.3, 6.9, 7.2, 7.8, 7.2/
      DATA Y/7.4, 6.8, 6.9, 6.7, 7.1/
C
      CALL RNKSM (NOBSX, X, NOBSY, Y, FUZZ, STAT, NMISSX, NMISSY)
C                                 Print the results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,10), NMISSX, NMISSY
C
99999 FORMAT (’ Wilcoxon W statistic ........................’, F5.1,
     &       /, ’ 2*WBAR - W ..................................’,
     &       F5.1, /, ’ p-value .....................................’
     &       , F7.3, /, ’ Adjusted Wilcoxon statistic ’, ’............’
     &       , ’.....’, F5.1, /, ’ Adjusted 2*WBAR - W ’, ’...........’,
     &       ’..’, ’............’, F5.1, /, ’ Adjusted p-value ’,
     &       ’............................’, F7.3, /, ’ W statistic ’,
     &       ’for averaged ranks ..............’, F5.1, /, ’ Standard ’
     &       , ’error of W (averaged ranks) ........’, F7.3, /,
     &       ’ Standard normal score of W (averaged ranks) .’, F7.3,
     &       /, ’ Two-sided p-value of W (averaged ranks) .....’,
     &       F7.3, //, ’ Number of missing for X .....................’
     &       , F5.1, /, ’ Number of missing for Y ’, ’................’
     &       , ’.....’, F5.1)
C
      END

Output
*** WARNING  ERROR 5 from RNKSM.  At least one tie is detected between the
***          samples.
Wilcoxon W statistic ........................ 34.0
2*WBAR - W .................................. 21.0
p-value .....................................  0.110
Adjusted Wilcoxon statistic ................. 35.0
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Adjusted 2*WBAR - W ......................... 20.0
Adjusted p-value ............................  0.075
W statistic for averaged ranks .............. 34.5
Standard error of W (averaged ranks) ........  4.758
Standard normal score of W (averaged ranks) .  1.471
Two-sided p-value of W (averaged ranks) .....  0.141

Number of missing for X .....................  0.0
Number of missing for Y .....................  0.0

INCLD/DINCLD (Single/Double precision)
Perform an includance test.

Usage
CALL INCLD (NOBSX, X, NOBSY, Y, ILX, IHX, FUZZ, STAT,
            NMISSX, NMISSY)

Arguments

NOBSX — Number of observations in the first sample.   (Input)

X — Vector of length NOBSX containing the data for the first sample.   (Input)

NOBSY — Number of observations in the second sample.   (Input)

Y — Vector of length NOBSY containing the data for the second sample.   (Input)

ILX — Index of the element in the ordered first sample to be used as the low
endpoint of the range considered.   (Input)
ILX must be greater than zero and less than IHX.

IHX — Index of the element in the ordered first sample to be used as the high
endpoint of the range considered.   (Input)
IHX must be greater than ILX and less than or equal to NOBSX.

FUZZ — Value used to determine ties.   (Input)
If a second sample element is within FUZZ of the ILX or IHX order statistics in
the first sample, a tie will be counted.

STAT — Vector of length 4 containing the statistics.   (Output)
In the description below, (X(ILX), X(IHX)) is the interval from the ILX ordered
first sample value to the IHX ordered first sample value (i.e., from the ILX to the
IHX order statistics in the first sample).

I STAT(I)
1 Number of ties detected.
2 Number of untied elements in the second sample that are outside the

interval (X(ILX), X(IHX)).
3 Probability of STAT(2) or more second sample elements lying outside

(X(ILX), X(IHX)).



562 • Chapter 6: Nonparametric Statistics IMSL STAT/LIBRARY

4 Probability of STAT(1) + STAT(2) or more elements in the second
sample lying outside (X(ILX), X(IHX)).

NMISSX — Number of missing (NaN, not a number) values in X.   (Output)

NMISSY — Number of missing (NaN, not a number) values in Y.   (Output)

Comments

1. Automatic workspace is

INCLD NOBSX units, or,
DINCLD 2 * NOBSX units.

Workspace may be explicitly provided, if desired, by use of
I2CLD/DI2CLD. The reference is

CALL I2CLD (NOBSX, X, NOBSY, Y, ILX, IHX, FUZZ,
            STAT, NMISSX, NMISSY, WK)

The additional argument is

WK — Work vector of length NOBSX. If X is not needed, X and WK can
share the same storage locations.

2. If ILX = 1 and IHX = NOBSX, INCLD tests the hypothesis that the second
population lies in equal proportion to the first population, between the
endpoints of the first sample.

3. If ILX = (NOBSX + 1)/4 and IHX = 3 * (NOBSX + 1)/4, the first and the
third quartile estimates of the first population are being considered. The
null hypothesis may be that the first and second samples are drawn from
the same population.

Algorithm

Routine INCLD tests that an equal proportion of two populations lies between the
ILX and IHX order statistics of the first sample, and that the densities are equal at
the two points. Let XLO and XLK denote the two order statistics in the first sample,
where l = ILX, and h = IHX. Then, the probability of exactly i observations in the
second sample being outside of the interval (XLO, XLK) is hypergeometric and is
given by
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where M is the sample size in the first sample (NOBSX − NMISSX), N is the sample
size in the second sample (NOBSY − NMISSY), and
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denotes a binomial coefficient. The probability of b or fewer observations in the
second sample being outside the interval is given by

Pr Pr=
=
∑ i
i

b

0

Use of this test requires that the population samples sizes, ILX and IHX, be set
prior to sampling or viewing the data. Ties do not present any special problems
except when they occur at the interval endpoints XLO and XLK. When this occurs for
the first sample, no action is taken, but an informative warning message is issued.
When a second sample observation is within FUZZ of an endpoint, then a tie is
counted in STAT(1), and once more, a warning message is issued. In this case,
STAT(3) and STAT(4) can be considered as bounds for the actual probability.

Example

The following example, which is an adaptation of a problem in Bradley (1968,
page 234) illustrates the use of INCLD to test that equal proportions of two
populations lie between the endpoints of the first sample.

      INTEGER    IHX, ILX, NOBSX, NOBSY
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, IHX=12, ILX=1, NOBSX=12, NOBSY=15)
C
      INTEGER    NMISSX, NMISSY
      REAL       STAT(4), X(NOBSX), Y(NOBSY)
      CHARACTER  CLABEL(5)*30, RLABEL(1)*4
      EXTERNAL   INCLD, WRRRL
C
      DATA X/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12/
      DATA Y/0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2/
      DATA RLABEL/’NONE’/
      DATA CLABEL/’ ’, ’%/Number of ties’, ’%/Number outside’,
     &     ’p-value%/untied’, ’p-value%/both’/
C                                 Perform includance test
      CALL INCLD (NOBSX, X, NOBSY, Y, ILX, IHX, FUZZ, STAT, NMISSX,
     &            NMISSY)
C                                 Print results
      CALL WRRRL (’STAT’, 1, 4, STAT, 1, 0, ’(2F5.0,2F10.4)’, RLABEL,
     &            CLABEL)
C
      END

Output
                          STAT
                                   p-value     p-value
Number of ties  Number outside      untied        both
            0.              7.      0.0377      0.0377
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KRSKL/DKRSKL (Single/Double precision)
Perform a Kruskal-Wallis test for identical population medians.

Usage
CALL KRSKL (NGROUP, NI, Y, FUZZ, STAT)

Arguments

NGROUP — Number of groups.   (Input)

NI — Vector of length NGROUP containing the number of responses for each of
the NGROUP groups.   (Input)

Y — Vector of length NI(1) + … + NI(NGROUP) that contains the responses for
each of the NGROUP groups.   (Input)
Y must be sorted by group, with the NI(1) observations in group 1 coming first,
the NI(2) observations in group two coming second, and so on.

FUZZ — Constant used to determine ties in Y.   (Input)
If (after sorting) |Y(i) − Y(i + 1)| is less than or equal to FUZZ, then a tie is
counted. FUZZ must be nonnegative.

STAT — Vector of length 4 containing the Kruskal-Wallis statistics.   (Output)

I STAT(I)
1 Kruskal-Wallis H statistic.
2 Asymptotic probability of a larger H under the null hypothesis of

identical population medians.
3 H corrected for ties.
4 Asymptotic probability of a larger H (corrected for ties) under the null

hypothesis of identical populations.

Comments

1. Automatic workspace usage is

KRSKL 3 * m units (m = NI(1) + … + NI(NGROUP)), or
DKRSKL 5 * m units (m = NI(1) + … + NI(NGROUP)).

Workspace may be explicitly provided, if desired, by use of
K2SKL/DK2SKL. The reference is

CALL K2SKL (NGROUP, NI, Y, FUZZ, STAT, IWK, WK,
            YRNK)

The additional arguments are as follows:

IWK — Integer work vector of length m.

WK — Work vector of length m.

YRNK — Work vector of length m.
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2. Informational errors
Type Code
   3     4 At least one tie was detected in Y.
   3     5 All elements of Y are tied. STAT is set to −1.0.
   3     6 The chi-squared degrees of freedom are less than 5, so

the Beta approximation is used.

Algorithm

The routine KRSKL generalizes the Wilcoxon two-sample test computed by
routine RNKSM (page 557) to more than two populations. It computes a test
statistic for testing that the population distribution functions in each of K
populations are identical. Under appropriate assumptions, this is a nonparametric
analogue of the one-way analysis of variance. Since more than two samples are
involved, the alternative is taken as the analogue of the usual analysis of variance
alternative, namely that the populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of the
population to which they belong. Average ranks are used for tied observations
(observations within FUZZ of each other). Missing observations (observations
equal to NaN, not a number) are not included in the ranking. Let RL denote the
sum of the ranks in the i-th population. The test statistic H is defined as:
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where N is the total of the sample sizes, nL is the number of observations in the

i-th sample, and S2 is computed as the (bias corrected) sample variance of the RL.

The null hypothesis is rejected when STAT(4) (or STAT(2)) is less than the
significance level of the test. If the null hypothesis is rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The
routine KRSKL computes asymptotic probabilities using the chi-squared
distribution when the number of groups is 6 or greater, and a Beta approximation
(see Wallace 1959) when the number of groups is 5 or less. Tables yielding exact
probabilities in small samples may be obtained from Owen (1962).

Example

The following example is taken from Conover (1980, page 231). The data
represents the yields per acre of four different methods for raising corn. Since
H = 25.5, the four methods are clearly different. The warning error is always
printed when the Beta approximation is used, unless printing for warning errors is
turned off. See IMSL routine ERSET (Reference Material).

      INTEGER    NGROUP
      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, NGROUP=4)



566 • Chapter 6: Nonparametric Statistics IMSL STAT/LIBRARY

C
      INTEGER    NI(NGROUP), NOUT
      REAL       STAT(4), Y(34)
      EXTERNAL   KRSKL, UMACH
C
      DATA NI/9, 10, 7, 8/
      DATA Y/83, 91, 94, 89, 89, 96, 91, 92, 90, 91, 90, 81, 83, 84,
     &     83, 88, 91, 89, 84, 101, 100, 91, 93, 96, 95, 94, 78, 82,
     &     81, 77, 79, 81, 80, 81/
C                                 Perform Kruskal-Wallis test
      CALL KRSKL (NGROUP, NI, Y, FUZZ, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
C
99999 FORMAT (’ H (no ties)    = ’, F8.1, /, ’ Prob (no ties) = ’,
     &       F11.4, /, ’ H (ties)       = ’, F8.1, /, ’ Prob (ties)   ’
     &       , ’ = ’, F11.4)
C
      END

Output
*** WARNING  ERROR 6 from KRSKL.  The chi-squared degrees of freedom are
***          less than 5, so the Beta approximation is used.
H (no ties)    =     25.5
Prob (no ties) =      0.0000
H (ties)       =     25.6
Prob (ties)    =      0.0000

BHAKV/DBHAKV (Single/Double precision)
Perform a Bhapkar V test.

Usage
CALL BHAKV (NGROUP, NI, Y, V, PROB)

Arguments

NGROUP — Number of groups.   (Input)

NI — Vector of length NGROUP containing the number of responses for each of
the NGROUP groups.   (Input)

Y — Vector of length NI(1) + NI(2) + … + NI(NGROUP) containing the responses
for each of the NGROUP groups.   (Input)
Y must be sorted by group with the NI(1) observations for group 1 coming first.

V — Bhapkar V statistic.   (Output)

PROB — Asymptotic probability of exceeding V under the null hypothesis that
the populations are equal.   (Output)
Asymptotically, V follows a chi-squared distribution with NGROUP − 1 degrees of
freedom.
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Comments

Automatic workspace usage is

BHAKV 2 * NGROUP + 2 * m units, or,
DBHAKV 3 * NGROUP + 3 * m units,

where m = NI(1)+ … + NI(NGROUP). Workspace may be explicitly provided, if
desired, by use of B2AKV/DB2AKV. The reference is
CALL B2AKV (NGROUP, NI, Y, V, PROB, IWK, WK, YWK)

The additional arguments are as follows:

IWK — Integer work vector of length NI(1) + … + NI(NGROUP) + NGROUP

WK — Work vector of length NGROUP

YWK — Work vector of length NI(1) + … + NI(NGROUP). If Y is not needed, Y
and YWK can share the same storage locations.

Algorithm

Routine BHAKV tests the hypothesis that several samples are from the same
population using the Bhapkar V statistic. Let the number of samples be denoted
by K = NGROUP. To compute the Bhapkar V statistic, one first computes, for each
group i, the statistic tL = the number of K-tuples that can be formed with one
observation from each sample such that the element from population i is the
smallest. The sample variance of the ratio of tL to the total number of such
k-tuples is then computed. The Bhapkar V statistic is then a constant c multiplied
by this variance, where c = n(2m − 1), m = NGROUP, and n is the sum of the
sample sizes (after missing values are eliminated).

Example

We want to test the null hypothesis that three samples of size 3, 2, and 4,
respectively, are from the same population using the Bhapkar V statistic.

      INTEGER    NGROUP
      PARAMETER  (NGROUP=3)
C
      INTEGER    NI(NGROUP), NOUT
      REAL       PROB, V, Y(9)
      EXTERNAL   BHAKV, UMACH
C
      DATA NI/3, 2, 4/
      DATA Y/1, 3, 2, -1, 5, 4, 7, 2, 9/
C                                 Perform Bhapkar V test
      CALL BHAKV (NGROUP, NI, Y, V, PROB)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998) V
      WRITE (NOUT,99999) PROB
C
99998 FORMAT (’ V    = ’, F12.5)
99999 FORMAT (’ Prob = ’, F12.5)
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C
      END

Output
V    =      1.89429
Prob =      0.38785

FRDMN/DFRDMN (Single/Double precision)
Perform Friedman’s test for a randomized complete block design.

Usage
CALL FRDMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D)

Arguments

NB — Number of blocks.   (Input)

NT — Number of treatments.   (Input)

Y — Vector of length NB * NT containing the observations.   (Input)
The first NT positions of Y contain the observations on treatments 1, 2, …, NT in
the first block. The second NT positions contain the observations in the second
block, etc., and so on.

FUZZ — Constant used to determine ties.   (Input)
In the ordered observations, if |Y(i) −Y(i + 1)| is less than or equal to FUZZ, then
Y(i) and Y(i + 1) are said to be tied.

ALPHA — Critical level for multiple comparisons.   (Input)
ALPHA should be between 0 and 1 exclusive.

STAT — Vector of length 6 containing the Friedman statistics.   (Output)
Probabilities reported are computed under the appropriate null hypothesis.

I STAT(I)
1 Friedman two-sided test statistic.
2 Approximate F value for STAT(1).
3 Page test statistic for testing the ordered alternative that the median of

treatment i is less than or equal to the median of treatment i + 1, with
strict inequality holding for some i.

4 Asymptotic p-value for STAT(1). Chi-squared approximation.
5 Asymptotic p-value for STAT(2). F approximation.
6 Asymptotic p-value for STAT(3). Normal approximation.

SMRNK — Vector of length NT containing the sum of the ranks of each
treatment.   (Output)

D — Minimum absolute difference in two elements of SMRNK to infer at the alpha
level of significance that the medians of the corresponding treatments are
different.   (Output)
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Comments

1. Automatic workspace usage is

FRDMN 3 * NT units, or
DFRDMN 5 * NT units.

Workspace may be explicitly provided, if desired, by use of
F2DMN/DF2DMN. The reference is

CALL F2DMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D,
            IWK, WK)

The additional arguments are as follows:

IWK — Integer work vector of length NT.

WK — Work vector of length 2 * NT.

2. Informational errors
Type Code
   4     5 At least one missing value was detected in Y. No

missing values are permitted in this routine since it
assumes a complete block design.

   3     6 At least one tie was detected within a block.
   3     7 The ranks of the treatments were exactly the same in

all the blocks.

Algorithm

Routine FRDMN may be used to test the hypothesis of equality of treatment effects
within each block in a randomized block design. No missing values are allowed.
Ties are handled by using the average ranks. The test statistic is the
nonparametric analogue of an analysis of variance F test statistic.

The test proceeds by first ranking the observations within each block. Let A
denote the sum of the squared ranks, i.e., let

A Yij
j

b

i

k

=
==
∑∑ Rank3 82

11

where Rank(YLM) is the rank of the i-th observation within the j-th block, b = NB is
the number of blocks, and k = NT is the number of treatments. Let
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=
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The Friedman test statistic (STAT(1)) is given by:

T
k bB b k k

A bk k
=

− − +

− +

1 1 4

1 4

2 2

2

0 5 0 54 9
0 5

/

/

that, under the null hypothesis, has an approximate chi-squared distribution with k
− 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-
squared random variable is returned in STAT(4).

If the F distribution is used in place of the chi-squared distribution, then the usual
oneway analysis of variance F-statistic computed on the ranks is used. This
statistic, reported in STAT(2), is given by

F
b T

b k T
=

−
− −

1

1

0 5
0 5

and asymptotically follows an F distribution with (k − 1) and (b − 1)(k − 1)
degrees of freedom under the null hypothesis. STAT(5) is the asymptotic
probability of obtaining a larger F random variable. (If A = B, STAT(1) and
STAT(2) are set to machine infinity, and the significance levels are reported as

k!/(k!)E, unless this computation would cause underflow, in which case the
significance levels are reported as zero.) Iman and Davenport (1980) discuss the
relative advantages of the chi-squared and F approximations. In general, the F
approximation is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concordance
and to the Spearman rank correlation coefficient. See Conover (1980) for a
discussion of the relationships.

If, at the α = ALPHA level of significance, the Friedman test results in rejection of
the null hypothesis, then an asymptotic test that treatments i and j are different is
given by: reject H0 if |RL − RM| > D, where

D = − − −−t b A B b k1 2 2 1 1α / /0 5 0 50 51 6
where t has (b − 1)(k − 1) degrees of freedom. Page’s statistic (STAT(3)) is used
to test the same null hypothesis as the Friedman test but is sensitive to a
monotonic increasing alternative. The Page test statistic is given by

Q jRi
i

k

=
=
∑

1

It is largest (and thus most likely to reject) when the RL are monotonically
increasing.

Assumptions

The assumptions in the Friedman test are as follows:
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1. The k-vectors of responses within each of the b blocks are mutually
independent (i.e., the results within one block have no effect on the
results within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each
block is equally likely. The alternative is that at least one of the treatments tends
to have larger values than one or more of the other treatments. The Friedman test
is a test for the equality of treatment means or medians.

Example

The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person’s visual acuity. Five
subjects were used.

      INTEGER    NB, NT
      REAL       ALPHA, FUZZ
      PARAMETER  (ALPHA=0.05, FUZZ=0.001, NB=5, NT=4)
C
      INTEGER    NOUT
      REAL       D, SMRNK(NT), STAT(6), Y(NB*NT)
      EXTERNAL   FRDMN, UMACH
C
      DATA Y/.39, .55, .33, .41, .21, .28, .19, .16, .73, .69, .64,
     &     .62, .41, .57, .28, .35, .65, .57, .53, .60/
C                                 Perform Friedman’s test
      CALL FRDMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT, SMRNK, D
C
99999 FORMAT (’ Friedman T.........’, F8.2, /, ’ Friedman F.........’,
     &       F8.2, /, ’ Page test..........’, F8.2, /, ’ Prob ’,
     &       ’Friedman T....’, F11.5, /, ’ Prob Friedman F....’,
     &       F11.5, /, ’ Prob Page test.....’, F11.5, /, ’ Sum of ’,
     &       ’Ranks.......’, 4F8.2, /, ’ D..................’, F11.5)
C
      END

Output
Friedman T.........    8.28
Friedman F.........    4.93
Page test..........  111.00
Prob Friedman T....    0.04057
Prob Friedman F....    0.01859
Prob Page test.....    0.98495
Sum of Ranks.......   16.00   17.00    7.00   10.00
D..................    6.65638

The Friedman null hypothesis is rejected at the α = .05 while the Page null
hypothesis is not. (A Page test with a monotonic decreasing alternative would be
rejected, however.) Using SMRNK and D, one can conclude that treatment 3 is
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different from treatments 1 and 2, and that treatment 4 is different from treatment
2, all at the α = .05 level of significance.

QTEST/DQTEST (Single/Double precision)
Perform a Cochran Q test for related observations.

Usage
CALL QTEST (NOBS, NVAR, X, LDX, Q, PQ)

Arguments

NOBS — Number of blocks for each treatment.   (Input)

NVAR — Number of treatments.   (Input)

X — NOBS by NVAR matrix of dichotomized data, containing NOBS readings of
zero or one on each of NVAR treatments.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

Q — Cochran’s Q statistic.   (Output)

PQ — Asymptotic probability of exceeding Q under the null hypothesis of
equality of the underlying populations.   (Output)

Comments

1. Informational errors
Type Code
   4     5 X must consist of zeros and ones only.
   3     6 X consists of either all ones or all zeros. Q is set to

NaN (not a number). PQ is set to 1.0.

2. The input data must consist of zeros and ones only. For example, the
data may be passfail information on NVAR questions asked of NOBS
people or the test responses of NOBS individuals to NVAR different
conditions.

3. The resulting statistic is distributed approximately as chi-squared with
NVAR − 1 degrees of freedom if NOBS is not too small. NOBS greater than
or equal to 5 * NVAR is a conservative recommendation.

Algorithm

Routine QTEST computes the Cochran Q test statistic that may be used to
determine whether or not M matched sets of responses differ significantly among
themselves. The data may be thought of as arising out of a randomized block
design in which the outcome variable must be success (= 1.0) or failure (= 0.0).
Within each block a multivariate vector of 1’s or 0’s is observed. The
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hypothesis is that the probability of success within a block does not depend upon
the treatment.

Assumptions

1. The blocks are a random sample from the population of all possible
blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0: All treatments have the same effect.
H1: The treatments do not all have the same effect.

2. Let pLM denote the probability of outcome 1.0 in block i, treatment j.

H0 : pL� = pL� = … = pLF for each i.

H1 : pLM ≠ pLN for some i, and some j ≠ k.

where c(= NVAR) is the number of treatments.

The null hypothesis is rejected if Cochran’s Q statistic is too large.

Example

The following example is taken from Siegel (1956, page 164). It measures the
responses of 18 housewives to 3 types of interviews.

      INTEGER    LDX, NOBS, NVAR
      PARAMETER  (NOBS=18, NVAR=3, LDX=NOBS)
C
      INTEGER    NOUT
      REAL       PQ, Q, X(LDX,NVAR)
      EXTERNAL   QTEST, UMACH
C
      DATA X/0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
     &     1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
     &     0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0/
C                                 Perform Cochran Q test
      CALL QTEST (NOBS, NVAR, X, LDX, Q, PQ)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) Q, PQ
C
99999 FORMAT (’  Q =  ’, F6.3, /, ’ PQ = ’, F9.5)
C
      END

Output
Q =  16.667
PQ =   0.00024
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KTRND/DKTRND (Single/Double precision)
Perform k-sample trends test against ordered alternatives.

Usage
CALL KTRND (NGROUP, NI, X, STAT)

Arguments

NGROUP — Number of groups.   (Input)
NGROUP must be greater than or equal to 3.

NI — Vector of length NGROUP that contains the number of responses for each of
the NGROUP groups.   (Input)

X — Vector of length NI(1) + NI(2) + … + NI(NGROUP) containing the responses
for each of the NGROUP groups.   (Input)
All of the responses for group 1 come first, followed by group 2, and so on.

STAT — Vector of length 17 containing the test results.   (Output)

I STAT(I)
1 Test statistic (ties are randomized).
2 Conservative test statistic with ties counted in favor of the null

hypothesis.
3 p-value associated with STAT(1).
4 p-value associated with STAT(2).
5 Continuity corrected STAT(3).
6 Continuity corrected STAT(4).
7 Expected mean of the statistic.
8 Expected kurtosis of the statistic. (The expected skewness is zero.)
9 Total sample size.
10 Coefficient of rank correlation based upon STAT(1).
11 Coefficient of rank correlation based upon STAT(2).
12 Total number of ties between samples.
13 The t-statistic associated with STAT(3).
14 The t-statistic associated with STAT(4).
15 The t-statistic associated with STAT(5).
16 The t-statistic associated with STAT(6).
17 Degrees of freedom for each t-statistic.

Comments

1. Informational errors
Type Code
   3    4 At least one tie is detected in X. Randomization is used

to break all ties.
   3    5 There are no degrees of freedom for the t-statistics.

STAT(3) to STAT(6) are set to 0.
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2. The closer STAT(10) and STAT(11) are to unity, the more one would be
inclined to reject the hypothesis of randomness.

3. Routine RNUN (page 1171) is used to randomly break ties. Routine
RNSET (page 1166) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select
the form of the generator.

Algorithm

Routine KTRND performs a k-sample trends test against ordered alternatives. The
alternative to the null hypothesis of equality is that F1(X) < F2(X) < … FN(X),
where F1, F2, etc., are cumulative distribution functions, and the operator <
implies that the less than relationship holds for all values of X. While the trends
test used in KTRND requires that the background populations be continuous, ties
occurring within a sample have no effect on the test statistic or associated
probabilities. Ties between samples are important, however. Two methods for
handling ties between samples are used. These are:

1. Ties are randomly split (STAT(1)).

2. Ties are counted in a manner that is unfavorable to the alternative
hypothesis (STAT (2)).

Computational Procedure

Consider the matrices

M m
X X

km
ij
km ki mj= =

<�
��

�
��3 8 2

0

if

otherwise

where XNL is the i-th observation in the k-th population, XPM is the j-th observation

in the m-th population, and each matrix MNP is nN by nP where nL = NI(i). Let SNP

denote the sum of all elements in MNP. Then, STAT(2) is computed as the sum
over all elements in SNP, minus the expected value of this sum (computed as

n nk mk m<∑

when there are no ties and the distributions in all populations are equal). In
STAT(1), ties are broken randomly, and the element in the summation is taken as
2.0 or 0.0 depending upon the result of breaking the tie.

STAT(3) and STAT(4) are computed using the t distribution. The probabilities
reported are asymptotic approximations based upon the t statistics in STAT(13)
and STAT(14), which are computed as in Jonckheere (1954, page 141).
Similarly, STAT(5) and STAT(6) give the probabilities for STAT(15) and
STAT(16), the continuity corrected versions of STAT(3) and STAT(4). The
degrees of freedom for each t statistic (STAT(17)) are computed so as to make
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the t distribution selected as close as possible to the actual distribution of the
statistic (see Jonckheere 1954, page 141).

STAT(7), the variance of the test statistic STAT(1), and STAT(8), the kurtosis of
the test statistic, are computed as in Jonckheere (1954, page 138). The
coefficients of rank correlation in STAT(9) and STAT(10) reduce to the Kendall τ
statistic when there are just two groups.

Exact probabilities in small samples can be obtained from tables in Jonckheere
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions

1. The XPL for each sample are independently and identically distributed
according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests

H0 : F1(X) ≥ F2(X) ≥ … ≥ FN(X)

H1 : F1(X) < F2(X) < … < FN(X)
Reject if STAT(3) (or STAT(4), or STAT(5) or STAT(6), depending upon the
method used) is too large.

Example

The following example is taken from Jonckheere (1954, page 135). It involves
four observations in four independent samples.

      INTEGER    NGROUP
      PARAMETER  (NGROUP=4)
C
      INTEGER    NI(NGROUP), NOUT
      REAL       STAT(17), X(16)
      EXTERNAL   KTRND, RNSET, UMACH
C
      DATA NI/4, 4, 4, 4/
      DATA X/19, 20, 60, 130, 21, 61, 80, 129, 40, 99, 100, 149, 49,
     &     110, 151, 160/
C
      CALL RNSET (123457)
C                                 Get the statistics
      CALL KTRND (NGROUP, NI, X, STAT)
C                                 Print the results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
C
99999 FORMAT (’ STAT(1) - Test statistic (random) ...........’, F8.1,
     &       /, ’ STAT(2) - Test statistic (null hypothesis) ..’,
     &       F8.1, /, ’ STAT(3) - p-value for STAT(1) ...............’
     &       , F12.5, /, ’ STAT(4) - p-value for STAT(2) ’,
     &       ’...............’, F12.5, /, ’ STAT(5) - Continuity ’,
     &       ’corrected STAT(3) ......’, F12.5, /, ’ STAT(6) - ’,
     &       ’Continuity corrected STAT(4) ......’, F12.5, /,
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     &       ’ STAT(7) - Expected mean .....................’, F8.1,
     &       /, ’ STAT(8) - Expected kurtosis .................’,
     &       F12.5, /, ’ STAT(9) - Total sample size .................’
     &       , F8.1, /, ’ STAT(10)- Rank corr. coef. based on STAT(1) ’
     &       , ’.’, F12.5, /, ’ STAT(11)- Rank corr. coef. based on ’,
     &       ’STAT(2) .’, F12.5, /, ’ STAT(12)- Total number of ties ’
     &       , ’..............’, F8.1, /, ’ STAT(13)- t-statistic ’,
     &       ’associated w/STAT(3) ..’, F10.3, /, ’ STAT(14)- ’,
     &       ’t-statistic associated w/STAT(4) ..’, F10.3, /,
     &       ’ STAT(15)- t-statistic associated w/STAT(5) ..’, F10.3,
     &       /, ’ STAT(16)- t-statistic associated w/STAT(6) ..’,
     &       F10.3, /, ’ STAT(17)- Degrees of freedom ................’
     &       , F10.3)
C
      END

Output
STAT(1) - Test statistic (random) ...........    46.0
STAT(2) - Test statistic (null hypothesis) ..    46.0
STAT(3) - p-value for STAT(1) ...............     0.01483
STAT(4) - p-value for STAT(2) ...............     0.01483
STAT(5) - Continuity corrected STAT(3) ......     0.01683
STAT(6) - Continuity corrected STAT(4) ......     0.01683
STAT(7) - Expected mean .....................   458.7
STAT(8) - Expected kurtosis .................    -0.15365
STAT(9) - Total sample size .................    16.0
STAT(10)- Rank corr. coef. based on STAT(1) .     0.47917
STAT(11)- Rank corr. coef. based on STAT(2) .     0.47917
STAT(12)- Total number of ties ..............     0.0
STAT(13)- t-statistic associated w/STAT(3) ..     2.264
STAT(14)- t-statistic associated w/STAT(4) ..     2.264
STAT(15)- t-statistic associated w/STAT(5) ..     2.208
STAT(16)- t-statistic associated w/STAT(6) ..     2.208
STAT(17)- Degrees of freedom ................    36.050
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Chapter 7: Tests of Goodness 
of Fit and Randomness

Routines
7.1. General Goodness-of-Fit Tests for a Specified Distribution

One-sample continuous data Kolmogorov-Smirnov ........... KSONE 580
Chi-squared test goodness-of-fit test ....................................CHIGF 584
Shapiro-Wilk W-test for normality ....................................... SPWLK 589
Lilliefors test for an exponential or a normal distribution.........LILLF 591
Mardia’s test for multivariate normality .............................. MVMMT 594

7.2. Two Sample Tests
Kolmogorov-Smirnov ......................................................... KSTWO 598

7.3. Tests for Randomness
Runs test ................................................................................RUNS 600
Pairs-serial test ..................................................................... PAIRS 604
d2 test .................................................................................. DSQAR 607
Triplets test ......................................................................... DCUBE 609

Usage Notes
The routines in this chapter are used to test for goodness of fit and randomness.
The goodness-of-fit tests are described in Conover (1980). There are two
goodness-of-fit tests for general distributions, a Kolmogorov-Smirnov test and a
chi-squared test. The user supplies the hypothesized cumulative distribution
function for these two tests. There are three routines that can be used to test
specifically for the normal or exponential distributions.

The tests for randomness are often used to evaluate the adequacy of
pseudorandom number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities in
small to moderate sample sizes. The chi-squared goodness-of-fit test may be used
with discrete as well as continuous distributions.
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The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for
missing values (NaN, not a number) in the input data. The routines that test for
randomness do not allow for missing values.

KSONE/DKSONE (Single/Double precision)
Perform a Kolmogorov-Smirnov one-sample test for continuous distributions.

Usage
CALL KSONE (CDF, NOBS, X, PDIF, NMISS)

Arguments

CDF — User-supplied FUNCTION to compute the cumulative distribution
function (CDF) at a given value. The form is CDF(Y), where

Y – Value at which CDF is to be evaluated.   (Input)
CDF – Value of CDF at Y.   (Output)

CDF must be declared EXTERNAL in the calling program.

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the observations.   (Input)

PDIF — Vector of length 6 containing the output statistics.   (Output)

I PDIF(I)

1 DQ = Maximum of

 ( , )D Dn n
+ −

2 Dn
+ =  Maximum difference between the theoretical and empirical

CDF’s

3 Dn
− =  Maximum difference between the empirical and theoretical

CDF’s

4 Z = NOBS * PDIF(1  ( )) .

5 Probability of the statistic exceeding DQ under the null hypothesis of
equality and against the one-sided alternative. An exact probability is
computed for NOBS ≤ 80, and an approximate probability is computed
for NOBS > 80. See function AKS1DF (page 1117).

6 Probability of the statistic exceeding DQ under the null hypothesis of
equality and against the two-sided alternative. This probability is twice
the probability reported in PDIF(5), (or 1.0 if 2 * PDIF(5) is greater than
1.0). This approximation is nearly exact when PDIF(5) is less than 0.10.
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NMISS — Number of missing (NaN, not a number) values.   (Output)

Comments

1. Automatic workspace usage is, if NOBS ≤ 80,

KSONE 3 * (NOBS + 1) units, or
DKSONE 6 * (NOBS + 1) units.

If NOBS is greater than 80, NOBS and 2 * NOBS units are required by
KSONE and DKSONE, respectively. If X is sorted, no workspace is
required by KSONE or DKSONE when NOBS is greater than 80. Workspace
may be explicitly provided, if desired, by use of K2ONE/DK2ONE. The
reference is

CALL K2ONE (CDF, NOBS, X, PDIF, NMISS, XWK)

The additional argument is

XWK — Work vector of length 3 * (NOBS + 1) if NOBS ≤ 80, or of
length NOBS if NOBS > 80.

2. Informational errors
Type Code
   4    2 PDIF, the output cumulative distribution value from

CDF, must be greater than or equal to 0.0 and less than
or equal to 1.0 (by definition of a probability
distribution function).

   4    3 At least one tie is detected in X. Ties are not allowed in
KSONE.

   4    4 PDIF, the output cumulative distribution value from
CDF, cannot decrease with increasing X (by the
definition of a cumulative distribution function).

   4    6 All the elements of X are missing (NaN, not a number)
values.

3. No check is made for the validity of the input data. Thus, although one
or more of the X(I) may be inconsistent with the distribution in that an
observation may be outside of the range of the distribution, KSONE will
not detect the anomaly (unless the user causes it to be detected via the
function CDF).

Algorithm

The routine KSONE performs a Kolmogorov-Smirnov goodness-of-fit test in one
sample. The hypotheses tested follow:

• = ≠
• ≥ <
• ≤ >

∗ ∗

∗ ∗

∗ ∗

H F x F x H F x F x

H F x F x H F x F x

H F x F x H F x F x

0 1

0 1

0 1

: ( ) ( ) : ( ) ( )

: ( ) ( ) : ( ) ( )

: ( ) ( ) : ( ) ( )
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where F is the cumulative distribution function (CDF) of the random variable,
and the theoretical CDF, F* , is specified via the user-supplied FUNCTION CDF.
Let n = NOBS − NMISS. The test statistics for both one-sided alternatives

Dn
+ = PDIF( )2

and

Dn
− = PDIF( )3

and the two-sided (DQ = PDIF(1)) alternative are computed as well as an
asymptotic z-score (PDIF(4)) and p-values associated with the one-sided
(PDIF(5)) and two-sided (PDIF(6)) hypotheses. For n > 80, asymptotic p-values
are used (see Gibbons 1971). For n ≤ 80, exact one-sided p-values are computed
according to a method given by Conover (1980, page 350). An approximate two-
sided test p-value is obtained as twice the one-sided p-value. The approximation
is very close for one-sided p-values less than 0.10 and becomes very bad as the
one-sided p-values get larger.

Programming Notes

1. The theoretical CDF is assumed to be continuous. If the CDF is not
continuous, the statistics

Dn
∗

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data
will tend to make the p-values associated with the test statistics too
liberal. The empirical CDF will tend to be closer to the theoretical CDF
than it should be.

3. No attempt is made to check that all points in the sample are in the
support of the theoretical CDF. If all sample points are not in the support
of the CDF, the null hypothesis must be rejected.

4. The user must supply an external FUNCTION that calculates the
theoretical CDF for a given abscissa. The calling program must contain
an EXTERNAL statement with the name of this routine. Often, IMSL
functions in Chapter 17, “Probability Distribution Functions and
Inverses,” may be used. Examples of possible user-supplied routines
follow. Each FORTRAN function would be preceded by the statement

REAL FUNCTION CDF(X)

and ended by a RETURN and an END statement.

a. Normal (µ, σ2) Z = (X − µ)/σ
               CDF = ANORDF(Z)

b. Uniform[a, b] If(X .LT. a) THEN
                 CDF = 0.0
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               ELSE IF(X .GT. b) THEN
                 CDF = 1.0
               ELSE

                 CDF = (X − a)/(b − a)
               END IF

c. Minimum of n CDF = 1.0 − (1.0 − X)**n
Uniform(0, 1) random numbers

Example

In this example, a random sample of size 100 is generated via routine RNUN (page
1171) for the uniform (0, 1) distribution. We want to test the null hypothesis that
the CDF is the standard normal distribution with a mean of 0.5 and a variance
equal to the uniform (0, 1) variance (1/12).

      INTEGER    ISEED, NOBS
      PARAMETER  (ISEED=123457, NOBS=100)
C
      INTEGER    NMISS, NOUT
      REAL       CDF, PDIF(6), X(100)
      EXTERNAL   CDF, KSONE, RNSET, RNUN, UMACH
C                                    Generate the sample
      CALL RNSET (ISEED)
      CALL RNUN (NOBS, X)
C
      CALL KSONE (CDF, NOBS, X, PDIF, NMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) NMISS, PDIF
99999 FORMAT (’NMISS = ’, I4/’ D     = ’, F8.4/’ D+    = ’, F8.4/
     &       ’ D-    = ’, F8.4/’ Z     = ’, F8.4/’ Prob greater D’,
     &       ’ one-sided = ’, F8.4/’ Prob greater D two-sided = ’,
     &       F8.4)
      END
C
C                                     The CDF
C
      REAL FUNCTION CDF (X)
      REAL       X
C
      REAL       AMEAN, STD
      PARAMETER  (AMEAN=0.50, STD=0.2886751)
C
      REAL       ANORDF, Z
      EXTERNAL   ANORDF
C                                     Standardize
      Z = (X-AMEAN)/STD
C                                 Get the probability
      CDF = ANORDF(Z)
C
      RETURN
      END
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Output
NMISS =    0
D     =   0.1471
D+    =   0.0810
D-    =   0.1471
Z     =   1.4708
Prob greater D one-sided =   0.0132
Prob greater D two-sided =   0.0264

CHIGF/DCHIGF (Single/Double precision)
Perform a chi-squared goodness-of-fit test.

Usage
CALL CHIGF (IDO, CDF, NELM, X, FREQ, NCAT, RNGE, NDFEST,
            CUTP, COUNTS, EXPECT, CHISQ, P, DF)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only call to CHIGF, and all of the data are input on this call.
1 This is the first call to CHIGF, and additional calls to CHIGF will be

made. Initialization and updating for the data in X are performed.
2 This is an intermediate call to CHIGF. Updating for the data in X is

performed.
3 This is the final call to CHIGF. Updating for the data in X and wrap-up

computations are performed.

Calls to CHIGF with IDO = 2 or 3 may be intermixed. It is permissible for a call
with IDO = 2 to follow a call with IDO = 3.

CDF — User-supplied FUNCTION to compute the cumulative distribution
function (CDF) at a given value. The form is CDF(Y), where

Y – Value at which the CDF is to be evaluated.   (Input)
CDF – Value of the CDF at Y.   (Output)

CDF must be declared EXTERNAL in the calling program.

NELM — The absolute value of NELM is the number of data elements currently
input in X.   (Input)
NELM may be positive, zero, or negative. Negative NELM means delete the −NELM
data elements from the analysis.

X — Vector of length |NELM| containing the data elements for this call.   (Input)
If the data element is missing (NaN, not a number), then the observation is
ignored.

FREQ — Vector containing the frequencies.   (Input)
If the first element of FREQ is −1.0, then all frequencies are taken to be 1 and
FREQ is of length 1. Otherwise, FREQ is of length |NELM|, and the elements in
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FREQ contain the frequency of the corresponding observation in X. If the
frequency is missing (NaN, not a number) (and FREQ(1) is not −1.0), the
observation is ignored.

NCAT — The absolute value of NCAT is the number of cells into which the
observations are to be tallied.   (Input)
If NCAT is negative, then CHIGF chooses the cutpoints in CUTP so that the cells
are equiprobable in continuous distributions. NCAT should not be negative in
discrete distributions. The user must be careful to define cutpoints in discrete
distributions since no error message can be generated in this situation if NCAT is
negative.

RNGE — Vector of length 2 containing the lower and upper endpoints of the
range of the distribution, respectively.   (Input)
If the lower and upper endpoints are equal, a range on the whole real line is used.
If the lower and upper endpoints are different, points outside of the range are
ignored so that distributions conditional on the range can be used. In this case, the
point RNGE(1) is excluded from the first interval, but the point RNGE(2) is
included in the last interval.

NDFEST — Number of parameters estimated in computing the CDF.   (Input)

CUTP — Vector of length |NCAT| − 1 containing the cutpoints defining the cells.
(Input, if NCAT is positive, output, otherwise)
|NCAT| − 1 cutpoints define the cells to be used. If NCAT is positive, then the
cutpoints are input by the user. The intervals defined by the cutpoints are such
that the lower endpoint is not included while the upper endpoint is included in the
interval.

COUNTS — Vector of length |NCAT| containing the counts in each of the cells.
(Output, if IDO = 0 or 1; input/output, if IDO > 1)

EXPECT — Vector of length |NCAT| containing the expected count in each cell.
(Output, if IDO = 0 or 3; not referenced otherwise)

CHISQ — Vector of length |NCAT| + 1 containing the contributions to chi-
squared.   (Output, if IDO = 0 or 3, not referenced otherwise)
Elements 1 through |NCAT| contain the contributions to chi-squared for the
corresponding cell. Element |NCAT| + 1 contains the total chi-squared statistic.

P — p-value for the chi-squared statistic in CHISQ(|NCAT| + 1).   (Output)
This chi-squared statistic has DF degrees of freedom.

DF — Degrees of freedom in chi-squared.   (Output)

Comments

Informational errors
Type Code
   4    4 There are more observations deleted from a cell than added.
   4    5 All observations are missing.
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   3    6 An expected value is less than 1.
   3    7 An expected value is less than 5.
   4    8 The function CDF is not a cumulative distribution function.
   4    9 The probability of the range of the distribution is not positive.
   4  10 An error has occurred when inverting the cumulative

distribution function. This function must be continuous and
defined over the whole real line. If all else fails, you must
specify the cutpoints (i.e., NCAT must be positive).

Algorithm

Routine CHIGF performs a chi-squared goodness-of-fit test that a random sample
of observations is distributed according to a specified theoretical cumulative
distribution. The theoretical distribution, which may be continuous, discrete, or a
mixture of discrete and continuous distributions, is specified via a user-defined
FUNCTION. Because the user is allowed to specify a range for the observations, a
test that is conditional upon the specified range is performed.

|NCAT| gives the number of intervals into which the observations are to be
divided. These intervals can be specified via the vector CUTP, which contains the
cutpoints (or endpoints) for the intervals. Or if NCAT is negative, equiprobable
intervals computed by CHIGF can be used. Regardless of the method used to
obtain them, the intervals are such that the lower endpoint is not included in the
interval while the upper endpoint is always included. The user should determine
the cutpoints when the cumulative distribution function has discrete elements
since CHIGF cannot determine them in this case. Regardless of how the cutpoints
are determined, the lower endpoint of the first interval is specified by RNGE(1)
when RNGE(1) ≠ RNGE(2) and is given as minus machine infinity otherwise. The
upper endpoint of the last interval is defined similarly.

Routine CHIGF tallies the observations in X as follows. If the cutpoints are
determined by CHIGF, then the cumulative probability at xL, F(xL), is computed via

function CDF. The tally for xL is made in interval number mF (x) + 1, where m =

|NCAT| and ⋅ is the function that takes the greatest integer that is no larger than
the argument of the function. If the cutpoints are specified by the user, the tally is
made in the interval to which xL belongs using the endpoints specified by the user.
Thus, if the computer time required to calculate the cumulative distribution
function is large, user-specified cutpoints may be preferred in order to reduce the
total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-
squared approximation may be suspect. A warning message to this effect is issued
in this case, as well as when an expected value is less than 5.

Programming Notes

The user must supply a function CDF with calling sequence CDF(Y), which
returns the value of the cumulative distribution function at any point Y in the
range of the distribution. The supplied function must be declared in an
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EXTERNAL statement in the calling program. Many of the IMSL cumulative
distribution functions in Chapter 17, “Probability Distribution Functions and
Inverses,” can be used for CDF, either directly, if the calling sequence is correct,
or indirectly, if, for example, the sample means and standard deviations are to be
used in computing the theoretical CDF.

Example 1

In this example, a discrete binomial random sample of size 1000 with binomial
parameter p = 0.3 and binomial sample size 5 is generated via routine RNBIN

(page 1173). routine RNSET is first used to set the seed. One call to CHIGF is
made. Routine BINDF (page 1108) is used to compute the CDF.

      INTEGER    ISEED, NCAT, NDFEST, NELM
      PARAMETER  (ISEED=123457, NCAT=6, NDFEST=0, NELM=1000)
C
      INTEGER    I, IDO, IX(NELM), NOUT
      REAL       CDF, CHISQ(NCAT+1), COUNTS(NCAT), CUTP(NCAT-1), DF,
     &           EXPECT(NCAT), FREQ(1), P, RNGE(2), X(NELM)
      EXTERNAL   CDF, CHIGF, RNBIN, RNSET, UMACH, WRRRN
C
      DATA FREQ/-1.0/, RNGE/0.0, 0.0/
      DATA CUTP/.5, 1.5, 2.5, 3.5, 4.5/
C
      CALL RNSET (ISEED)
C                                 Generate the data
      CALL RNBIN (NELM, 5, 0.3, IX)
      DO 10  I=1, NELM
         X(I) = IX(I)
   10 CONTINUE
C
      IDO = 0
      CALL CHIGF (IDO, CDF, NELM, X, FREQ, NCAT, RNGE, NDFEST, CUTP,
     &            COUNTS, EXPECT, CHISQ, P, DF)
C                                 Print results
      CALL WRRRN (’Counts’, 1, NCAT, COUNTS, 1, 0)
      CALL WRRRN (’Expect’, 1, NCAT, EXPECT, 1, 0)
      CALL WRRRN (’Contributions to Chi-squared’, 1, NCAT, CHISQ, 1, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) CHISQ(NCAT+1), P, DF
99999 FORMAT (///’0Chi-squared       ’, F8.4, /, ’ P-value           ’
     &       , F8.4, /, ’ Degrees of freedom’, F8.4)
      END
C
      REAL FUNCTION CDF (Y)
      REAL       Y
C
      INTEGER    I
      REAL       BINDF
      EXTERNAL   BINDF
C
      I   = Y
      CDF = BINDF(I,5,0.3)
      RETURN
      END
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Output
*** WARNING  ERROR 7 from CHIGF.  An expected value is less than 5.

                   Counts
    1       2       3       4       5       6
170.0   331.0   320.0   148.0    28.0     3.0

                   Expect
    1       2       3       4       5       6
168.1   360.2   308.7   132.3    28.3     2.4

        Contributions to Chi-squared
    1       2       3       4       5       6
0.022   2.359   0.414   1.863   0.004   0.134

Chi-squared         4.7963
P-value             0.4412
Degrees of freedom  5.0000

Example 2

This example illustrates the use of CHIGF on a randomly generated sample from
the normal distribution. One thousand randomly generated observations are
tallied into 10 equiprobable intervals. Twelve calls to CHIGF are made. The first
call is solely for initialization since IDO = 1 and NROW = 0. The next 10 calls tally
the data, 100 observations at a time, with IDO = 2 and NROW = 100. The last call
is for wrap up only since IDO = 3 and NROW = 0. All twelve calls could have been
replaced with one call to CHIGF with IDO = 0 and NROW = 1000. X would need to
be of length 1000 if one call were used. In this example, the null hypothesis is not
rejected.

      INTEGER    ISEED, NCAT, NDFEST
      PARAMETER  (ISEED=123457, NCAT=-10, NDFEST=0)
C
      INTEGER    I, IDO, NOUT, NELM
      REAL       ANORDF, CHISQ(-NCAT+1), COUNTS(-NCAT), CUTP(-NCAT-1),
     &           DF, EXPECT(-NCAT), FREQ(1), P, RNGE(2), X(100)
      EXTERNAL   ANORDF, CHIGF, RNNOR, RNSET, UMACH, WRRRN
C
      DATA FREQ/-1.0/, RNGE/0.0, 0.0/
C
      CALL RNSET (ISEED)
C                                 Initialization
      IDO  = 1
      NELM = 0
      CALL CHIGF (IDO, ANORDF, NELM, X, FREQ, NCAT, RNGE, NDFEST,
     &            CUTP, COUNTS, EXPECT, CHISQ, P, DF)
C                                 Add the data
      IDO  = 2
      NELM = 100
      DO 10  I=1, 10
         CALL RNNOR (NELM, X)
         CALL CHIGF (IDO, ANORDF, NELM, X, FREQ, NCAT, RNGE, NDFEST,
     &               CUTP, COUNTS, EXPECT, CHISQ, P, DF)
   10 CONTINUE
C                                 Wrap up
      IDO  = 3
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      NELM = 0
      CALL CHIGF (IDO, ANORDF, NELM, X, FREQ, NCAT, RNGE, NDFEST,
     &            CUTP, COUNTS, EXPECT, CHISQ, P, DF)
C                                 Print results
      CALL WRRRN (’Cutpoints’, 1, -NCAT-1, CUTP, 1, 0)
      CALL WRRRN (’Counts’, 1, -NCAT, COUNTS, 1, 0)
      CALL WRRRN (’Expect’, 1, -NCAT, EXPECT, 1, 0)
      CALL WRRRN (’Contributions to Chi-squared’, 1, -NCAT, CHISQ, 1, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) CHISQ(-NCAT+1), P, DF
99999 FORMAT (///’0Chi-squared       ’, F8.4, /, ’ P-value           ’
     &       , F8.4, /, ’ Degrees of freedom’, F8.4)
      END

Output
                              Cutpoints
     1       2       3       4       5       6       7       8       9
-1.282  -0.842  -0.524  -0.253   0.000   0.253   0.524   0.842   1.282

                                   Counts
    1       2       3       4       5       6       7       8       9      10
106.0   109.0    89.0    92.0    83.0    87.0   110.0   104.0   121.0    99.0

                               Expect
1       2       3       4       5       6       7       8       9      10
100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0

                    Contributions to Chi-squared
1       2       3       4       5       6       7       8       9      10
0.360   0.810   1.210   0.640   2.890   1.690   1.000   0.160   4.410   0.010

Chi-squared        13.1806
P-value             0.1546
Degrees of freedom  9.0000

SPWLK/DSPWLK (Single/Double precision)
Perform a Shapiro-Wilk W-test for normality.

Usage
CALL SPWLK (NOBS, X, W, P, NMISS)

Arguments

NOBS — Number of observations.   (Input)
NOBS must be in the range from 3 to 2000 inclusive.

X — Vector of length NOBS containing the observations.   (Input)

W — Shapiro Wilk W statistic.   (Output)

P — P -value for a test of normality.   (Output)

NMISS — Number of missing observations.   (Output)
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Comments

1. Automatic workspace usage is

SPWLK NOBS units if X is not sorted. Zero units if X is sorted, or
DSPWLK 2 * NOBS units if X is not sorted. Zero units if X is sorted.

Workspace may be explicitly provided, if desired, by use of
S2WLK/DS2WLK. The reference is
CALL S2WLK (NOBS, X, W, P, NMISS, WK)

The additional argument is

WK — Work vector of length NOBS. If X is not needed, then WK and X
can share the same storage locations. On output, WK will contain the
sorted nonmissing elements of X. If X is sorted, WK is not used.

2. Informational errors
Type Code
   4    2 There are too many missing (NaN, “not a number”)

values in X for the test to be performed.
   3    3 All observations in X are tied.

Algorithm

Routine SPWLK computes the Shapiro-Wilk W-statistic for testing for normality.
This test is thought to be one of the best omnibus tests of normality (see
D’Agostino and Stevens 1986, page 406). Routine SPWLK is based upon the
approximations and code given by Royston (1982a, b, c). It may be used in
samples as large as 2000, or as small as 3. In the Shapiro and Wilk test, W is
given by.
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where x(L) is the i-th largest order statistic,

x

is the sample mean, and n is the number of observations. Royston (1982) gives
approximations and tabled values which may be used to compute the coefficients
aL, i = 1, K, n, and obtain the significance level of the W statistic.

Example

The following example is taken from Conover (1980, pages 364 and 195). The
data consists of 50 two digit numbers taken from a telephone book. The W test
fails to reject the null hypothesis of normality at the .05 level of significance.

      INTEGER    NMISS, NOBS
      PARAMETER  (NOBS=50)
      REAL       P, W, X(NOBS)
C
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      DATA X/23, 36, 54, 61, 73, 23, 37, 54, 61, 73, 24, 40, 56, 62,
     &     74, 27, 42, 57, 63, 75, 29, 43, 57, 64, 77, 31, 43, 58, 65,
     &     81, 32, 44, 58, 66, 87, 33, 45, 58, 68, 89, 33, 48, 58, 68,
     &     93, 35, 48, 59, 70, 97/
C
      CALL SPWLK (NOBS, X, W, P, NMISS)
C                               Write out results
      CALL UMACH(2, NOUT)
      WRITE(NOUT,5) W, P, NMISS
    5 FORMAT(/ ’ W     = ’, F6.4 / ’ P     = ’, F6.4 /
     &       ’ NMISS = ’,I3)
      END

Output
W     = 0.9642
P     = 0.2309
NMISS =   0

LILLF/DLILLF (Single/Double precision)
Perform Lilliefors test for an exponential or normal distribution.

Usage
CALL LILLF (NOBS, X, IPDF, XMEAN, STD, DIF, PROB, NMISS)

Arguments

NOBS — Number of observations.   (Input)
NOBS must be greater than 4.

X — Vector of length NOBS containing the observations.   (Input)

IPDF — Distribution option.   (Input)
IPDF = 0 means a test for normality is to be performed. IPDF = 1 means a test for
the exponential distribution is to be performed.

XMEAN — Sample mean.   (Output)

STD — Sample standard deviation.   (Output)

DIF — Maximum absolute difference between the empirical and the theoretical
distributions.   (Output)

PROB — Approximate probability of a greater DIF.   (Output)
Probabilities less than 0.01 are reported as 0.01. Probabilities greater than 0.15
for the exponential distribution or greater than 0.10 for the normal distribution are
reported as 0.5. Otherwise an approximate probability is computed.

NMISS — Number of missing (NaN, not a number) values.   (Output)
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Comments

1. Automatic workspace usage is

LILLF NOBS units, or
DLILLF 2 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
L2LLF/DL2LLF. The reference is

CALL L2LLF (NOBS, X, IPDF, XMEAN, STD, DIF, PROB,
            NMISS, XWK)

The additional argument is

XWK — Work vector of length NOBS.

2. Informational errors
Type Code
   1    1 The computed probability of DIF is greater than 0.15

for an exponential distribution. PROB is set to 0.50.
   1    2 The computed probability of DIF is less than the

tabled probability of 0.01. PROB is set to 0.01.
   1    3 The computed probability of DIF is greater than 0.10

for a normal distribution. PROB is set to 0.50.
   1    4 The computed probability of DIF is less than 0.01.

PROB is set to 0.01.
   4    5 A negative value is encountered in X when IPDF = 1.

Negative values are impossible for exponential
distributions.

   4    6 All elements in X are tied.

Algorithm

Routine LILLF computes Lilliefors test and its p-values for either a normal
distribution in which both the mean and variance are estimated, or an exponential
distribution in which the mean is estimated. Routine LILLF uses a modified
version of IMSL routine KSONE (page 580) to compute the one-sample two-sided
Kolmogorov-Smirnov statistic D (DIF). p-values are then computed for the
exponential distribution via linear interpolation on the tabled values given by
Stephens (1974). For the normal distribution, p-values are computed using an
analytic approximation given by Dallal and Wilkinson (1986). Because Stephens’
(1974) tables are in the inclusive range (0.01, 0.15) and Dallal and Wilkinson
(1986) give approximations in the range (0.01, 0.10), if the computed probability
of a greater D is less than 0.01, a level 1 message is issued (such messages are not
generally printed, see the Reference Material) and the probability is set to 0.01.
Similarly, if the probability is greater than 0.15 (0.10 for the normal), a level 1
message is issued and the p-value is set to 0.50. Note that because parameters are
estimated, p-values in Lilliefors test are not the same as in the Kolmogorov-
Smirnov test.
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Observations from exponential or normal distributions should not be tied. If tied
observations are found, an informational message is printed. Printing of this
message can be turned off via a call to routine ERSET as is discussed in the
Reference Material.

A general reference for Lilliefors test is Conover (1980). The original reference
for the test for normality is Lilliefors (1967), while Lilliefors (1969) introduces
the test for the exponential distribution.

Example

The following example is taken from Conover (1980, page 358). It consists of 50
observations drawn at random from a telephone book. In this example, the null
hypothesis is accepted. Note that the computed probability is outside the range
(0.01, 0.10), and has thus been set to .50. Because many observations in X are
tied, a warning message is issued. The printing of this message can be turned off
through the use of routine ERSET (Reference Material).

      INTEGER    IPDF, NOBS
      PARAMETER  (IPDF=0, NOBS=50)
C
      INTEGER    NMISS, NOUT
      REAL       DIF, PROB, STD, X(NOBS), XMEAN
      EXTERNAL   LILLF, UMACH
C
      DATA X/23, 23, 24, 27, 29, 31, 32, 33, 33, 35, 36, 37, 40, 42,
     &     43, 43, 44, 45, 48, 48, 54, 54, 56, 57, 58, 57, 58, 58, 58,
     &     59, 61, 61, 62, 63, 64, 65, 66, 68, 68, 70, 73, 73, 74, 75,
     &     77, 81, 87, 89, 93, 97/
C
      CALL LILLF (NOBS, X, IPDF, XMEAN, STD, DIF, PROB, NMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,’(’’ XMEAN = ’’, F9.2, /, ’’ STD = ’’, F12.3, /,  ’//
     &      ’     ’’ DIF = ’’, F13.4, /, ’’ PROB = ’’, F12.4, /,     ’//
     &      ’  ’’ NMISS = ’’, I6)’) XMEAN, STD, DIF, PROB, NMISS
      END

Output
*** WARNING  ERROR 3 from L4LLF.  Two or more elements in X are tied.
    Here is a traceback of subprogram calls in reverse order:
    Routine name                    Error type  Error code
    ------------                    ----------  ----------
    L4LLF                               6           3    (Called internally)
    L3LLF                               0           0    (Called internally)
    L2LLF                               0           0    (Called internally)
    LILLF                               0           0
    USER                                0           0
XMEAN =     55.04
STD =       19.005
DIF =        0.0811
PROB =       0.5000
NMISS =      0



594 • Chapter 7: Tests of Goodness of Fit and Randomness IMSL STAT/LIBRARY

MVMMT/DMVMMT (Single/Double precision)
Compute Mardia’s multivariate measures of skewness and kurtosis and test for
multivariate normality.

Usage
CALL MVMMT (NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
            ICMPUT, NI, SWT, XMEAN, R, LDR, STAT, NRMISS)

Arguments

NOBS — Number of rows of data in X.   (Input)

NVAR — Dimensionality of the multivariate space for which the skewness and
kurtosis are to be computed.   (Input)

NCOL — Number of columns in matrix X.   (Input)

X — NOBS by NVAR+ m matrix containing the data.   (Input)
m is 0, 1, or 2 depending upon whether any columns in X contain frequencies or
weights.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IND — Vector of length NVAR containing the column numbers in X for which
statistics are desired.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column
number IFRQ of X contains the frequencies. All frequencies should be integer
values. The NINT (nearest integer) function is used to obtain integer frequencies
if this is not the case.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X
contains the weights. Negative weights are not allowed.

ICMPUT — Option parameter giving the statistics to compute.   (Input)

ICMPUT Output Statistics
0 Both skewness and kurtosis.
1 Kurtosis only.
2 Skewness only.

NI — The sum of the frequencies of all observations used in the computations.
(Output)

SWT — The sum of the weights times the frequencies for all observations used in
the computations.   (Output)

XMEAN — Vector of length NVAR containing the sample means.   (Output)
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R — NVAR by NVAR upper triangular matrix containing the Cholesky R7R
factorization of the covariance matrix.   (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

STAT — Vector of length 13 containing the output statistics.   (Output)
If a statistic is not computed, the corresponding element of STAT is set to not a
number (NaN).
STAT(1) = estimated skewness.
STAT(2) = expected skewness assuming a multivariate normal distribution.
STAT(3) = asymptotic chi-squared statistic assuming a multivariate normal

distribution.
STAT(4) = probability of a greater chi-squared.
STAT(5) = Mardia and Foster’s standard normal score for skewness.
STAT(6) = estimated kurtosis.
STAT(7) = expected kurtosis assuming a multivariate normal distribution.
STAT(8) = asymptotic standard error of the estimated kurtosis.
STAT(9) = standard normal score obtained from STAT(6) through STAT(8).
STAT(10) = p-value corresponding to STAT(9).
STAT(11) = Mardia and Foster’s standard normal score for kurtosis.
STAT(12) = Mardia’s S: statistic based upon STAT(5) and STAT(11).
STAT(13) = p-value for STAT(12).

STAT(12) and STAT(13) are only computed when ICMPUT = 0.

NRMISS — Number of rows of data in X containing any missing values (NaN,
not a number).   (Output)
Rows with missing values in the columns IND, IFRQ, and IWT are excluded from
the analysis.

Comments

1. Automatic workspace usage is

MVMMT m + 2 * NVAR units, or
DMVMMT 2 * m + 4 * NVAR units,

where m = NVAR * NVAR if ICMPUT = 1 or m = NVAR * NVAR * NVAR
otherwise. Workspace may be explicitly provided, if desired, by use of
M2MMT/DM2MMT. The reference is

CALL M2MMT (NOBS, NVAR, NCOL, X, LDX, IND, IFRQ,
            IWT, ICMPUT, NI, SWT, XMEAN, R, LDR,
            STAT, NRMISS, D, OB, CC)

The additional arguments are as follows.

D — Work vector of length NVAR.

OB — Work vector of length NVAR.
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CC — Work vector of length m, where m = NVAR * NVAR if ICMPUT = 1
or m = NVAR * NVAR * NVAR otherwise.

2. Informational errors
Type Code
   4    1 At least one of the variables in X is linearly related to

the other variables in X.
   4    2 The sum of the frequencies must be greater than the

maximum of 3 and the number of variables plus one.

Algorithm

Routine MVMMT computes Mardia’s (1970) measures b1,S�and b2,S of multivariate
skewness and kurtosis, respectfully, for p = NVAR. These measures are then used
in computing tests for multivariate normality. Three test statistics, one based upon
b1,S alone, one based upon b2,S alone, and an omnibus test statistic formed by
combining normal scores obtained from b1,S and b2,S are computed. On the order

of np3, operations are required in computing b1,S when the method of Isogai

(1983) is used, where n = NOBS. On the order of np2, operations are required in
computing b2,S.

Let
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fL is the frequency of the i-th observation, and wL is the weight for this
observation. (Weights wL are defined such that xL is distributed according to a

multivariate normal, N(µ, Σ/wL) distribution, where Σ is the covariance matrix.)
Mardia’s multivariate skewness statistic is defined as:

b
n

f f dp i j ij
j

n

i

n

1 2
3

11

1
, =

==
∑∑

while Mardia’s kurtosis is given as:
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Both measures are invariant under the affine (matrix) transformation AX + D,
and reduce to the univariate measures when p = NVAR = 1. Using formulas given
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in Mardia and Foster (1983), the approximate expected value, asymptotic
standard error, and asymptotic p-value for b2,S, and the approximate expected
value, an asymptotic chi-squared statistic, and p-value for the b1,S statistic are
computed. These statistics are all computed under the null hypothesis of a
multivariate normal distribution. In addition, standard normal scores W1(b1,S) and
W2(b2,S) (different from but similar to the asymptotic normal and chi-squared
statistics above) are computed. These scores are combined into an asymptotic chi-
squared statistic with two degrees of freedom:

S W b W bW p p= +1
2

1 2
2

2, ,3 8 3 8
This chi-squared statistic may be used to test for multivariate normality. A p-
value for the chi-squared statistic is also computed.

Example

In the following example, 150 observations from a 5 dimensional standard normal
distribution are generated via routine RNNOR (page 1208). The skewness and
kurtosis statistics are then computed for these observations.

      INTEGER    ICMPUT, IFRQ, IWT, LDR, LDX, NCOL, NOBS, NVAR
      PARAMETER  (ICMPUT=0, IFRQ=0, IWT=0, NCOL=5, NOBS=150, LDX=NOBS,
     &           NVAR=NCOL, LDR=NVAR)
C
      INTEGER    IND(5), NI, NOUT, NRMISS
      REAL       R(LDR,NVAR), STAT(13), SWT, X(LDX,NCOL), XMEAN(NVAR)
      EXTERNAL   MVMMT, RNNOR, RNSET, UMACH, WRRRN
C
      DATA IND/1, 2, 3, 4, 5/
C
      CALL RNSET (123457)
      CALL RNNOR (LDX*NCOL, X)
C
      CALL MVMMT (NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, ICMPUT,
     &            NI, SWT, XMEAN, R, LDR, STAT, NRMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ NI = ’, NI, ’ SWT = ’, SWT, ’ NRMISS = ’, NRMISS
      CALL WRRRN (’XMEAN’, 1, NVAR, XMEAN, 1, 0)
      CALL WRRRN (’R’, NVAR, NVAR, R, LDR, 0)
      CALL WRRRN (’STAT’, 1, 13, STAT, 1, 0)
C
      END

Output
NI =   150 SWT =     150.000 NRMISS =   0

                  XMEAN
     1        2        3        4        5
0.0355   0.0467   0.0599   0.0957   0.1007

                    R
        1       2       3       4       5
1   1.033  -0.022  -0.037   0.055  -0.003
2   0.000   0.993  -0.119  -0.076  -0.056
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3   0.000   0.000   0.997  -0.089   0.017
4   0.000   0.000   0.000   1.008  -0.040
5   0.000   0.000   0.000   0.000   1.027

                                  STAT
   1       2       3       4       5       6       7       8       9      10
1.52    1.36   38.71    0.31    0.42   34.21   34.54    1.27   -0.26    0.80

  11      12      13
0.18    0.21    0.90

KSTWO/DKSTWO (Single/Double precision)
Perform a Kolmogorov-Smirnov two-sample test.

Usage
CALL KSTWO (NOBSX, X, NOBSY, Y, PDIF, NMISSX, NMISSY)

Arguments

NOBSX — Number of observations in sample one.   (Input)

X — Vector of length NOBSX containing the observations in sample one.   (Input)

NOBSY — Number of observations in sample two.   (Input)

Y — Vector of length NOBSY containing the observations in sample two.   (Input)

PDIF — Vector of length 6 containing the output statistics.   (Output)

I PDIF(I)

1 DPQ = Maximum of the absolute values of

  and Dmn Dmn
+ −

2 Dmn
+ =  Maximum difference between the empirical cumulative

distribution function (CDF) of X minus the empirical CDF of Y.

3 Dmn
− =  Maximum difference between the empirical CDF of X minus

the empirical CDF of Y. (The maximum of the negative differences.)

4 Z = Standardized value of DPQ. A two-sample approximation with no
correction for continuity is used.

5 One-sided probability of a larger DPQ under the null hypothesis of equal
distributions.

6 Two-sided probability of exceeding DPQ under the null hypothesis of
equal distributions.
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NMISSX — Number of missing observations in the X sample.   (Output)

NMISSY — Number of missing observations in the Y sample.   (Output)

Comments

Automatic workspace usage is

KSTWO NOBSX + NOBSY + 2 units, or
DKSTWO 2(NOBSX + NOBSY + 2) units.

Workspace may be explicitly provided, if desired, by use of K2TWO/DK2TWO. The
reference is

CALL K2TWO (NOBSX, X, NOBSY, Y, PDIF, NMISSX, NMISSY, XWK,
            YWK)

The additional arguments are as follows:

XWK — Work vector of length NOBSX + 1.

YWK — Work vector of length NOBSY + 1.

Algorithm

Routine KSTWO computes Kolmogorov-Smirnov two-sample test statistics for
testing that two continuous cumulative distribution functions (CDF’s) are
identical based upon two random samples. One- or two-sided alternatives are
allowed. Exact p-values are computed for the two-sided test when NOBSX *
NOBSY is less than 104.

Let FQ(x) denote the empirical CDF in the X sample, let GP(y) denote the

empirical CDF in the Y sample, where n = NOBSX − NMISSX and
m = NOBSY − NMISSY, and let the corresponding population distribution functions
be denoted by F(x) and G(y), respectively. Then, the hypotheses tested by KSTWO

are as follows:

• = ≠
• ≤ >
• ≥ <

H F x G x H F x G x

H F x G x H F x G x

H F x G x H F x G x

0 1

0 1
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The test statistics are given as follows:
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Asymptotically, the distribution of the statistic

Z D m n mnmn= +( ) / ( )

(returned in PDIF(4)) converges to a distribution given by Smirnov (1939).
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Exact probabilities for the two-sided test are computed when nm is less than or

equal to 104, according to an algorithm given by Kim and Jennrich (1973), and

computed here via function AKS2DF (page 1120). When nm is greater than 104,
the very good approximations given by Kim and Jennrich are used to obtain the
two-sided p-values. The one-sided probability is taken as one half the two-sided
probability. This is a very good approximation when the p-value is small (say,
less than 0.10) and not very good for large p-values.

Example

The following example illustrates the KSTWO routine with two randomly generated
samples from a uniform(0,1) distribution. Since the two theoretical distributions
are identical, we would not expect to reject the null hypothesis.

      INTEGER        ISEED, NOBSX, NOBSY, NMISS
      PARAMETER      (ISEED=123457, NOBSX=100, NOBSY=60)
      REAL           X(NOBSX), Y(NOBSY), PDIF(6)
      EXTERNAL       KSONE, RNSET, RNUN, UMACH
C                                    Generate the sample
      CALL RNSET(ISEED)
      CALL RNUN (NOBSX, X)
      CALL RNUN (NOBSY, Y)
C
      CALL KSTWO (NOBSX, X, NOBSY, Y, PDIF, NMISSX, NMISSY)
C
      CALL UMACH(2, NOUT)
      WRITE(NOUT, 5) PDIF, NMISSX, NMISSY
    5 FORMAT(’ D     = ’, F8.4 / ’ D+    = ’, F8.4 / ’ D-    = ’, F8.4,/
     &   ’ Z     = ’, F8.4 / ’ Prob greater D one sided = ’, F8.4 /
     &   ’ Prob greater D two sided = ’, F8.4 /
     &   ’ Missing X = ’, I3 / ’ Missing Y = ’, I3)
      END

Output
D     =   0.1800
D+    =   0.1800
D-    =   0.0100
Z     =   1.1023
Prob greater D one sided =   0.0720
Prob greater D two sided =   0.1440
Missing X =   0
Missing Y =   0

RUNS/DRUNS (Single/Double precision)
Perform a runs up test.

Usage
CALL RUNS (IDO, NRAN, X, NRUN, COUNT, EXPECT, COVAR,
           LDCOVA, CHISQ, DF, PROB)
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Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of RUNS, and all the data are input at once.
1 This is the first invocation of RUNS, and additional calls will be made.

Initialization and updating for the NRAN data elements are performed.
2 This is an intermediate invocation of RUNS, and updating for the NRAN

data elements is performed.
3 This is the final invocation of RUNS for this data. Updating for the NRAN

data elements is performed, followed by the wrap-up computations.

NRAN — Number of data points currently input in X.   (Input)
NRAN may be positive or zero on any invocation of RUNS.

X — Vector of length NRAN containing the data elements to be added to the test
on this invocation.   (Input)

NRUN — Length of the longest run for which tabulation is desired.   (Input)
Runs of length 1, 2, K, NRUN − 1 are counted in COUNT(1) − COUNT(NRUN − 1).
COUNT(NRUN) contains the number of runs of length NRUN or greater. NRUN must
be greater than or equal to one.

COUNT — Vector of length NRUN containing the counts of the number of runs up
of each length.   (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3)

EXPECT — Vector of length NRUN containing the expected number of runs of
each length.    (Output, if IDO = 0 or 3; not referenced otherwise)

COVAR — NRUN by NRUN matrix containing the variances and covariances of the
counts   (Output, if IDO = 0 or 3; not referenced otherwise)

LDCOVA — Leading dimension of COVAR exactly as specified in the dimension
statement in the calling program.   (Input)

CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform
distribution.   (Output, if IDO = 0 or 3; not referenced otherwise)

DF — Degrees of freedom for chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)

PROB — Probability of a larger chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)

Comments

1. Automatic workspace usage is

RUNS NRUN2 + NRUN units, or
DRUNS 2 * NRUN2 + 2 * NRUN units.
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Workspace may be explicitly provided, if desired, by use of
R2NS/DR2NS. The reference is

CALL R2NS (IDO, NRAN, X, NRUN, COUNT, EXPECT, COVAR,
           LDCOVA, CHISQ, DF, PROB, RWK, CWK, LRUN,
           NOBS, XLAST)

The additional arguments are as follows:

RWK — Work vector of length NRUN.

CWK — Work vector of length NRUN2.

LRUN — Scalar used to keep track of number of last runs.   (Output, if
IDO = 0 or 1; input/output, otherwise)
LRUN should not be changed between calls with the same data set.

NOBS — Scalar used to keep track of total number of observations.
(Output, if IDO = 0 or 1; input/output, otherwise)
NOBS should not be changed between calls with the same data set.

XLAST — Scalar used to keep track of last run.   (Output, if IDO = 0 or
1; input/output, otherwise)
XLAST should not be changed between calls with the same data set.

2. Informational errors
Type Code
   3    1 At least one tie is detected in X.
   4    2 The covariance matrix of the runs score is not positive

definite. Use a smaller value of NRUN.

Algorithm

Routine RUNS computes statistics for the runs up test. Runs tests are used to test
for cyclical trend in sequences of random numbers. Routine RUNS may be called
once (IDO = 0) or several times (IDO = 1, 2, and 3). If all of the data will not fit
into memory, the second mode of operation must be used. If the data fit into
memory, then the first mode of operation is slightly more efficient. If the runs
down test is desired, each observation should first be multiplied by −1 to change
its sign, and RUNS called with the modified vector of observations.

Routine RUNS first tallies the number of runs up (increasing sequences) of each
desired length. For i = 1, K, r − 1, where r = NRUN, COUNT(i) contains the
number of runs of length i. COUNT(NRUN) contains the number of runs of length
NRUN or greater. As an example of how runs are counted, the sequence (1, 2, 3, 1)
contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, RUNS computes the expected
values and the covariances of the counts according to methods given by Knuth
(1981, pages 65−67). Let R denote a vector of length NRUN containing the number
of runs of each length so that the i-th element of R, rL, contains the count of the

runs of length i. Let Σ5 denote the covariance matrix of R under the null

hypothesis of randomness, and let µ5 denote the vector of expected values
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for R under this null hypothesis. Then, an approximate chi-squared statistic with
NRUN degrees of freedom is given as

χ µ µ2 1= − ∑ −−( ) ( )R RR
T

R R

In general, the larger the value of each element of µ5, the better the chi-squared
approximation.

Example

The following example illustrates the use of the runs test on 104 pseudo-random
uniform deviates. In the example, 2000 deviates are generated for each call to
RUNS. The IDO parameter is set to 1 on the first call to RUNS, 2 on the second,
third, and fourth calls, and 3 on the last call. Since the probability of a larger chi-
squared statistic is 0.1872, there is no strong evidence to support rejection of this
null hypothesis of randomness.

      INTEGER    LDCOVA, NRAN, NRUN
      PARAMETER  (LDCOVA=6, NRAN=2000, NRUN=6)
C
      INTEGER    I, IDO, NOUT
      REAL       CHISQ, COUNT(NRUN), COVAR(LDCOVA,NRUN), DF,
     &           EXPECT(NRUN), PROB, X(NRAN)
      EXTERNAL   RNSET, RNUN, RUNS, UMACH, WRRRN
C
      CALL RNSET (123457)
C
      DO 10  I=1, 5
C                                 Set IDO
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE IF (I .EQ. 5) THEN
            IDO = 3
         ELSE
            IDO = 2
         END IF
C                                 Generate the random numbers
         CALL RNUN (NRAN, X)
C
         CALL RUNS (IDO, NRAN, X, NRUN, COUNT, EXPECT, COVAR, LDCOVA,
     &              CHISQ, DF, PROB)
   10 CONTINUE
C
      CALL WRRRN (’COUNT’, 1, NRUN, COUNT, 1, 0)
      CALL WRRRN (’EXPECT’, 1, NRUN, EXPECT, 1, 0)
      CALL WRRRN (’COVAR’, NRUN, NRUN, COVAR, LDCOVA, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ CHISQ = ’, CHISQ
      WRITE (NOUT,*) ’ DF    = ’, DF
      WRITE (NOUT,*) ’ PROB  = ’, PROB
      END

Output
                  COUNT
1        2        3        4        5        6
1709.0   2046.0    953.0    260.0     55.0      4.0
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                 EXPECT
1        2        3        4        5        6
1667.3   2083.4    916.5    263.8     57.5     11.9

                COVAR
1        2        3        4        5        6
1   1278.2   -194.6   -148.9    -71.6    -22.9     -6.7
2   -194.6   1410.1   -490.6   -197.2    -55.2    -14.4
3   -148.9   -490.6    601.4   -117.4    -31.2     -7.8
4    -71.6   -197.2   -117.4    222.1    -10.8     -2.6
5    -22.9    -55.2    -31.2    -10.8     54.8     -0.6
6     -6.7    -14.4     -7.8     -2.6     -0.6     11.7
CHISQ =     8.76514
DF    =     6.00000
PROB  =    0.187225

PAIRS/DPAIRS (Single/Double precision)
Perform a pairs test.

Usage
CALL PAIRS (IDO, NRAN, X, NCELL, LAG, COUNT, LDCOUN,
            EXPECT, CHISQ, DF, PROB)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of PAIRS, and all the data are input at once.
1 This is the first invocation of PAIRS, and additional calls will be made.

Initialization and updating for the NRAN data elements are performed.
2 This is an intermediate invocation of PAIRS, and updating for the NRAN

data elements is performed.
3 This is the final invocation of PAIRS. Updating for the NRAN data

elements is performed, followed by the wrap-up computations.

NRAN — Number of random deviates currently input in X.   (Input)
NRAN may be positive or zero on any invocation of PAIRS.

X — Vector of length NRAN containing the data elements to be added to the test
on this invocation.   (Input)

NCELL — Number of equiprobable cells on each axis into which the pairs
statistics are to be tabulated.   (Input)

LAG — The lag to be used in computing the pairs statistic.   (Input)
Pairs (X(i), X(i + LAG)) for i = 1, K, N − LAG are tabulated, where N is the total
sample size.

COUNT — NCELL by NCELL matrix containing the count of the number of pairs
in each cell.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
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LDCOUN — Leading dimension of COUNT exactly as specified in the dimension
statement of the calling program.   (Input)

EXPECT — Expected number of counts in each cell.   (Output, if IDO = 0 or 3;
not referenced otherwise)

CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform
distribution.   (Output, if IDO = 0 or 3; not referenced otherwise)

DF — Degrees of freedom for chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)

PROB — Probability of a larger chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)

Comments

Informational errors
Type Code
   3    1 For better efficiency, it is recommended that NRAN be at least

twice as large as LAG
   4    2 The sum of the counts is zero. All output statistics are set to

NaN (not a number).

Algorithm

Routine PAIRS computes the pairs test (or the Good’s serial test) on a
hypothesized sequence of uniform (0,1) pseudorandom numbers. The test
proceeds as follows. Subsequent pairs (X(i), X(i + LAG)) are tallied into a k × k
matrix, where k = NCELL. In this tally, element (j, m) of the matrix is incremented,
where

j kX i

m kX i l

= +

= + +

( )

( )

1

1

where l = LAG, and the notation   represents the greatest integer function, Y is
the greatest integer less than or equal to Y, where Y is a real number. If l = 1, then
i = 1, 3, 5, K, n − 1. If l > 1, then i = 1, 2, 3, …, n − l, where n is the total number
of pseudorandom numbers input on the current invocation of PAIRS (i.e., n =
NRAN).

Given the tally matrix in COUNT, chi-squared is computed as
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where e = ∑oLM/k2, and oLM is the observed count in cell (i, j) (oLM = COUNT(i, j)).

Because pair statistics for the trailing observations are not tallied on any call, the
user should call PAIRS with NRAN as large as possible. For LAG < 20 and NRAN =
2000, little power is lost.
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Example

The following example illustrates the calculations of the PAIRS statistics when a

random sample of size 104 is used and the LAG is 1. The results are not
significant. On each call to PAIRS, 2000 random deviates are processed. On the
first call, initialization is also performed, while on the fifth call the wrap-up
computations are performed. Routine RNUN (page 1171) is used in obtaining the
pseudorandom deviates.

      INTEGER    LAG, LDCOUN, NCELL, NOBS
      PARAMETER  (LAG=5, LDCOUN=10, NCELL=10, NOBS=2000)
C
      INTEGER    I, IDO, NOUT
      REAL       CHISQ, COUNT(LDCOUN,NCELL), DF, EXPECT, PROB, X(NOBS)
      EXTERNAL   PAIRS, RNSET, RNUN, UMACH, WRRRN
C
      CALL RNSET (123467)
C
      DO 10  I=1, 5
         CALL RNUN (NOBS, X)
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE IF (I .EQ. 5) THEN
            IDO = 3
         ELSE
            IDO = 2
         END IF
         CALL PAIRS (IDO, NOBS, X, NCELL, LAG, COUNT, LDCOUN, EXPECT,
     &               CHISQ, DF, PROB)
   10 CONTINUE
      CALL UMACH (2, NOUT)
      CALL WRRRN (’COUNT’, NCELL, NCELL, COUNT, LDCOUN, 0)
      WRITE(NOUT,’(’’ Expect = ’’, F12.2, /, ’’ Chi-squared = ’’, F12.2,
     &      ’’ DF = ’’, F12.0, /, ’’ PROBABILITY = ’’, F12.4)’)
     &      EXPECT, CHISQ, DF, PROB
      END

Output
                                  COUNT
         1       2       3       4       5       6       7       8       9
 1   111.0    82.0    95.0   117.0   102.0   102.0   112.0    84.0    90.0
 2   104.0   106.0   109.0   108.0   101.0    97.0   102.0    92.0   109.0
 3    88.0   111.0    86.0   105.0   112.0    79.0   103.0   105.0   106.0
 4    91.0   110.0   108.0    92.0    88.0   108.0   113.0    93.0   105.0
 5   104.0   105.0   103.0   104.0   101.0    94.0    96.0    86.0    93.0
 6    98.0   104.0   103.0   104.0    79.0    89.0    92.0   104.0    92.0
 7   103.0    91.0    97.0   101.0   116.0    83.0   117.0   118.0   106.0
 8   105.0   105.0   110.0    91.0    92.0    82.0   100.0   104.0   110.0
 9    92.0   102.0    82.0   101.0    93.0   128.0   101.0   109.0   125.0
10    79.0    99.0   103.0    97.0   104.0   101.0    93.0    93.0    98.0

        10
 1    73.0
 2    88.0
 3    99.0
 4   114.0
 5   103.0
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 6    99.0
 7    99.0
 8    89.0
 9    98.0
10   105.0
Expect =        99.75
Chi-squared =       104.31 DF =          99.
Probability =       0.3379

DSQAR/DDSQAR (Single/Double precision)
Perform a d�2 test.

Usage
CALL DSQAR (IDO, NRAN, X, NCELL, COUNT, EXPECT, CHISQ, DF,
            PROB)

Arguments

IDO — Processing Option.   (Input)

IDO Action
0 This is the only invocation of DSQAR, and all the data are input at once.
1 This is the first invocation of DSQAR, and additional calls will be made.

Initialization and updating for the NRAN data elements are performed.
2 This is an intermediate invocation of DSQAR, and updating for the NRAN

data elements is performed.
3 This is the final invocation of DSQAR for this data set. Updating for the

NRAN data elements is performed, followed by the wrap-up
computations.

NRAN — Number of data elements currently input in X.   (Input)
NRAN may be positive or zero on any invocation of DSQAR.

X — Vector of length NRAN containing the data elements to be added to the test
on this invocation.   (Input)

NCELL — The number of equiprobable cells into which the d 2 statistics are to
be tabulated.   (Input)

COUNT — Vector of length NCELL containing the count of the number of d�2
values in each cell.   (Output, if IDO = 0 or 1.   Input/Output, if IDO = 2 or 3.)

EXPECT — The expected number of counts in each cell.   (Output, if IDO = 0 or
3; not referenced otherwise)

CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform
distribution. (Output, if IDO = 0 or 3; not referenced otherwise)

DF — Degrees of freedom for chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)
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PROB — Probability of a larger chi-squared.   (Output, if IDO= 0 or 3; not
referenced otherwise)

Comments

Informational errors
Type Code
   3    1 The expected value of a each cell is less than 5. The chi-

squared approximation may not be good.
   4    2 The sum of the counts is equal to zero. There are no data

elements so the chi-squared statistic cannot be computed.

Algorithm

Routine DSQAR computes the d�2 test for succeeding quadruples of hypothesized

pseudorandom uniform (0, 1) deviates. The d 2 test is performed as follows. Let
X1, X2, X3, and X4 denote four pseudorandom uniform deviates, and consider

D2 = (X3 −X1)2 + (X4 − X2)2

The probability distribution of D2 is given as

Pr(D d d
d d2 2 2

3 48

3 2
≤ = − +) π

when D2 ≤ 1, where π denotes the value of pi. If D2 > 1, this probability is given
as
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See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudorandom uniform numbers input in X, d 2 and

the cumulative probability of d�2 (Pr(D2 ≤ d�2)) are computed. The resulting
probability is tallied into one of k = NCELL equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total
number of observations/4). Then, under the null hypothesis that the numbers input
are random uniform (0, 1) numbers, the expected value for each element in
COUNT is e = n/k. An approximate chi-squared statistic is computed as

χ2
2

1

=
−

=
∑ ( )o e

e
i

i

k
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where oL = COUNT(i) is the observed count. Thus, χ 2 has k − 1 degrees of
freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is

rejected if χ 2 is too large. As n increases, the chi-squared approximation
becomes better. A useful generalization is that e > 5 yields a good chi-squared
approximation.

Example

In the following example, 2000 observations generated via routine RNUN
(page 1171) are input to DSQAR in one call. In the example, the null hypothesis of
a uniform distribution is not rejected.

      INTEGER    IDO, NCELL, NROW
      PARAMETER  (IDO=0, NCELL=6, NROW=2000)
C
      INTEGER    NOUT
      REAL       CHISQ, COUNT(NCELL), DF, EXPECT, PROB, X(NROW)
      EXTERNAL   DSQAR, RNSET, RNUN, UMACH, WRRRN
C
      CALL RNSET (123457)
C                                 Generate the random numbers
      CALL RNUN (NROW, X)
C
      CALL DSQAR (IDO, NROW, X, NCELL, COUNT, EXPECT, CHISQ, DF, PROB)
C
      CALL WRRRN (’COUNT’, 1, NCELL, COUNT, 1, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ EXPECT = ’, EXPECT
      WRITE (NOUT,*) ’ CHISQ  = ’, CHISQ
      WRITE (NOUT,*) ’ DF     = ’, DF
      WRITE (NOUT,*) ’ PROB   = ’, PROB
      END

Output
                    COUNT
    1       2       3       4       5       6
87.00   84.00   78.00   76.00   92.00   83.00
EXPECT =     83.3333
CHISQ  =     2.05600
DF     =     5.00000
PROB   =    0.841343

DCUBE/DDCUBE (Single/Double precision)
Perform a triplets test.

Usage
CALL DCUBE (IDO, NRAN, X, NCELL, COUNT, LDCOUN, EXPECT,
            CHISQ, DF, PROB)

Arguments

IDO — Processing Option.   (Input)
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IDO Action
0 This is the only invocation of DCUBE, and all the data are input at once.
1 This is the first invocation of DCUBE, and additional calls will be made.

Initialization and updating for the NRAN data elements are performed.
2 This is an intermediate invocation of DCUBE, and updating for the NRAN

data elements is performed.
3 This is the final invocation of DCUBE for this data set. Updating for the

NRAN data elements is performed, followed by the wrap-up
computations.

NRAN — Number of random deviates currently input in X.   (Input)
NRAN may be positive or zero on any invocation of DCUBE. NRAN must be evenly
divisible by 3.

X — Vector of length NRAN containing the data elements to be added to the test
on this invocation.   (Input)

NCELL — The number of equiprobable cells on each of the three axes into
which the triplets are to be tabulated.   (Input)
Each set of three data elements is tabulated into a three dimensional cube, each
axis of which has NCELL cells.

COUNT — NCELL by NCELL by NCELL array containing the tabulations for the
triplets test.   (Output, if IDO = 0 or 1. Input/Output, if IDO = 2 or 3.)

LDCOUN — Leading and second dimension of matrix COUNT exactly as
specified in the dimension statement in the calling program.   (Input)

EXPECT — Expected number of counts in each cell.   (Output, if IDO = 0 or 3;
not referenced otherwise)

CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform
distribution.   (Output, if IDO = 0 or 3; not referenced otherwise)

DF — Degrees of freedom for chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)

PROB — Probability of a larger chi-squared.   (Output, if IDO = 0 or 3; not
referenced otherwise)

Comments

Informational error
Type Code
   4    1 The sum of the counts is equal to zero. There are no data

elements so the chi-squared statistic cannot be computed.
CHISQ and PROB are set to NaN (not a number).

Algorithm

Routine DCUBE computes the triplets test on a sequence of hypothesized
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows:
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Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3
equal sized cubes, where m = NCELL. Let i = [mX1] + 1, j = [mX2] + 1, and
k = [mX3] + 1. For the triplet (X1, X2, X3), COUNT(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells

are equally probable and each has expected value e = n/m3, where n is the number
of triplets tallied. An approximate chi-squared statistic is computed as

χ2
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−

=
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, ,

o e

e
ijk

i j k

k

where oLMN = COUNT(i, j, k).

The computed chi-squared has m3 − 1 degrees of freedom, and the null hypothesis

of pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large.

Example

In the following example, 2001 deviates generated by IMSL routine RNUN
(page 1171) are input to DCUBE, and tabulated in 27 equally sized cubes. In the
example, the null hypothesis is not rejected.

      INTEGER    IDO, LDCOUN, NCELL, NRAN
      PARAMETER  (IDO=0, LDCOUN=3, NCELL=3, NRAN=2001)
C
      INTEGER    I, NOUT
      REAL       CHISQ, COUNT(LDCOUN,LDCOUN,NCELL), DF, EXPECT, PROB,
     &           X(NRAN)
      EXTERNAL   DCUBE, RNSET, RNUN, UMACH, WRRRN
C
      CALL RNSET (123457)
C                                 Generate the random numbers
      CALL RNUN (NRAN, X)
C
      CALL DCUBE (IDO, NRAN, X, NCELL, COUNT, LDCOUN, EXPECT, CHISQ,
     &            DF, PROB)
C
      DO 10  I=1, NCELL
         CALL WRRRN (’COUNT’, NCELL, NCELL, COUNT(1,1,I), LDCOUN, 0)
   10 CONTINUE
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ EXPECT = ’, EXPECT
      WRITE (NOUT,*) ’ CHISQ  = ’, CHISQ
      WRITE (NOUT,*) ’ DF     = ’, DF
      WRITE (NOUT,*) ’ PROB   = ’, PROB
      END

Output
           COUNT
        1       2       3
1   26.00   27.00   24.00
2   20.00   17.00   32.00
3   30.00   18.00   21.00
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           COUNT
        1       2       3
1   20.00   16.00   26.00
2   22.00   22.00   27.00
3   30.00   24.00   26.00

           COUNT
        1       2       3
1   28.00   30.00   22.00
2   23.00   24.00   22.00
3   33.00   30.00   27.00
EXPECT =     24.7037
CHISQ  =     21.7631
DF     =     26.0000
PROB   =    0.701586
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Appendix A: GAMS Index

Description
This index lists routines in STAT/LIBRARY by a tree-structured classification
scheme known as GAMS. Boisvert, Howe, Kahaner, and Springmann (1990) give
the GAMS classification scheme. The classification scheme given here is Version
2.0.

The first level of the  full classification scheme is denoted by a letter A thru Z as
follows:

A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z.         Other

There are seven levels in the classification scheme. Classes in the first level are
identified by a capital letter as is given above. Classes in the remaining levels are
identified by alternating letter-and-number combinations. A single letter (a–z) is
used with the odd-numbered levels. A number (1–26) is used within the even-
numbered levels.
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IMSL STAT/LIBRARY

C .......... ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5)

C3 ........ Polynomials

C3a....... Orthogonal
OPOLY Generate orthogonal polynomials with respect to x values

and specified weights.

C7 ........ Gamma

C7e....... Incomplete gamma
CHIDF Evaluate the chi-squared distribution function.
CHIIN Evaluate the inverse of the chi-squared distribution

function.
GAMDF Evaluate the gamma distribution function.
GAMIN Evaluate the inverse of the gamma distribution function.

C7f ....... Incomplete gamma
BETDF Evaluate the beta probability distribution function.
BETIN Evaluate the inverse of the beta distribution function.

C8 ........ Error functions

C8a....... Error functions, their inverses, integrals, including the normal
distribution function

ANORDF Evaluate the standard normal (Gaussian) distribution
function.

ANORIN Evaluate the inverse of the standard normal (Gaussian)
distribution function.

K .......... APPROXIMATION (search also class L8)

K1 ........ Least squares (L2) approximation

K1a ...... Linear least squares (search also classes D5, D6, D9)

K1a1 .... Unconstrained
RCOV Fit a multiple linear regression model given the variance-

covariance matrix.
RGIVN Fit a multivariate linear regression model via fast Givens

transformations.
RGLM Fit a multivariate general linear model.
RLSE Fit a multiple linear regression model using least squares.

K1a1a... Univariate data (curve fitting)

K1ala2.. Polynomials
RCURV Fit a polynomial curve using least squares.
RFORP Fit an orthogonal polynomial regression model.
RPOLY Analyze a polynomial regression model.
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K1a2 .... Constrained

K1a2a .. Linear constraints
RLEQU Fit a multivariate linear regression model with linear

equality restrictions HΒ  = G imposed on the regression
parameters given results from IMSL routine RGIVN after
IDO = 1 and IDO = 2 and prior to IDO = 3.

K1b ...... Nonlinear least squares

K1b1 .... Unconstrained

K1b1a .. Smooth functions

K1b1a1 User provides no derivatives
RNLIN Fit a nonlinear regression model.

K1b1a2 User provides first derivatives
RNLIN Fit a nonlinear regression model.

K2 ........ Minimax (L∞) approximation
RLMV Fit a multiple linear regression model using the minimax

criterion.

K3 ........ Least absolute value (L1) approximation
RLLP Fit a multiple linear regression model using the LS norm

criterion.

K4 ........ Other analytic approximations (e.g., Taylor polynomial, Pade)
RLLP Fit a multiple linear regression model using the LS norm

criterion.

L .......... STATISTICS, PROBABILITY

L1 ........ Data summarization

L1a....... One-dimensional data

L1a1..... Raw data
EQTIL Compute empirical quantiles.
LETTR Produce a letter value summary.
ORDST Determine order statistics.

L1a1a ... Location
UVSTA Compute basic univariate statistics.

L1a1b... Disperson
UVSTA Compute basic univariate statistics.

L1a1c ... Shape
UVSTA Compute basic univariate statistics.

L1a1e ... Ties
NTIES Compute tie statistics for a sample of observations.
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L1a3..... Grouped data
GRPES Compute basic statistics from grouped data.

L1c....... Multi-dimensional data

L1c1..... Raw data
CSTAT Compute cell frequencies, cell means, and cell sums of

squares for multivariate data.

L1c1b... Covariance, correlation
CORVC Compute the variance-covariance or correlation matrix.
PCORR Compute partial correlations or covariances from the

covariance or correlation matrix.
RBCOV Compute a robust estimate of a covariance matrix and

mean vector.

L2......... Data manipulation

L2a....... Transform (search also classes L10a, N6, and N8)
BCTR Perform a forward or an inverse Box-Cox (power)

transformation.
GCSCP Generate centered variables, squares, and crossproducts.
OPOLY Generate orthogonal polynomials with respect to x values

and specified weights.
RANKS Compute the ranks, normal scores, or exponential scores

for a vector of observations.

L2b....... Tally
CSTAT Compute cell frequencies, cell means, and cell sums of

squares for multivariate data.
FREQ Tally multivariate observations into a multi-way frequency

table.
OWFRQ Tally observations into a one-way frequency table.
TWFRQ Tally observations into a two-way frequency table.

L2e....... Construct new variables (e.g., indicator variables)
GRGLM Generate regressors for a general linear model.

L3......... Elementary statistical graphics (search also class Q)

L3a....... One-dimensional data

L3a1..... Histograms
HHSTP Print a horizontal histogram.
VHSTP Print a vertical histogram.

L3a2..... Frequency, cumulative frequency, percentile plots
CDFP Print a sample cumulative distribution function (CDF), a

theoretical CDF, and confidence band information.

L3a3..... EDA graphics (e.g., box plots)
BOXP Print boxplots for one or more samples.
STMLP Print a stem-and-leaf plot.
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L3a4..... Bar charts
HHSTP Print a horizontal histogram.
VHSTP Print a vertical histogram.

L3b ...... Two-dimensional data (search also class L3e)

L3b1 .... Histograms (superimposed and bivariate)
VHS2P Print a vertical histogram with every bar subdivided into

two parts.

L3b2 .... Frequency, cumulative frequency
CDF2P Print a plot of two sample cumulative distribution

functions.

L3e....... Multi-dimensional data

L3e3..... Scatter diagrams

L3e3a ... Superimposed Y vs. X
PLOTP Print a plot of up to ten sets of points.
SCTP Print a scatterplot of several groups of data.

L3e4..... EDA
BOXP Print boxplots for one or more samples.

L4 ........ Elementary data analaysis

L4a....... One-dimensional data

L4a1..... Raw data

L4a1a ... Parametric analysis
CDFP Print a sample cumulative distribution function (CDF), a

theoretical CDF, and confidence band information.

L4a1a2 . Probability plots

L4a1a2e Exponential, extreme value
PROBP Print a probability plot.

L4a1a2hHalfnormal
PROBP Print a probability plot.

L4a1a21Lambfa, logistic, lognormal
PROBP Print a probability plot.

L4a1a2nNegative binomial, normal
PROBP Print a probability plot.

L4a1a2wWeibull
PROBP Print a probability plot.

L4a1a4 . Parameter estimates and tests

L4a1a4bBinomial
BINES Estimate the parameter p of the binomial distribution.
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L4a1a4pPoisson
POIES Estimate the parameter of the Poisson distribution.

L4a1b... Nonparametric analysis

L4a1b1. Estimates and test regarding location (e.g., median), dispersion and
shape

SIGNT Perform a sign test of the hypothesis that a given value is a
specified quantile of a distribution.

SNRNK Perform a Wilcoxon signed rank test.

L4a1b2. Density function estimation
DESKN Perform nonparametric probability density function

estimation by the kernel method.
DESPL Perform nonparametric probability density function

estimation by the penalized likelihood method.
DESPT Estimate a probability density function at specified points

using linear or cubic interpolation.
DNFFT Compute Gaussian kernel estimates of a univariate density

via the fast Fourier transform over a fixed interval.

L4a1c ... Goodness-of-fit tests
CHIGF Perform a chi-squared goodness-of-fit test.
KSONE Perform a Kolmogorov-Smirnov one-sample test for

continuous distributions.
LILLF Perform Lilliefors test for an exponential or normal

distribution.
SPWLK Perform a Shapiro-Wilk W-test for normality.

L4ald.... Analysis of a sequnce of numbers (search also class L10a)
DCUBE Perform a triplets test.
DSQAR Perform a D-square test.
NCTRD Perform the Noether test for cyclical trend.
PAIRS Perform a pairs test.
RUNS Perform a runs up test.
SDPLC Perform the Cox and Stuart sign test for trends in

dispersion and location.

L4a3..... Grouped (and/or censored) data
GRPES Compute basic statistics from grouped data.
NRCES Compute maximum likelihood estimates of the mean and

variance from grouped and/or censored normal data.

L4a4..... Data sampled from a finite population
SMPPR Compute statistics for inferences regarding the population

proportion and total, given proportion data from a simple
random sample.

SMPPS Compute statistics for inferences regarding the population
proportion and total, given proportion data from a stratified
random sample.
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SMPSC Compute statistics for inferences regarding the population
mean and total using single-stage cluster sampling with
continuous data.

SMPSR Compute statistics for inferences regarding the population
mean and total, given data from a simple random sample.

SMPSS Compute statistics for inferences regarding the population
mean and total, given data from a stratified random sample.

SMPST Compute statistics for inferences regarding the population
mean and total, given continuous data from a two-stage
sample with equisized primary units.

L4b ...... Two dimensional data (search also class L4c)

L4b1 .... Pairwise independent data

L4b1a... Parametric analysis

L4b1a4. Parameter estimates and hypothesis tests
TWOMV Compute statistics for mean and variance inferences using

samples from two normal populations.

L4b1b .. Nonparametric analysis (e.g., tests based on ranks)
CNCRD Calculate and test the significance of the Kendall

coefficient of concordance.
INCLD Perform an includance test.
KENDL Compute and test Kendall’s rank correlation coefficient.
RNKSM Perform the Wilcoxon rank sum test.

L4b1c... Goodness-of-fit tests
KSTWO Perform a Kolmogorov-Smirnov two-sample test.

L4b4 .... Pairwise dependent grouped data
CTRHO Estimate the bivariate normal correlation coefficient using

a contingency table.
TETCC Categorize bivariate data and compute the tetrachoric

correlation coefficient.

L4b5 .... Data sampled from a finite population
SMPRR Compute statistics for inferences regarding the population

mean and total using ratio or regression estimation, or
inferences regarding the population ratio, given a simple
random sample.

SMPRS Compute statistics for inferences regarding the population
mean and total using ratio or regression estimation, given
continuous data from a stratified random sample.

L4c....... Multi-dimensional data (search also classes L4b and L7a1)

L4c1..... Independent data

L4c1b... Nonparametric analysis
BHAKV Perform a Bhapkar V test.
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KRSKL Perform a Kruskal-Wallis test for identical population
medians.

KTRND Perform a k-sample trends test against ordered alternatives.
MVMMT Compute Mardia’s multivariate measures of skewness and

kurtosis and test for multivariate normality.
QTEST Perform a Cochran Q test for related observations.

L4e....... Multiple multi-dimensional data sets
MVIND Compute a test for the independence of k sets of

multivariate normal variables.

L5......... Function evaluation (search also class C)

L5a....... Univariate

L5a1..... Cumulative distribution functions, probability density functions

L5a1b... Beta, binomial
BETDF Evaluate the beta probability distribution function.
BINDF Evaluate the binomial distribution function.
BINPR Evaluate the binomial probability function.

L5a1c ... Cauchy, chi-squared
CHIDF Evaluate the chi-squared distribution function.
CSNDF Evaluate the noncentral chi-squared distribution function.

L5a1f....F distribution
FDF Evaluate the F distribution function.

L5a1g... Gamma, general, geometric
GAMDF Evaluate the gamma distribution function.
GCDF Evaluate a general continuous cumulative distribution

function given ordinates of the density.

L5a1h... Halfnormal, hyergeometric
HYPDF Evaluate the hypergeometric distribution function.
HYPPR Evaluate the hypergeometric probability function.

L5a1k... Kendall F statistic, Kolmogorsv-Smirnov
AKS1DF Evaluate the distribution function of the one-sided

Kolmogorov-Smirnov goodness-of-fit D+ or D- test
statistic based on continuous data for one sample.

AKS2DF Evaluate the distribution function of the Kolmogorov-
Smirnov goodness-of-fit D test statistic based on
continuous data for two samples.

KENDP Compute the frequency distribution of the total score in
Kendall’s rank correlation coefficient.

L5a1n... Negative binomial, normal
ANORDF Evaluate the standard normal (Gaussian) distribution

function.
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L5a1p... Pareto, Poisson
POIDF Evaluate the Poisson distribution function.
POIPR Evaluate the Poisson probability function.

L5a1t.... t distribution
TDF Evaluate the Student’s t distribution function.
TNDF Evaluate the noncentral Student’s t distribution function.

L5a2..... Inverse cumulative distribution functions, sparsity functions

L5a2b... Beta, binomial
BETIN Evaluate the inverse of the beta distribution function.

L5a2c... Cauchy, chi-squared
CHIIN Evaluate the inverse of the chi-squared distribution

function.
CSNIN Evaluate the inverse of the noncentral chi-squared function.

L5a2f ...F distribution
FIN Evaluate the inverse of the F distribution function.

L5a2g... Gamma, general, geometric
GAMIN Evaluate the inverse of the gamma distribution function.
GCIN Evaluate the inverse of a general continuous cumulative

distribution function given ordinates of the density.
GFNIN Evaluate the inverse of a general continuous cumulative

distribution function given in a subprogram.

L5a2t....t distribution
TIN Evaluate the inverse of the Student’s t distribution

function.
TNIN Evaluate the inverse of the noncentral Student’s t

distribution function.

L5b ...... Multivariate

L5b1 .... Cumulative distribution functions, probability density functions

L5b1n... Normal
BNRDF Evaluate the bivariate normal distribution function.

L6 ........ Random number generation

L6a....... Univariate

L6a2..... Beta, binomial, Boolean
RNBET Generate pseudorandom numbers from a beta distribution.
RNBIN Generate pseudorandom numbers from a binomial

distribution.

L6a3..... Cauchy, chi-squared
RNCHI Generate pseudorandom numbers from a chi-squared

distribution.
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RNCHY Generate pseudorandom numbers from a Cauchy
distribution.

L6a5..... Exponential, extreme value
RNEXP Generate pseudorandom numbers from a standard

exponential distribution.
RNEXT Generate pseudorandom numbers from a mixture of two

exponential distributions.

L6a7..... Gamma, general (continuous, discrete), geometric
RNGAM Generate pseudorandom numbers from a standard gamma

distribution.
RNGCS Set up table to generate pseudorandom numbers from a

general continuous distribution.
RNGCT Generate pseudorandom numbers from a general

continuous distribution.
RNGDA Generate pseudorandom numbers from a general discrete

distribution using an alias method.
RNGDS Set up table to generate pseudorandom numbers from a

general discrete distribution.
RNGDT Generate pseudorandom numbers from a general discrete

distribution using a table lookup method.
RNGEO Generate pseudorandom numbers from a geometric

distribution.

L6a8..... Halfnormal, hypergeometric
RNHYP Generate pseudorandom numbers from a hypergeometric

distribution.

L6a12... Lambda, logistic, lognormal
RNLGR Generate pseudorandom numbers from a logarithmic

distribution.
RNLNL Generate pseudorandom numbers from a lognormal

distribution.

L6a14... Negative binomial, normal, normal order statistics
RNNBN Generate pseudorandom numbers from a negative binomial

distribution.
RNNOA Generate pseudorandom numbers from a standard normal

distribution using an acceptance/rejection method.
RNNOF Generate a pseudorandom number from a standard normal

distribution.
RNNOR Generate pseudorandom numbers from a standard normal

distribution using an inverse CDF method.
RNNOS Generate pseudorandom order statistics from a standard

normal distribution.

L6a16... Pareto, Pascal, permutations, Poisson
RNNPP Generate pseudorandom numbers from a nonhomogeneous

Poisson process.
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RNPER Generate a pseudorandom permutation.
RNPOI Generate pseudorandom numbers from a Poisson

distribution.

L6a19... Samples, stable distribution
RNSRI Generate a simple pseudorandom sample of indices.
RNSRS Generate a simple pseudorandom sample from a finite

population.
RNSTA Generate pseudorandom numbers from a stable

distribution.

L6a20... t distribution, time series, triangular
RNARM Generate a time series from a specified ARMA model.
RNNPP Generate pseudorandom numbers from a nonhomogeneous

Poisson process.
RNSTT Generate pseudorandom numbers from a Student’s t

distribution.
RNTRI Generate pseudorandom numbers from a triangular

distribution on the interval (0,1).

L6a21... Uniform (continuous, discrete), uniform order statistics
RNUN Generate pseudorandom numbers from a uniform (0,1)

distribution.
RNUND Generate pseudorandom numbers from a discrete uniform

distribution.
RNUNF Generate a pseudorandom number from a uniform (0, 1)

distribution.
RNUNO Generate pseudorandom order statistics from a uniform (0,

1) distribution.

L6a22... Von Mises
RNVMS Generate pseudorandom numbers from a von Mises

distribution.

L6a23... Weibull
RNWIB Generate pseudorandom numbers from a Weibull

distribution.

L6b ...... Multivariate
RNDAT Generate pseudorandom numbers from a multivariate

distribution determined from a given sample.

L6b3 .... Contingency table, correlation matrix
RNCOR Generate a pseudorandom orthogonal matrix or a

correlation matrix.
RNTAB Generate a pseudorandom two-way table.

L6b13 .. Multinomial
RNMTN Generate pseudorandom numbers from a multinomial

distribution.
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L6b14... Normal
RNMVN Generate pseudorandom numbers from a multivariate

normal distribution.

L6b15... Orthogonal matrix
RNCOR Generate a pseudorandom orthogonal matrix or a

correlation matrix.

L6b21... Uniform
RNSPH Generate pseudorandom points on a unit circle or K-

dimensional sphere.

L6c....... Service routines (e.g., seed)
RNGEF Retrieve the current value of the array used in the IMSL

GFSR random number generator.
RNGES Retrieve the current value of the table in the IMSL random

number generators that use shuffling.
RNGET Retrieve the current value of the seed used in the IMSL

random number generators.
RNISD Determine a seed that yields a stream beginning 100,000

numbers beyond the beginning of the stream yielded by a
given seed used in IMSL multiplicative congruential
generators (with no shufflings).

RNOPG Retrieve the indicator of the type of uniform random
number generator.

RNOPT Select the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNSEF Initialize the array used in the IMSL GFSR random
number generator.

RNSES Initialize the table in the IMSL random number generators
that use shuffling.

RNSET Initialize a random seed for use in the IMSL
randomnumber generators.

L7......... Analysis of variance (including analysis of covariance)

L7a....... One-way

L7a1..... Parametric
AONEC Analyze a one-way classification model with covariates.
AONEW Analyze a one-way classification model.
CTRST Compute contrast estimates and sums of squares.
SCIPM Compute simultaneous confidence intervals on all pairwise

differences of means.
SNKMC Perform Student-Newman-Keuls multiple comparison test.

L7b....... Two-way (search also class L7d)
ATWOB Analyze a randomized block design or a two-way

balanced design.
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FRDMN Perform Friedman’s test for a randomized complete block
design.

MEDPL Compute a median polish of a two-way table.

L7c....... Three-way (e.g., Latin squares) (search also class L7d)
ALATN Analyze a Latin square design.

L7d ...... Multi-way

L7d1 .... Balanced complete data (e.g., factorial designs)
ABALD Analyze a balanced complete experimental design for a

fixed, random, or mixed model.
ANEST Analyze a completely nested random model with possibly

unequal numbers in the subgroups.
ANWAY Analyze a balanced n-way classification model with fixed

effects.
CIDMS Compute a confidence interval on a variance component

estimated as proportional to the difference in two mean
squares in a balanced complete experimental design.

ROREX Reorder the responses from a balanced complete
experimental design.

L7d2 .... Balanced incomplete data (e.g., fractional factorial designs)
ABIBD Analyze a balanced incomplete block design or a balanced

lattice design.

L7d3 .... General linear models (unbalanced data)
ANEST Analyze a completely nested random model with possibly

unequal numbers in the subgroups.
RGLM Fit a multivariate general linear model.

L7e....... Multivariate
RGLM Fit a multivariate general linear model.

L7f ....... Generate experimental designs
RCOMP Generate an orthogonal central composite design.

L8 ........ Regression (search also classes D5, D6, D9, G, K)

L8a....... Simple linear (e.g., y = β0 + β1x + ε)

L8a1..... Ordinary least squares
RONE Analyze a simple linear regression model.

L8a1a... Parameter estimation

L8a1a1. Unweighted data
RLINE Fit a line to a set of data points using least squares.

L8a1d... Inference (e.g., calibration) (search also class L8a1a)
RINCF Perform response control given a fitted simple linear

regression model.
RINPF Perform inverse prediction given a fitted simple linear

regression model.
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L8a2..... LS for p different from 2 (e.g., least absolute value, minimax)
RLAV Fit a multiple linear regression model using the least

absolute values criterion.
RLLP Fit a multiple linear regression model using the LS norm

criterion.
RLMV Fit a multiple linear regression model using the minimax

criterion.

L8b....... Polynomial (e.g., y = β0 + β1x + β2x2 + ε) (search also class L8c)

L8b1..... Ordinary least squares

L8b1a... Degree determination
RFORP Fit an orthogonal polynomial regression model.
RPOLY Analyze a polynomial regression model.

L8b1b... Parameter estimation

L8b1b2. Using orthogonal polynomials
RCURV Fit a polynomial curve using least squares.
RFORP Fit an orthogonal polynomial regression model.
RPOLY Analyze a polynomial regression model.

L8b1c... Analysis (search also class L8b1b)
RCASP Compute case statistics for a polynomial regression model

given the fit based on orthogonal polynomials.
RPOLY Analyze a polynomial regression model.
RSTAP Compute summary statistics for a polynomial regression

model given the fit based on orthogonal polynomials.

L8b1d... Inference (search also class L8b1b)
RCASP Compute case statistics for a polynomial regression model

given the fit based on orthogonal polynomials.
RPOLY Analyze a polynomial regression model.
RSTAP Compute summary statistics for a polynomial regression

model given the fit based on orthogonal polynomials.
L8c....... Multiple linear (e.g., y = β0 + β1x1 + … + βNxN + ε)

L8c1..... Ordinary least squares

L8c1a ... Variable selection

L8c1a2 . Using correlation or covariance data
GSWEP Perform a generalized sweep of a row of a nonnegative

definite matrix.
RBEST Select the best multiple linear regression models.
RSTEP Build multiple linear regression models using forward

selection, backward selection, or stepwise selection.
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L8c1b... Parameter estimation (search also class L8c1a)

L8c1b1. Using raw data
RGIVN Fit a multivariate linear regression model via fast Givens

transformations.
RGLM Fit a multivariate general linear model.
RLSE Fit a multiple linear regression model using least squares.

L8c1b2. Using correlation data
RCOV Fit a multiple linear regression model given the variance-

covariance matrix.

L8c1c ... Analysis (search also classes L8c1a and L8c1b)
RCASE Compute case statistics and diagnostics given data points,

coefficient estimates $β , and the R matrix for a fitted
general linear model.

RCOVB Compute the estimated variance-covariance matrix of the
estimated regression coefficients given the R matrix.

RLOFE Compute a lack-of-fit test based on exact replicates for a
fitted regression model.

RLOFN Compute a lack-of-fit test based on near replicates for a
fitted regression model.

ROTIN Compute diagnostics for detection of outliers and
influential data points given residuals and the R matrix for
a fitted general linear model.

RSTAT Compute statistics related to a regression fit given the

coefficient estimates $β  and the R matrix.

L8c1d... Inference (search also classes L8c1a and L8c1b)
CESTI Construct an equivalent completely testable multivariate

general linear hypothesis HBU = G from a partially testable
hypothesis HSBU = GS.

RCASE Compute case statistics and diagnostics given data points,

coefficient estimates $β , and the R matrix for a fitted
general linear model.

RHPSS Compute the matrix of sums of squares and crossproducts
for the multivariate general linear hypothesis HBU = G

given the coefficient estimates $B  and the R matrix.
RHPTE Perform tests for a multivariate general linear hypothesis

HBU = G given the hypothesis sums of squares and
crossproducts matrix S+ and the error sums of squares and
crossproducts matrix S(.

RSTAT Compute statistics related to a regression fit given the

coefficient estimates $β  and the R matrix.

L8c3..... LS for p different from 2
RLAV Fit a multiple linear regression model using the least

absolute values criterion.
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RLLP Fit a multiple linear regression model using the LS norm
criterion.

RLMV Fit a multiple linear regression model using the minimax
criterion.

L8d....... Polynomial in several variables
RCOMP Generate an orthogonal central composite design.
TCSCP Transform coefficients from a quadratic regression model

generated from squares and crossproducts of centered
variables to a model using uncentered variables.

L8e....... Nonlinear (i.e., y = f(X; θ) + ε)

L8e1..... Ordinary least squares

L8e1b... Parameter estimation
RNLIN Fit a nonlinear regression model.

L8f ....... Simultaneous (i.e., Y = XB + ε)
RCOV Fit a multiple linear regression model given the variance-

covariance matrix.
RGIVN Fit a multivariate linear regression model via fast Givens

transformations.
RGLM Fit a multivariate general linear model.
RHPSS Compute the matrix of sums of squares and crossproducts

for the multivariate general linear hypothesis HBU = G

given the coefficient estimates $B  and the R matrix.
RHPTE Perform tests for a multivariate general linear hypothesis

HBU = G given the hypothesis sums of squares and
crossproducts matrix S+ and the error sums of squares and
crossproducts matrix S(.

RLEQU Fit a multivariate linear regression model with linear
equality restrictions HΒ  = G imposed on the regression
parameters given results from IMSL routine RGIVN after
IDO = 1 and IDO = 2 and prior to IDO = 3.

L8i........ Service routines (e.g., matrix manipulation for variable selection)
GCLAS Get the unique values of each classification variable.
GCSCP Generate centered variables, squares, and crossproducts.
GRGLM Generate regressors for a general linear model.
RORDM Reorder rows and columns of a symmetric matrix.
RSUBM Retrieve a symmetric submatrix from a symmetric matrix.

L9......... Categorical data analysis
CTGLM Analyze categorical data using logistic, Probit, Poisson,

and other generalized linear models.
CTRAN Perform generalized Mantel-Haenszel tests in a stratified

contingency table.

L9a....... 2-by-2 tables
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CTTWO Perform a chi-squared analysis of a 2 by 2 contingency
table.

L9b ...... Two-way tables (search also class L9d)
CTCHI Perform a chi-squared analysis of a two-way contingency

table.
CTEPR Compute Fisher’s exact test probability and a hybrid

approximation to the Fisher exact test probability for a
contingency table using the network algorithm.

CTPRB Compute exact probabilities in a two-way contingency
table.

CTRHO Estimate the bivariate normal correlation coefficient using
a contingency table.

CTWLS Perform a generalized linear least squares analysis of
transformed probabilities in a two-dimensional contingency
table.

MEDPL Compute a median polish of a two-way table.
TWFRQ Tally observations into a two-way frequency table.

L9c....... Log-linear model
CTASC Compute partial association statistics for log-linear models

in a multidimensional contingency table.
CTLLN Compute model estimates and associated statistics for a

hierarchical log-linear model.
CTPAR Compute model estimates and covariances in a fitted log-

linear model.
CTSTP Build hierarchical log-linear models using forward

selection, backward selection, or stepwise selection.
PRPFT Perform iterative proportional fitting of a contingency table

using a loglinear model.

L9d ...... EDA (e.g., median polish)
MEDPL Compute a median polish of a two-way table.

L10 ...... Time series analysis (search also class J)

L10a..... Univariate

L10a1... Transformations

L10a1b. Stationarity (search also class L8a1)
BCTR Perform a forward or an inverse Box-Cox (power)

transformation.

L10a1c . Filters

L10a1c1Difference (nonseasonal and seasonal)
DIFF Difference a time series.

L10a2... Time domain analysis

L10a2a. Summary statistics
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L10a2a1Autocovariances and autocorrelations
ACF Compute the sample autocorrelation function of a

stationary time series.
LOFCF Perform lack-of-fit test for a univariate time series or

transfer function given the appropriate correlation function.

L10a2a2Partial autocorrelations
PACF Compute the sample partial autocorrelation function of a

stationary time series.

L10a2c . Autoregressive models
SPWF Compute the Wiener forecast operator for a stationary

stochastic process.

L10a2d. ARMA and ARIMA models (including Box-Jenkins methods)

L10a2d2Parameter estimation
ARMME Compute method of moments estimates of the

autoregressive parameters of an ARMA model.
MAMME Compute method of moments estimates of the moving

average parameters of an ARMA model.
NSLSE Compute least squares estimates of parameters for a

nonseasonal ARMA model.
NSPE Compute preliminary estimates of the autoregressive and

moving average parameters of an ARMA model.

L10a2d3Forecasting
NSBJF Compute Box-Jenkins forecasts and their associated

probability limits for a nonseasonal ARMA model.

L10a2e . State-space analysis (e.g., Kalman filtering)
KALMN Perform Kalman filtering and evaluate the likelihood

function for the state-space model.

L10a3... Frequency domain analysis (search also class J1)

L10a3a . Spectral Analysis

L10a3a2Periodogram analysis
PFFT Compute the periodogram of a stationary time series using

a fast Fourier transform.

L10a3a3Spectrum estimation using the periodogram
SSWD Estimate the nonnormalized spectral density of a stationary

time series using a spectral window given the time series
data.

SSWP Estimate the nonnormalized spectral density of a stationary
time series using a spectral window given the periodogram.
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SWED Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the time series data.

SWEP Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the periodogram.

L10a3a6Spectral windows
DIRIC Compute the Dirichlet kernel.
FEJER Compute the Fejér kernel.

L10b .... Two time series (search also classes L10c and L10d)

L10b2 .. Time domain analysis

L10b2a. Summary statistics (e.g., cross-correlations)
CCF Compute the sample cross-correlation function of two

stationary time series.

L10b2b Transfer function models
IRNSE Compute estimates of the impulse response weights and

noise series of a univariate transfer function model.
TFPE Compute preliminary estimates of parameters for a

univariate transfer function model.

L10b3 .. Frequency domain analysis (search also class J1)

L10b3a. Cross-spectral analysis

L10b3a3Cross-spectrum estimation using the cross-periodogram
CSSWD Estimate the nonnormalized cross-spectral density of two

stationary time series using a spectral window given the
time series data.

CSSWP Estimate the nonnormalized cross-spectral density of two
stationary time series using a spectral window given the
spectral densities and cross periodogram.

CSWED Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the time series data.

CSWEP Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the spectral densities and cross periodogram.

L10c..... Multivariate time series (search also classes J1, L3e3 and L10b)
KALMN Perform Kalman filtering and evaluate the likelihood

function for the state-space model.

L10d .... Two multi-channel time series
MCCF Compute the multichannel cross-correlation function of

two mutually stationary multichannel time series.
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MLSE Compute least squares estimates of a linear regression
model for a multichannel time series with a specified base
channel.

MWFE Compute least squares estimates of the multichannel
Wiener filter coefficients for two mutually stationary
multichannel time series.

L11....... Correlation analysis (search also classes L4 and L13c)
BSCAT Compute the biserial correlation coefficient for a

dichotomous variable and a classification variable.
BSPBS Compute the biserial and point-biserial correlation

coefficients for a dichotomous variable and a numerically
measurable classification variable.

CORVC Compute the variance-covariance or correlation matrix.
COVPL Compute a pooled variance-covariance matrix from the

observations.
CTRHO Estimate the bivariate normal correlation coefficient using

a contingency table.
KENDP Compute the frequency distribution of the total score in

Kendall’s rank correlation coefficient.
PCORR Compute partial correlations or covariances from the

covariance or correlation matrix.
RBCOV Compute a robust estimate of a covariance matrix and

mean vector.
TETCC Categorize bivariate data and compute the tetrachoric

correlation coefficient.

L12....... Discriminant analysis
DMSCR Use Fisher’s linear discriminant analysis method to reduce

the number of variables.
DSCRM Perform a linear or a quadratic discriminant function

analysis among several known groups.
NNBRD Perform a k nearest neighbor discrimination.

L13....... Covariance structures models

L13a..... Factor analysis
FACTR Extract initial factor-loading estimates in factor analysis.
FCOEF Compute a matrix of factor score coefficients for input to

the following IMSL routine (FSCOR).
FDOBL Compute a direct oblimin rotation of a factor-loading

matrix.
FGCRF Compute direct oblique rotation according to a generalized

fourth-degree polynomial criterion.
FHARR Compute an oblique rotation of an unrotated factor-loading

matrix using the Harris-Kaiser method.
FIMAG Compute the image transformation matrix.
FOPCS Compute an orthogonal Procrustes rotation of a factor-

loading matrix using a target matrix.
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FPRMX Compute an oblique Promax or Procrustes rotation of a
factor-loading matrix using a target matrix, including pivot
and power vector options.

FRESI Compute commonalities and the standardized factor
residual correlation matrix.

FROTA Compute an orthogonal rotation of a factor-loading matrix
using a generalized orthomax criterion, including
quartimax, varimax, and equamax rotations.

FRVAR Compute the factor structures and the variance explained
by each factor.

FSCOR Compute a set of factor scores given the factor score
coefficient matrix.

L13b .... Principal components analysis
KPRIN Maximum likelihood or least-squares estimates for

principle components from one or more matrices.
PRINC Compute principal components from a variance-covariance

matrix or a correlation matrix.

L13c..... Canonical correlation
CANCR Perform canonical correlation analysis from a data matrix.
CANVC Perform canonical correlation analysis from a variance-

covariance matrix or a correlation matrix.

L14 ...... Cluster analysis

L14a..... One-way

L14a1... Unconstrained

L14a1a . Nested

L14a1a1Joining (e.g., single link)
CLINK Perform a hierarchical cluster analysis given a distance

matrix.

L14a1b. Non-nested (e.g., K means)
KMEAN Perform a K-means (centroid) cluster analysis.

L14c..... Display
TREEP Print a binary tree.

L14d .... Service routines (e.g., compute distance matrix)
CDIST Compute a matrix of dissimilarities (or similarities)

between the columns (or rows) of a matrix.
CNUMB Compute cluster membership for a hierarchical cluster tree.

L15 ...... Life testing, survival analysis
ACTBL Produce population and cohort life tables.
HAZEZ Perform nonparametric hazard rate estimation using kernel

functions. Easy-to-use version of the previous IMSL
subroutine (HAZRD).



A-22 • Appendix A: GAMS Index IMSL STAT/LIBRARY

HAZRD Perform nonparametric hazard rate estimation using kernel
functions and quasi-likelihoods.

HAZST Perform hazard rate estimation over a grid of points using a
kernel function.

KAPMR Compute Kaplan-Meier estimates of survival probabilities
in stratified samples.

KTBLE Print Kaplan-Meier estimates of survival probabilities in
stratified samples.

NRCES Compute maximum likelihood estimates of the mean and
variance from grouped and/or censored normal data.

PHGLM Analyze time event data via the proportional hazards
model.

STBLE Estimate survival probabilities and hazard rates for various
parametric models.

SVGLM Analyze censored survival data using a generalized linear
model.

TRNBL Compute Turnbull’s generalized Kaplan-Meier estimates
of survival probabilities in samples with interval censoring.

L16....... Multidimensional scaling
MSDBL Obtain normalized product-moment (double centered)

matrices from dissimilarity matrices.
MSDST Compute distances in a multidimensional scaling model.
MSIDV Perform individual-differences multidimensional scaling

for metric data using alternating least squares.
MSINI Compute initial estimates in multidimensional scaling

models.
MSSTN Transform dissimilarity/similarity matrices and replace

missing values by estimates to obtain standardized
dissimilarity matrices.

MSTRS Compute various stress criteria in multidimensional
scaling.

L17....... Statistical data sets
GDATA Retrieve a commonly analyzed data set.

N .......... DATA HANDLING (search also class L2)

N1 ........ Input, output
PGOPT Set or retrieve page width and length for printing.

WRIRL Print an integer rectangular matrix with a given format and
labels.

WRIRN Print an integer rectangular matrix with integer row and
column labels.

WROPT Set or retrieve an option for printing a matrix.
WRRRL Print a real rectangular matrix with a given format and

labels.
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WRRRN Print a real rectangular matrix with integer row and column
labels.

N3 ........ Character manipulation
ACHAR Return a character given its ASCII value.
CVTSI Convert a character string containing an integer number

into the corresponding integer form.
IACHAR Return the integer ASCII value of a character argument.
ICASE Return the ASCII value of a character converted to

uppercase.
IICSR Compare two character strings using the ASCII collating

sequence without regard to case.
IIDEX Determine the position in a string at which a given

character sequence begins without regard to case.

N5 ........ Searching

N5a ...... Extreme value
EQTIL Compute empirical quantiles.
ORDST Determine order statistics.

N5b ...... Insertion position
ISRCH Search a sorted integer vector for a given integer and return

its index.
SRCH Search a sorted vector for a given scalar and return its

index.
SSRCH Search a character vector, sorted in ascending ASCII order,

for a given string and return its index.

N5c ...... On a key
IIDEX Determine the position in a string at which a given

character sequence begins without regard to case.
ISRCH Search a sorted integer vector for a given integer and return

its index.
SRCH Search a sorted vector for a given scalar and return its

index.
SSRCH Search a character vector, sorted in ascending ASCII order,

for a given string and return its index.

N6 ........ Sorting

N6a ...... Internal

N6a1 .... Passive (i.e., construct pointer array, rank)

N6a1a .. Integer
SVIGP Sort an integer array by algebraic value and return the

permutations.

N6a1b .. Real
RANKS Compute the ranks, normal scores, or exponential scores

for a vector of observations.
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SCOLR Sort columns of a real rectangular matrix using keys in
rows.

SROWR Sort rows of a real rectangular matrix using keys in
columns.

SVRGP Sort a real array by algebraic value and return the
permutations.

N6a2 .... Active

N6a2a... Integer
SVIGN Sort an integer array by algebraic value.
SVIGP Sort an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a2b .. Real
SCOLR Sort columns of a real rectangular matrix using keys in

rows.
SROWR Sort rows of a real rectangular matrix using keys in

columns.
SVRGN Sort a real array by algebraic value.
SVRGP Sort a real array by algebraic value and return the

permutations.

N8 ........ Permuting
MVNAN Move any rows of a matrix with the IMSL missing value

code NaN (not a number) in the specified columns to the
last rows of the matrix.

PERMA Permute the rows or columns of a matrix.
PERMU Rearrange the elements of an array as specified by a

permutation.
RORDM Reorder rows and columns of a symmetric matrix.

Q .......... GRAPHICS (search also classes L3)
BOXP Print boxplots for one or more samples.
CDF2P Print a plot of two sample cumulative distribution

functions.
CDFP Print a sample cumulative distribution function (CDF), a

theoretical CDF, and confidence band information.
HHSTP Print a horizontal histogram.
PLOTP Print a plot of up to ten sets of points.
PROBP Print a probability plot.
SCTP Print a scatterplot of several groups of data.
STMLP Print a stem-and-leaf plot.
TREEP Print a binary tree.
VHS2P Print a vertical histogram with every bar subdivided into

two parts.
VHSTP Print a vertical histogram.

R .......... SERVICE ROUTINES
IDYWK Compute the day of the week for a given date.
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NDAYS Compute the number of days from January 1, 1900, to the
given date.

NDYIN Give the date corresponding to the number of days since
January 1, 1900.

TDATE Get today’s date.
TIMDY Get time of day.
VERSL Obtain STAT/LIBRARY-related version, system and

license numbers.

R1 ........ Machine-dependent constants
AMACH Retrieve machine constants.
IFNAN Check if a floating-point number is NaN (not a number).
IMACH Retrieve integer machine constants.
UMACH Set or retrieve input or output device unit numbers.

R3 ........ Error handling

R3b ...... Set unit number for error messages
UMACH Set or retrieve input or output device unit numbers.

R3c ...... Other utilities
ERSET Set error handler default print and stop actions.
IERCD Retrieve the code for an informational error.
N1RTY Retrieve an error type for the most recently called IMSL

routine.

S........... SOFTWARE DEVELOPMENT TOOLS
CPSEC Return CPU time used in seconds.
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Appendix B: Alphabetical Summary
of Routines

IMSL STAT/LIBRARY
ABALD 396 Analyze a balanced complete experimental design for a

fixed, random, or mixed model.

ABIBD 380 Analyze a balanced incomplete block design or a balanced
lattice design.

ACF 637 Compute the sample autocorrelation function of a stationary
time series.

ACHAR 1289 Return a character given its ASCII value.

ACTBL 992 Produce population and cohort life tables.

AKS1DF 1117 Evaluate the distribution function of the one-sided

Kolmogorov-Smirnov goodness-of-fit D+ or D- test statistic
based on continuous data for one sample.

AKS2DF 1120 Evaluate the distribution function of the Kolmogorov-
Smirnov goodness-of-fit D test statistic based on continuous
data for two samples.

ALATN 386 Analyze a Latin square design.

AMACH 1336 Retrieve machine constants.

AMILLR 1315 Evaluate Mill’s ratio (the ratio of the ordinate to the upper
tail area of the standardized normal distribution).

ANEST 409 Analyze a completely nested random model with possibly
unequal numbers in the subgroups.

ANORDF 1122 Evaluate the standard normal (Gaussian) distribution
function.

ANORIN 1124 Evaluate the inverse of the standard normal (Gaussian)
distribution function.
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ANWAY 390 Analyze a balanced n-way classification model with fixed
effects.

AONEC 364 Analyze a one-way classification model with covariates.

AONEW 362 Analyze a one-way classification model.

ARMME 657 Compute method of moments estimates of the autoregressive
parameters of an ARMA model.

ATWOB 375 Analyze a randomized block design or a two-way balanced
design.

BCTR 629 Perform a forward or an inverse Box-Cox (power)
transformation.

BETDF 1125 Evaluate the beta probability distribution function.

BETIN 1127 Evaluate the inverse of the beta distribution function.

BHAKV 566 Perform a Bhapkar V test.

BINDF 1108 Evaluate the binomial distribution function.

BINES 44 Estimate the parameter p of the binomial distribution.

BINPR 1110 Evaluate the binomial probability function.

BNRDF 1128 Evaluate the bivariate normal distribution function.

BOXP 1083 Print boxplots for one or more samples.

BSCAT 348 Compute the biserial correlation coefficient for a
dichotomous variable and a classification variable.

BSPBS 346 Compute the biserial and point-biserial correlation
coefficients for a dichotomous variable and a numerically
measurable classification variable.

CANCR 844 Perform canonical correlation analysis from a data matrix.

CANVC 857 Perform canonical correlation analysis from a variance-
covariance matrix or a correlation matrix.

CCF 644 Compute the sample cross-correlation function of two
stationary time series.

CDF2P 1090 Print a plot of two sample cumulative distribution functions.

CDFP 1087 Print a sample cumulative distribution function (CDF), a
theoretical CDF, and confidence band information.

CDIST 889 Compute a matrix of dissimilarities (or similarities) between
the columns (or rows) of a matrix.

CESTI 157 Construct an equivalent completely testable multivariate
general linear hypothesis HBU = G from a partially testable
hypothesis HSBU = GS.
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CHFAC 1308 Compute an upper triangular factorization of a real
symmetric nonnegative definite matrix.

CHIDF 1129 Evaluate the chi-squared distribution function.

CHIGF 584 Perform a chi-squared goodness-of-fit test.

CHIIN 1132 Evaluate the inverse of the chi-squared distribution function.

CIDMS 426 Compute a confidence interval on a variance component
estimated as proportional to the difference in two mean
squares in a balanced complete experimental design.

CLINK 892 Perform a hierarchical cluster analysis given a distance
matrix.

CNCRD 350 Calculate and test the significance of the Kendall coefficient
of concordance.

CNUMB 897 Compute cluster membership for a hierarchical cluster tree.

CORVC 314 Compute the variance-covariance or correlation matrix.

COVPL 322 Compute a pooled variance-covariance matrix from the
observations.

CPFFT 750 Compute the cross periodogram of two stationary time series
using a fast Fourier transform.

CPSEC 1295 Return CPU time used in seconds.

CSNDF 1133 Evaluate the noncentral chi-squared distribution function.

CSNIN 1136 Evaluate the inverse of the noncentral chi-squared function.

CSSWD 757 Estimate the nonnormalized cross-spectral density of two
stationary time series using a spectral window given the time
series data.

CSSWP 767 Estimate the nonnormalized cross-spectral density of two
stationary time series using a spectral window given the
spectral densities and cross periodogram.

CSTAT 54 Compute cell frequencies, cell means, and cell sums of
squares for multivariate data.

CSWED 773 Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the time series data.

CSWEP 782 Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the spectral densities and cross periodogram.

CTASC 482 Compute partial association statistics for log-linear models in
a multidimensional contingency table.
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CTCHI 446 Perform a chi-squared analysis of a two-way contingency
table.

CTEPR 459 Compute Fisher’s exact test probability and a hybrid
approximation to the Fisher exact test probability for a
contingency table using the network algorithm.

CTGLM 510 Analyze categorical data using logistic, Probit, Poisson, and
other generalized linear models.

CTLLN 467 Compute model estimates and associated statistics for a
hierarchical log-linear model.

CTPAR 476 Compute model estimates and covariances in a fitted log-
linear model.

CTPRB 456 Compute exact probabilities in a two-way contingency table.

CTRAN 502 Perform generalized Mantel-Haenszel tests in a stratified
contingency table.

CTRHO 339 Estimate the bivariate normal correlation coefficient using a
contingency table.

CTRST 417 Compute contrast estimates and sums of squares.

CTSTP 489 Build hierarchical log-linear models using forward selection,
backward selection, or stepwise selection.

CTTWO 436 Perform a chi-squared analysis of a 2 by 2 contingency table.

CTWLS 526 Perform a generalized linear least squares analysis of
transformed probabilities in a two-dimensional contingency
table.

CVTSI 1294 Convert a character string containing an integer number into
the corresponding integer form.

DCUBE 609 Perform a triplets test.

DESKN 1044 Perform nonparametric probability density function
estimation by the kernel method.

DESPL 1040 Perform nonparametric probability density function
estimation by the penalized likelihood method.

DESPT 1052 Estimate a probability density function at specified points
using linear or cubic interpolation.

DIFF 633 Difference a time series.

DIRIC 719 Compute the Dirichlet kernel.

DMSCR 876 Use Fisher’s linear discriminant analysis method to reduce
the number of variables.
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DNFFT 1047 Compute Gaussian kernel estimates of a univariate density
via the fast Fourier transform over a fixed interval.

DSCRM 863 Perform a linear or a quadratic discriminant function analysis
among several known groups.

DSQAR 607 Perform a D-square test.

ENOS 1314 Evaluate the expected value of a normal order statistic.

EQTIL 35 Compute empirical quantiles.

ERSET 1327 Set error handler default print and stop actions.

FACTR 801 Extract initial factor-loading estimates in factor analysis.

FCOEF 833 Compute a matrix of factor score coefficients for input to the
following IMSL routine (FSCOR).

FDF 1137 Evaluate the F distribution function.

FDOBL 815 Compute a direct oblimin rotation of a factor-loading matrix.

FEJER 721 Compute the Fejér kernel.

FGCRF 825 Compute direct oblique rotation according to a generalized
fourth-degree polynomial criterion.

FHARR 822 Compute an oblique rotation of an unrotated factor-loading
matrix using the Harris-Kaiser method.

FIMAG 829 Compute the image transformation matrix.

FIN 1139 Evaluate the inverse of the F distribution function.

FOPCS 812 Compute an orthogonal Procrustes rotation of a factor-
loading matrix using a target matrix.

FPRMX 818 Compute an oblique Promax or Procrustes rotation of a
factor-loading matrix using a target matrix, including pivot
and power vector options.

FRDMN 568 Perform Friedman’s test for a randomized complete block
design.

FREQ 13 Tally multivariate observations into a multi-way frequency
table.

FRESI 840 Compute commonalities and the standardized factor residual
correlation matrix.

FROTA 809 Compute an orthogonal rotation of a factor-loading matrix
using a generalized orthomax criterion, including quartimax,
varimax, and equamax rotations.

FRVAR 831 Compute the factor structures and the variance explained by
each factor.
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FSCOR 838 Compute a set of factor scores given the factor score
coefficient matrix.

GAMDF 1140 Evaluate the gamma distribution function.

GAMIN 1142 Evaluate the inverse of the gamma distribution function.

GCDF 1150 Evaluate a general continuous cumulative distribution
function given ordinates of the density.

GCIN 1152 Evaluate the inverse of a general continuous cumulative
distribution function given ordinates of the density.

GCLAS 207 Get the unique values of each classification variable.

GCSCP 272 Generate centered variables, squares, and crossproducts.

GDATA 1302 Retrieve a commonly analyzed data set.

GFNIN 1155 Evaluate the inverse of a general continuous cumulative
distribution function given in a subprogram.

GIRTS 1305 Solve a triangular (possibly singular) set of linear systems
and/or compute a generalized inverse of an upper triangular
matrix.

GRGLM 210 Generate regressors for a general linear model.

GRPES 51 Compute basic statistics from grouped data.

GSWEP 230 Perform a generalized sweep of a row of a nonnegative
definite matrix.

HAZEZ 1061 Perform nonparametric hazard rate estimation using kernel
functions. Easy-to-use version of the previous IMSL
subroutine (HAZRD).

HAZRD 1054 Perform nonparametric hazard rate estimation using kernel
functions and quasi-likelihoods.

HAZST 1069 Perform hazard rate estimation over a grid of points using a
kernel function.

HHSTP 1078 Print a horizontal histogram.

HYPDF 1111 Evaluate the hypergeometric distribution function.

HYPPR 1113 Evaluate the hypergeometric probability function.

IACHAR 1290 Return the integer ASCII value of a character argument.

ICASE 1291 Return the ASCII value of a character converted to
uppercase.

IDYWK 1300 Compute the day of the week for a given date.

IERCD 1328 Retrieve the code for an informational error.

IFNAN 1337 Check if a floating-point number is NaN (not a number).
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IICSR 1292 Compare two character strings using the ASCII collating
sequence without regard to case.

IIDEX 1293 Determine the position in a string at which a given character
sequence begins without regard to case.

IMACH 1335 Retrieve integer machine constants.

INCLD 561 Perform an includance test.

IRNSE 685 Compute estimates of the impulse response weights and
noise series of a univariate transfer function model.

ISRCH 1286 Search a sorted integer vector for a given integer and return
its index.

KALMN 705 Perform Kalman filtering and evaluate the likelihood
function for the state-space model.

KAPMR 938 Compute Kaplan-Meier estimates of survival probabilities in
stratified samples.

KENDL 353 Compute and test Kendall’s rank correlation coefficient.

KENDP 357 Compute the frequency distribution of the total score in
Kendall’s rank correlation coefficient.

KMEAN 900 Perform a K-means (centroid) cluster analysis.

KPRIN 797 Maximum likelihood or least-squares estimates for principle
components from one or more matrices.

KRSKL 564 Perform a Kruskal-Wallis test for identical population
medians.

KSONE 580 Perform a Kolmogorov-Smirnov one-sample test for
continuous distributions.

KSTWO 598 Perform a Kolmogorov-Smirnov two-sample test.

KTBLE 942 Print Kaplan-Meier estimates of survival probabilities in
stratified samples.

KTRND 574 Perform a k-sample trends test against ordered alternatives.

LETTR 29 Produce a letter value summary.

LILLF 591 Perform Lilliefors test for an exponential or normal
distribution.

LOFCF 716 Perform lack-of-fit test for a univariate time series or transfer
function given the appropriate correlation function.

MAMME 660 Compute method of moments estimates of the moving
average parameters of an ARMA model.

MCCF 649 Compute the multichannel cross-correlation function of two
mutually stationary multichannel time series.
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MCHOL 1311 Compute an upper triangular factorization of a real
symmetric matrix A plus a diagonal matrix D, where D is
determined sequentially during the Cholesky factorization in
order to make A + D nonnegative definite.

MEDPL 59 Compute a median polish of a two-way table.

MLSE 694 Compute least squares estimates of a linear regression model
for a multichannel time series with a specified base channel.

MSDBL 1024 Obtain normalized product-moment (double centered)
matrices from dissimilarity matrices.

MSDST 1017 Compute distances in a multidimensional scaling model.

MSIDV 1003 Perform individual-differences multidimensional scaling for
metric data using alternating least squares.

MSINI 1028 Compute initial estimates in multidimensional scaling
models.

MSSTN 1020 Transform dissimilarity/similarity matrices and replace
missing values by estimates to obtain standardized
dissimilarity matrices.

MSTRS 1035 Compute various stress criteria in multidimensional scaling.

MVIND 842 Compute a test for the independence of k sets of multivariate
normal variables.

MVMMT 594 Compute Mardia’s multivariate measures of skewness and
kurtosis and test for multivariate normality.

MVNAN 1269 Move any rows of a matrix with the IMSL missing value
code NaN (not a number) in the specified columns to the last
rows of the matrix.

MWFE 700 Compute least squares estimates of the multichannel Wiener
filter coefficients for two mutually stationary multichannel
time series.

N1RTY 1328 Retrieve an error type for the most recently called IMSL
routine.

NCTRD 548 Perform the Noether test for cyclical trend.

NDAYS 1297 Compute the number of days from January 1, 1900, to the
given date.

NDYIN 1299 Give the date corresponding to the number of days since
January 1, 1900.

NGHBR 1320 Search a k-d tree for the k nearest neighbors of a key.

NNBRD 880 Perform a k nearest neighbor discrimination.
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NRCES 48 Compute maximum likelihood estimates of the mean and
variance from grouped and/or censored normal data.

NSBJF 680 Compute Box-Jenkins forecasts and their associated
probability limits for a nonseasonal ARMA model.

NSLSE 669 Compute least squares estimates of parameters for a
nonseasonal ARMA model.

NSPE 664 Compute preliminary estimates of the autoregressive and
moving average parameters of an ARMA model.

NTIES 555 Compute tie statistics for a sample of observations.

OPOLY 269 Generate orthogonal polynomials with respect to x values
and specified weights.

ORDST 31 Determine order statistics.

OWFRQ 3 Tally observations into a one-way frequency table.

PACF 641 Compute the sample partial autocorrelation function of a
stationary time series.

PAIRS 604 Perform a pairs test.

PCORR 327 Compute partial correlations or covariances from the
covariance or correlation matrix.

PERMA 1266 Permute the rows or columns of a matrix.

PERMU 1265 Rearrange the elements of an array as specified by a
permutation.

PFFT 723 Compute the periodogram of a stationary time series using a
fast Fourier transform.

PGOPT 1263 Set or retrieve page width and length for printing.

PHGLM 951 Analyze time event data via the proportional hazards model.

PLOTP 1096 Print a plot of up to ten sets of points.

POIDF 1114 Evaluate the Poisson distribution function.

POIES 46 Estimate the parameter of the Poisson distribution.

POIPR 1115 Evaluate the Poisson probability function.

PRINC 793 Compute principal components from a variance-covariance
matrix or a correlation matrix.

PROBP 1092 Print a probability plot.

PRPFT 463 Perform iterative proportional fitting of a contingency table
using a loglinear model.

QTEST 572 Perform a Cochran Q test for related observations.
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QUADT 1317 Form a k-d tree.

RANKS 24 Compute the ranks, normal scores, or exponential scores for
a vector of observations.

RBCOV 331 Compute a robust estimate of a covariance matrix and mean
vector.

RBEST 214 Select the best multiple linear regression models.

RCASE 191 Compute case statistics and diagnostics given data points,

coefficient estimates $β , and the R matrix for a fitted general
linear model.

RCASP 263 Compute case statistics for a polynomial regression model
given the fit based on orthogonal polynomials.

RCOMP 248 Generate an orthogonal central composite design.

RCOV 104 Fit a multiple linear regression model given the variance-
covariance matrix.

RCOVB 152 Compute the estimated variance-covariance matrix of the
estimated regression coefficients given the R matrix.

RCURV 237 Fit a polynomial curve using least squares.

RFORP 252 Fit an orthogonal polynomial regression model.

RGIVN 107 Fit a multivariate linear regression model via fast Givens
transformations.

RGLM 117 Fit a multivariate general linear model.

RHPSS 163 Compute the matrix of sums of squares and crossproducts for
the multivariate general linear hypothesis HBU = G given the

coefficient estimates $B  and the R matrix.

RHPTE 170 Perform tests for a multivariate general linear hypothesis
HBU = G given the hypothesis sums of squares and
crossproducts matrix S+ and the error sums of squares and
crossproducts matrix S(.

RINCF 90 Perform response control given a fitted simple linear
regression model.

RINPF 94 Perform inverse prediction given a fitted simple linear
regression model.

RLAV 293 Fit a multiple linear regression model using the least absolute
values criterion.

RLEQU 131 Fit a multivariate linear regression model with linear equality
restrictions HΒ  = G imposed on the regression parameters
given results from IMSL routine RGIVN after IDO = 1 and
IDO = 2 and prior to IDO = 3.
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RLEQU 131 Fit a multivariate linear regression model with linear equality
restrictions HΒ  = G imposed on the regression parameters
given results from IMSL routine RGIVN after IDO = 1 and
IDO = 2 and prior to IDO = 3.

RLINE 79 Fit a line to a set of data points using least squares.

RLLP 297 Fit a multiple linear regression model using the LS norm
criterion.

RLMV 308 Fit a multiple linear regression model using the minimax
criterion.

RLOFE 176 Compute a lack-of-fit test based on exact replicates for a
fitted regression model.

RLOFN 182 Compute a lack-of-fit test based on near replicates for a
fitted regression model.

RLSE 98 Fit a multiple linear regression model using least squares.

RNARM 1232 Generate a time series from a specified ARMA model.

RNBET 1191 Generate pseudorandom numbers from a beta distribution.

RNBIN 1173 Generate pseudorandom numbers from a binomial
distribution.

RNCHI 1193 Generate pseudorandom numbers from a chi-squared
distribution.

RNCHY 1194 Generate pseudorandom numbers from a Cauchy
distribution.

RNCOR 1215 Generate a pseudorandom orthogonal matrix or a correlation
matrix.

RNDAT 1218 Generate pseudorandom numbers from a multivariate
distribution determined from a given sample.

RNEXP 1196 Generate pseudorandom numbers from a standard
exponential distribution.

RNEXT 1197 Generate pseudorandom numbers from a mixture of two
exponential distributions.

RNGAM 1198 Generate pseudorandom numbers from a standard gamma
distribution.

RNGCS 1200 Set up table to generate pseudorandom numbers from a
general continuous distribution.

RNGCT 1202 Generate pseudorandom numbers from a general continuous
distribution.

RNGDA 1174 Generate pseudorandom numbers from a general discrete
distribution using an alias method.
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RNGDS 1177 Set up table to generate pseudorandom numbers from a
general discrete distribution.

RNGDT 1181 Generate pseudorandom numbers from a general discrete
distribution using a table lookup method.

RNGEF 1167 Retrieve the current value of the array used in the IMSL
GFSR random number generator.

RNGEO 1183 Generate pseudorandom numbers from a geometric
distribution.

RNGES 1167 Retrieve the current value of the table in the IMSL random
number generators that use shuffling.

RNGET 1167 Retrieve the current value of the seed used in the IMSL
random number generators.

RNHYP 1185 Generate pseudorandom numbers from a hypergeometric
distribution.

RNISD 1168 Determine a seed that yields a stream beginning 100,000
numbers beyond the beginning of the stream yielded by a
given seed used in IMSL multiplicative congruential
generators (with no shufflings).

RNKSM 557 Perform the Wilcoxon rank sum test.

RNLGR 1186 Generate pseudorandom numbers from a logarithmic
distribution.

RNLIN 280 Fit a nonlinear regression model.

RNLNL 1204 Generate pseudorandom numbers from a lognormal
distribution.

RNMTN 1222 Generate pseudorandom numbers from a multinomial
distribution.

RNMVN 1223 Generate pseudorandom numbers from a multivariate normal
distribution.

RNNBN 1188 Generate pseudorandom numbers from a negative binomial
distribution.

RNNOA 1205 Generate pseudorandom numbers from a standard normal
distribution using an acceptance/rejection method.

RNNOF 1207 Generate a pseudorandom number from a standard normal
distribution.

RNNOR 1208 Generate pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

RNNOS 1229 Generate pseudorandom order statistics from a standard
normal distribution.
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RNNPP 1236 Generate pseudorandom numbers from a nonhomogeneous
Poisson process.

RNOPG 1166 Retrieve the indicator of the type of uniform random number
generator.

RNOPT 1165 Select the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNPER 1240 Generate a pseudorandom permutation.

RNPOI 1189 Generate pseudorandom numbers from a Poisson
distribution.

RNSEF 1167 Initialize the array used in the IMSL GFSR random number
generator.

RNSES 1167 Initialize the table in the IMSL random number generators
that use shuffling.

RNSET 1167 Initialize a random seed for use in the IMSL randomnumber
generators.

RNSPH 1225 Generate pseudorandom points on a unit circle or K-
dimensional sphere.

RNSRI 1241 Generate a simple pseudorandom sample of indices.

RNSRS 1242 Generate a simple pseudorandom sample from a finite
population.

RNSTA 1209 Generate pseudorandom numbers from a stable distribution.

RNSTT 1210 Generate pseudorandom numbers from a Student’s t
distribution.

RNTAB 1227 Generate a pseudorandom two-way table.

RNTRI 1212 Generate pseudorandom numbers from a triangular
distribution on the interval (0,1).

RNUN 1171 Generate pseudorandom numbers from a uniform (0,1)
distribution.

RNUND 1190 Generate pseudorandom numbers from a discrete uniform
distribution.

RNUNF 1172 Generate a pseudorandom number from a uniform (0, 1)
distribution.

RNUNO 1231 Generate pseudorandom order statistics from a uniform (0,
1) distribution.

RNVMS 1213 Generate pseudorandom numbers from a von Mises
distribution.

RNWIB 1214 Generate pseudorandom numbers from a Weibull
distribution.
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RONE 82 Analyze a simple linear regression model.

RORDM 1268 Reorder rows and columns of a symmetric matrix.

ROREX 429 Reorder the responses from a balanced complete
experimental design.

ROTIN 201 Compute diagnostics for detection of outliers and influential
data points given residuals and the R matrix for a fitted
general linear model.

RPOLY 241 Analyze a polynomial regression model.

RSTAP 258 Compute summary statistics for a polynomial regression
model given the fit based on orthogonal polynomials.

RSTAT 141 Compute statistics related to a regression fit given the

coefficient estimates $β  and the R matrix.

RSTEP 221 Build multiple linear regression models using forward
selection, backward selection, or stepwise selection.

RSUBM 233 Retrieve a symmetric submatrix from a symmetric matrix.

RUNS 600 Perform a runs up test.

SCIPM 419 Compute simultaneous confidence intervals on all pairwise
differences of means.

SCOLR 1277 Sort columns of a real rectangular matrix using keys in rows.

SCTP 1081 Print a scatterplot of several groups of data.

SDPLC 551 Perform the Cox and Stuart sign test for trends in dispersion
and location.

SIGNT 542 Perform a sign test of the hypothesis that a given value is a
specified quantile of a distribution.

SMPPR 906 Compute statistics for inferences regarding the population
proportion and total, given proportion data from a simple
random sample.

SMPPS 909 Compute statistics for inferences regarding the population
proportion and total, given proportion data from a stratified
random sample.

SMPRR 911 Compute statistics for inferences regarding the population
mean and total using ratio or regression estimation, or
inferences regarding the population ratio, given a simple
random sample.

SMPRS 918 Compute statistics for inferences regarding the population
mean and total using ratio or regression estimation, given
continuous data from a stratified random sample.
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SMPSC 923 Compute statistics for inferences regarding the population
mean and total using single-stage cluster sampling with
continuous data.

SMPSR 927 Compute statistics for inferences regarding the population
mean and total, given data from a simple random sample.

SMPSS 930 Compute statistics for inferences regarding the population
mean and total, given data from a stratified random sample.

SMPST 933 Compute statistics for inferences regarding the population
mean and total, given continuous data from a two-stage
sample with equisized primary units.

SNKMC 424 Perform Student-Newman-Keuls multiple comparison test.

SNRNK 544 Perform a Wilcoxon signed rank test.

SPWF 677 Compute the Wiener forecast operator for a stationary
stochastic process.

SPWLK 589 Perform a Shapiro-Wilk W-test for normality.

SRCH 1284 Search a sorted vector for a given scalar and return its index.

SROWR 1280 Sort rows of a real rectangular matrix using keys in columns.

SSRCH 1287 Search a character vector, sorted in ascending ASCII order,
for a given string and return its index.

SSWD 729 Estimate the nonnormalized spectral density of a stationary
time series using a spectral window given the time series
data.

SSWP 736 Estimate the nonnormalized spectral density of a stationary
time series using a spectral window given the periodogram.

STBLE 985 Estimate survival probabilities and hazard rates for various
parametric models.

STMLP 1085 Print a stem-and-leaf plot.

SVGLM 967 Analyze censored survival data using a generalized linear
model.

SVIGN 1275 Sort an integer array by algebraic value.

SVIGP 1276 Sort an integer array by algebraic value and return the
permutations.

SVRGN 1273 Sort a real array by algebraic value.

SVRGP 1274 Sort a real array by algebraic value and return the
permutations.
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SWED 741 Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the time series data.

SWEP 747 Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the periodogram.

TCSCP 277 Transform coefficients from a quadratic regression model
generated from squares and crossproducts of centered
variables to a model using uncentered variables.

TDATE 1297 Get today’s date.

TDF 1143 Evaluate the Student’s t distribution function.

TETCC 342 Categorize bivariate data and compute the tetrachoric
correlation coefficient.

TFPE 689 Compute preliminary estimates of parameters for a univariate
transfer function model.

TIMDY 1296 Get time of day.

TIN 1145 Evaluate the inverse of the Student’s t distribution function.

TNDF 1146 Evaluate the noncentral Student’s t distribution function.

TNIN 1149 Evaluate the inverse of the noncentral Student’s t distribution
function.

TREEP 1098 Print a binary tree.

TRNBL 946 Compute Turnbull’s generalized Kaplan-Meier estimates of
survival probabilities in samples with interval censoring.

TWFRQ 7 Tally observations into a two-way frequency table.

TWOMV 37 Compute statistics for mean and variance inferences using
samples from two normal populations.

UMACH 1338 Set or retrieve input or output device unit numbers.

UVSTA 16 Compute basic univariate statistics.

VERSL 1301 Obtain STAT/LIBRARY-related version, system and license
numbers.

VHS2P 1076 Print a vertical histogram with every bar subdivided into two
parts.

VHSTP 1074 Print a vertical histogram.

WRIRL 1254 Print an integer rectangular matrix with a given format and
labels.

WRIRN 1253 Print an integer rectangular matrix with integer row and
column labels.
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WROPT 1257 Set or retrieve an option for printing a matrix.

WRRRL 1250 Print a real rectangular matrix with a given format and
labels.

WRRRN 1248 Print a real rectangular matrix with integer row and column
labels.
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discrete uniform distribution 1190
dissimilarity matrices 1024
dissimilarity/similarity matrices 1020
distances 1017
domain of study 927
double precision iii
DOUBLE PRECISION types v
dummy variables 124

E

empirical
quantiles 35
tests 1164

equamax rotation 809
error handling vi, 1327
errors

informational 1326
severity 1325
terminal 1325

exact probabilities 456
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expected value 1314
exponential distributions 591, 1197
exponential scores 24

F

F distribution function 1137, 1139
F statistic 41
factor

analysis 801
loading matrix 815, 818, 822
score coefficient matrix 838
score coefficients 833
scores 838
structure 831

factor-loading matrix 812
factorization 1308
fast Fourier transforms 615, 723,

750, 1047
Fejer kernel 721
filtering 627
finite population 1242
Fisher’s

exact test 440
exact test probability 457, 459
linear discriminant analysis

method 876
fitted

general linear model 201
regression model 176, 182

fixed
interval 1047
model 396

forecast 615
forecasting 616
forward selection 221, 489
fourth-degree polynomial criterion

825
frequency

distribution 357
domain 618
scale 625
tables 3, 7, 13

multiway 13
one-way 3
two-way 7

tabulations 1
Friedman’s test 568

G

gamma distribution function 1140,
1142

Gaussian kernel estimates 1047
general

continuous
cumulative distribution function

1152, 1155
distribution 1200, 1202

discrete distribution 1174, 1177,
1181

distributions 579
linear model 67, 210

generalized
feedback shift register method

1162, 1165
inverse 1305
linear models 511, 967
orthomax criterion 809

geometric distribution 1183
GFSR

generator 1162
method 1161, 1165

Givens
rotations 325
transformations 107

Goodman and Kruskal coefficient
443, 453

goodness-of-fit tests 579
Graybill’s method 428
grouped

data 2, 51
normal data 48

H

Harris-Kaiser method 822
hazard rate estimation 1069
hazard rates 985
HAZRD 1061
hierarchical cluster

analysis 887, 892
cluster tree 897

histogram 1074, 1076, 1078
horizontal histogram 1078
Hotelling’s trace 71, 173
Huber’s conjugate-gradient

algorithm 332
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hypergeometric
distribution 1185
distribution function 1111
probability function 1113

I

identical population medians 564
IMACH 1334
image transformation matrix 829
impulse response weights 685
includance test 561
independence 842
initial estimates 1028
INTEGER types v
interval censoring 946
inverse

CDF method 1208
prediction 94

iterative proportional-fitting
algorithm 466

J

jackknife residual 77

K

K cluster means 900
k-d tree 1317, 1320
K-dimensional sphere 1225
K-means cluster analysis 887, 900
k-sample trends test 574
Kalman filtering 705
Kaplan-Meier estimates 938, 942,

946
Kappa

analysis 434
statistic 439, 444, 454

Kendall’s rank correlation
coefficient 353, 357

Kendall coefficient of concordance
350

Kendall test 353
kernel

functions 1055, 1062, 1069
method 1044

Kolmogorov-Smirnov
goodness of fit 1117, 1120
test 579, 580, 598, 599

Kruskal-Wallis
statistic 444, 454
test 564

kurtosis 21, 594

L

lack of fit 75
lack of fit test 176, 182, 717
Latin square design 386
least absolute values criterion 293
least squares 79, 98, 237, 615
least-squares estimates 669, 694,

700, 797
left censored 49
letter value summary 29
Lilliefors test 591
linear

discriminant function analysis 863
interpolation 1052
least-squares analysis 527
regression 64, 65, 90, 94, 98, 104,

107, 131, 214, 221, 293, 297,
308

regression model 82, 695
systems 1305

log-linear models 467, 476, 482, 489
logarithmic distribution 1186
logistic linear model 510
loglinear model 463
lognormal distribution 1204

M

machine-dependent constants 1334
Mantel-Haenszel statistics 435
Mantel-Haenszel test 502
Mardia’s multivariate measures 594,

596
matrices 889

band 1342
Hermitian 1344, 1348
symmetric 1343, 1346
triangular 1345

general 1340
Hermitian 1341
printing 1248, 1250, 1253, 1254,

1257
rectangular 1340
symmetric 234, 1340
triangular 1341
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matrix of dissimilarities 889
matrix storage modes 1340
maximum 21
maximum likelihood 797
McNemar test 439, 445, 448, 454
mean 20, 37, 49
mean vector 331
measures of association 441, 451
median 61
method of moments 615
method of moments estimates 657,

660
Mill’s ratio 1315
minimax criterion 308
minimum 21
missing value code 1269
missing values viii, 79, 1020, 1339
mixed model 396
model estimates 468, 476
modified Bartlett 623
Monte Carlo applications 1164
moving average parameters 660
multichannel 615

cross-correlation function 618
time series 618, 649, 694, 700

multidimensional
scaling 1035
scaling models 1017, 1028

multinomial distribution 1222
multiple linear regression model 293,

297, 308
multiplicative congruential generator

1161
multiplicative generator 1161
multivariate

data 54
distribution 1218
general linear hypothesis 157, 163,

170
general linear model 67, 69, 117
normal distribution 1223
normal variables 842
time series 618

multiway frequency tables 13

N

naming conventions v
NaN viii, 79, 1269, 1339
nearest neighbor 1320

nearest neighbor discrimination 880
negative binomial distribution 1188
nested random model 409
network algorithm 459
Newton-Raphson iterations 50
Noether test 548
noncentral chi-squared function

1136
nonhomogeneous Poisson process

1236
nonlinear regression 280
nonlinear regression model 71
nonmissing observations 20
nonnormalized spectral density 729,

736, 741
nonparametric

hazard rate estimation 1054, 1061
probability density function

estimation 1040, 1044
nonseasonal ARMA model 615, 669,

680
nonuniform generators 1163
normal

distribution 591
order statistic 1314
populations 37
scores 24

normalized product-moment
matrices 1024

O

oblique
Promax rotation 818
rotation 822

observations 75
one-way

classification model 362, 364
frequency tables 3

order statistics 31
ordinates of the density 1150, 1152
orthogonal

central composite design 248
polynomials 252, 258, 263, 269
Procrustes rotation 812
rotation 809

outliers 201
overflow vi
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P

padded 627
padding 620
page length 1263
page width 1263
pairs test 604
parametric estimates 2, 616
parametric models 985
partial association statistics 482
partial correlations 327
Parzen 624
Pearson chi-squared statistic 439
penalized likelihood method 1040
periodogram 615, 621, 723, 736,

741, 747, 773, 782
permutation 1265, 1266, 1274, 1276
phase spectrum 627
Pillai’s trace 71
pivot 818
Poisson

distribution 47
distribution function 1114
linear model 510
probability function 1115

polar form 627
polynomial

curve 237
model 66
regression model 241, 258, 263

pooled variance-covariance matrix
322

population 992
mean 911, 918, 923, 927, 930, 933
proportion 906, 909

power vector option 818
preliminary estimates 664, 690
prewhitening 627
primary unit 935
principal components 793, 797
printing 1263

matrices 1248, 1250, 1253, 1254,
1257

results vii
probability density function 1052
probability plot 1092
Probit linear model 511
Procrustes rotation 818
product-moment correlation 441,

451
programming conventions vi

proportional fitting 463
proportional hazards model 951
pseudorandom

number generators 579
numbers 1171, 1172, 1173, 1174,

1177, 1181, 1186, 1188, 1189,
1191, 1193, 1194, 1195, 1196,
1197, 1198, 1200, 1202, 1204,
1205, 1208, 1209, 1210, 1212,
1213, 1214, 1215, 1218, 1222,
1223, 1236

order statistics 1229, 1231
orthogonal matrix 1215
permutation 1240
points 1225
sample 1242
sample of indices 1241
two-way table 1227

Q

quadratic discriminant function
analysis 863

quartimax rotation 809
quasi-likelihoods 1054

R

random
model 396, 409
number generators 1165
sample 906, 909, 911, 918, 927,

930
randomized

block design 375
complete block design 568

ranks 24, 26
order statistics 2

real rectangular matrix 1277, 1280
REAL types v
regression

coefficients 152
estimation 911, 918
fit 141
models 70
parameters 131

regressors 210
related observations 572
reordering matrices 1268
replicates 176, 182
reserved names 1349
residuals 201
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response control 90
right censored 50
robust estimate 331
Roy’s maximum root 71, 173
runs up test 601

S

sample correlation functions 615
Savage scores 27
scatter plot 1081
searching 1284, 1286, 1287
second order response surface model

277
serial number 1301
sets of points 1096
Shapiro-Wilk W-test 589
sign test 542
simultaneous confidence intervals

419
single precision iii
skewness 21, 594
sorting 1273, 1274, 1275, 1276,

1277, 1280
Spearman correlation 441, 451
specified weights 269
spectral

analysis 618
density 621, 729, 747, 767, 782
window 623, 729, 736, 757, 767

squares 272
stable distribution 1209
Stahel’s algorithm 332
standard

errors 440, 451
exponential distribution 1196
gamma distribution 1198
normal (Gaussian) distribution

function 1122, 1124
normal distribution 1205, 1208,

1207, 1229
standardized factor residual

correlation matrix 840
starting values 1166
statespace model 706
stationary

stochastic process 677
time series 637, 641, 644, 723,

729, 736, 741, 747, 750, 757

statistics
basic univariate 16
univariate summary 2
for inferences 906, 909, 911, 918,

923, 927, 930, 933
stem-and-leaf plot 1085
stepwise selection 221, 489
stratified

random sample 909
samples 938, 942

stress criteria 1035
Student’s t distribution 1210
Student’s t distribution function

1143, 1145, 1147, 1149
Student-Newman-Keuls method 425
Student-Newman-Keuls multiple

comparison test 424
summary statistics 258
sums of squares 72, 164, 170, 417
survival probabilities 938, 942, 946,

985
symmetric submatrix 233

T

t statistic 40
table lookup method 1181
target matrix 818
tests for randomness 579
tetrachoric correlation coefficient

342
theoretical CDF 1087
tie statistics 555
time 1296

domain methodology 616
event data 951
interval 625
series 614, 615, 633, 649, 694,

700, 716, 723, 729, 736, 741,
747, 750, 757, 767, 773, 782,
1234

transfer
function 615
function model 617, 686, 689

transformations 77, 615
trends in dispersion and location 551
triangular distribution 1212
triplets test 610
Tukey 623
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Tukey normal scores 26
Turnbull’s generalized Kaplan-Meier

estimates 946
two-way

balanced design 375
frequency tables 7
table 59

U

uncentered variables 277
uncertainty coefficient 444
underflow vi
uniform (0, 1) distribution 1171,

1172, 1232
uniform (0, 1) numbers 1165
unique values 207
unit circle 1225
univariate

density 1047
summary statistics 2
time series 618, 716

user
errors 1325
interface iii

V

Van der Waerden normal scores 27
variance 20, 37, 48, 831
variance-covariance matrix 104, 152,

314, 322, 793, 858
varimax rotation 809
version 1301
vertical histogram 1074, 1076
von Mises distribution 1213

W

Weibull distribution 1214
weights 615
Wiener

filter coefficients 700
forecast function 618
forecast operator 677

Wilcoxon
rank sum test 557
signed rank test 544
two-sample test 565

Wilks’ lambda 71, 173
work arrays vii
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Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use
of the IMSL C Numerical Libraries.  Visual Numerics can consult on the
following topics:

• Clarity of documentation

• Possible Visual Numerics-related programming problems

• Choice of IMSL Libraries functions or procedures for a particular problem

• Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

• for PC support, pcsupport@houston.vni.com.

• for non-PC support, support@houston.vni.com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur;  contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

1. Include your serial (or license) number

2. Include the product name and version number:  IMSL C/ Stat/Library Version
2.5

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description
of the problem
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